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Abstract

Rosseland mean opacity plays an important role in theories of stellar evolution and X-ray burst models. In the high-
temperature regime, when most of the gas is completely ionized, the opacity is dominated by Compton scattering.
Our aim here is to critically evaluate previous works on this subject and to compute the exact Rosseland mean
opacity for Compton scattering over a broad range of temperature and electron degeneracy parameter. We use
relativistic kinetic equations for Compton scattering and compute the photon mean free path as a function of
photon energy by solving the corresponding integral equation in the diffusion limit. As a byproduct we also
demonstrate the way to compute photon redistribution functions in the case of degenerate electrons. We then
compute the Rosseland mean opacity as a function of temperature and electron degeneracy and present useful
approximate expressions. We compare our results to previous calculations and find a significant difference in the
low-temperature regime and strong degeneracy. We then proceed to compute the flux mean opacity in both free-
streaming and diffusion approximations, and show that the latter is nearly identical to the Rosseland mean opacity.
We also provide a simple way to account for the true absorption in evaluating the Rosseland and flux mean
opacities.
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1. Introduction

The key role in the description of radiation transport through
a medium is played by two average opacities. The first one,
known as the Rosseland mean opacity,
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is used in the diffusion approximation (and in radiative
equilibrium) to relate the temperature gradient to the radiation flux:
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The second one, known as the flux mean opacity,
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relates the bolometric radiation flux to the radiative acceleration
(see Mihalas & Mihalas 1984, pp. 360–361):
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The Rosseland mean can be computed a priori once the total—
absorption and scattering—opacity as a function of photon
frequency kn is known. For the flux mean, we also need to
specify the spectral energy distribution given by the flux Fν. In
the diffusion approximation, these two opacities coincide for
pure absorption and coherent isotropic scattering.

In the high-temperature regime, when most of the gas is
completely ionized, the opacity is dominated by Compton
scattering. This situation is not so simple because the scattering is
incoherent, induced scattering has to be accounted for, and the
effective cross section should be used instead of the total cross
section. Furthermore, it is a priori not obvious that the Rosseland
mean and the flux mean opacities coincide even in the diffusion
approximation. The Rosseland mean for a nondegenerate electron

gas was considered by Sampson (1959). It was further extended
by Chin (1965) to include the effect of electron degeneracy. This
work was affected by an error, which also propagated into
textbooks (Chiu 1968; Cox & Giuli 1968; Weiss et al. 2004). The
corrected method to compute the Rosseland mean was introduced
by Buchler & Yueh (1976), who provide also a comprehensive
analysis of the previous results. The numerical results presented
in that work were approximated by Paczynski (1983) with a
simple analytical expression, which was later used in numerous
papers on X-ray bursts. An alternative approximation was given
by Weaver et al. (1978). The flux mean opacities in the free-
streaming limit have been computed by Pozdnyakov et al. (1983,
see also Nagirner & Poutanen 1994, Poutanen & Vurm 2010).
In this paper we recompute the Rosseland and the flux mean

opacities for Compton scattering and compare our results to the
previous calculations. We also provide new analytical formulae
that approximate the numerical results well.

2. Relativistic Kinetic Equation for Compton Scattering

Derivation of the Rosseland mean opacity for Compton
scattering is based on solution of the relativistic kinetic equation
(RKE) in terms of the photon mean free path as a function of its
energy. Interaction between photons and electrons (positrons) via
Compton scattering accounting for the induced scattering and
fermion degeneracy can be described by the explicitly covariant
RKE for photons (Buchler & Yueh 1976; de Groot et al. 1980;
Nagirner & Poutanen 1993, 1994):
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where { } = ¶ ¶ -c t, is the four-gradient, re is the
classical electron radius, and l = h m cC e is the Compton
wavelength. Here we defined the dimensionless photon four-
momentum as { } { ˆ }w= =xx x x, 1, , where ŵ is the unit
vector in the photon propagation direction and nºx h m ce

2 is
the photon energy in units of the electron rest mass. The photon
distribution is described by the occupation number n. The
dimensionless electron/positron four-momentum is

{ } { ˆ } { ˆ }g g g bW W= = =pp p, , 1, , where Ŵ is the unit

vector along the electron momentum, γ and g= -p 12 are
the electron Lorentz factor and its momentum in units of m ce ,
and β is the velocity in units of c. The electron/positron
distributions are described by the occupation numbers ˜n .

The factor F in Equation (5) is the Klein–Nishina reaction
rate (Berestetskii et al. 1982)
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are the four-products of the corresponding momenta. The
second equalities in Equation (7) arise from the four-
momentum conservation law represented by the delta function
in Equation (5).

The electron/positron distribution under the assumption of
thermal equilibrium and isotropy is given by the Fermi–Dirac
distribution:
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where Q = kT m ce
2 is the dimensionless temperature and h

are the degeneracy parameters for positrons and electrons (the
ratio of the Fermi energy minus rest mass to temperature)
related via h h+ = - Q- + 2 (see, e.g., Cox & Giuli 1968;
page 302 of Weiss et al. 2004). The electron/positron
concentrations are given by the integrals over the momentum
space:
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and the density (not including electrons and positrons created
by pair production or radiation) is

( ) ( )r m= -- +N N m , 10e p

where ( )m = + X2 1e is the mean number of nucleons per
free ionization electron and X is the mass fraction of hydrogen.
The total number density of electrons and positrons
is = +- +N N Ne .

The form of the RKE (5) can be simplified by defining the
redistribution functions (RF) via
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The RFs satisfy the symmetry property
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which follows from its definition (11) and the energy
conservation g g= + -x x1 1, or from the detailed balance
condition (see Equation (8.2) in Pomraning 1973).
In the absence of strong magnetic field, the medium is

isotropic, therefore the RF depends only on the photon energies
and the scattering angle (with μ being its cosine), i.e., we can
write ( ) ( )m = x xR R x x, ,1 1 . Introducing the total RF as
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the kinetic Equation (5) in a steady state can be recast in a
standard form of the radiative transfer equation:
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where s =t NT e is the dimensionless gradient, with sT

being the Thomson cross section.

3. Photon Mean Free Path

Deep inside stars or thermonuclear burning regions of X-ray
bursts, the radiation field is nearly isotropic and the diffusion
approximation should be rather accurate. We can therefore
express the occupation number as

( ) ˆ · ( )w = - txn b l b , 15x x x

where [ ( ) ]= Q -b x1 exp 1x is the occupation number for
the Planck distribution and lx is the mean free path (in units of
s N1 T e) for Compton scattering of a photon of energy x.

Substituting expansion (15) into Equation (14), noticing that
the zeroth-order terms cancel out, keeping only terms of the
first order in tbx, and using condition (12), we get
(Sampson 1959; Buchler & Yueh 1976)
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Simple algebra gives a linear integral equation for the mean
free path lx:
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Choosing the coordinate system so that ˆ ( )w = 0, 0, 1 ,
defining ˆ ( )w m f m f m= - -1 cos , 1 sin ,1

2 2 and

2

The Astrophysical Journal, 835:119 (8pp), 2017 February 1 Poutanen



( )q qQ µ sin , 0, cos , the integral over solid angle becomes

ò òm fd d , with only the last term in the square brackets
depending on f. The azimuthal integral is then
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so that the square bracket in Equation (17) can be substituted
by m-l l x xx x 11

(Sampson 1959). Equation (17) can be further
modified by integrating over the angles of the scattered photon:
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where we introduced the moments of the RF (Nagirner &
Poutanen 1994)
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The method for computing these functions is described in the
Appendix.

At low temperatures the RFs are extremely peaked at »x x1
and therefore two approximations are often made (Samp-
son 1959; Buchler & Yueh 1976):
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The first approximation is equivalent to the on-the-spot
approximation in the theory of radiative transfer in spectral
lines. These approximations reduce Equation (19) for the mean
free path to
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where (Nagirner & Poutanen 1994)
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At temperatures above 50 keV, approximation (23) fails (see
Figure 1). Still keeping the on-the-spot approximation (22), we
get an explicit expression
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At low temperatures, the easiest way to exactly solve
Equation (19) for lx is to use an iteration procedure, starting
from the approximation (26). The functions ri(x) can be

Figure 1. Mean free path of photons lx (in units of s N1 T e) as a function of the
ratio of photon energy to temperature for various temperatures and
degeneracies: (a) Q = 0.05, (b) Q = 0.25, (c) Q = 0.5. Different lines from
bottom to top correspond to the degeneracy parameter h = -2, 1, 4, 7. The
exact solution (19) is shown by the solid black lines. The approximate
expressions (24) and (26) are shown by the dotted blue and dashed red lines,
respectively.

3

The Astrophysical Journal, 835:119 (8pp), 2017 February 1 Poutanen



tabulated in advance. The integrals over the energy x1 for every
x have to be taken over a dense grid around x. For high
temperatures, in principle, one can replace the integral by the
discrete sum on a logarithmic grid of photon energies xi and
solve Equation (19) as a system of linear equations for =l li xi

(as was done by Buchler & Yueh 1976):
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and wj are the integration weights (equal to Dx xlnj for a
logarithmicgrid) and dij is the Kronecker delta. The results of
calculations for lx using a solution of the integral equation as
well as by approximate formulae (26) and (24) are presented in
Figure 1.

We see that the mean free path computed using expression
(26) approximates the exact lx well at all photon energies x for
low temperature and small degeneracy parameter η as well as at
 Qx for large Θ and η. The approximate expression (24)

used by Sampson (1959) is also reasonably accurate for small
Θ and η for  Qx , but becomes increasingly inaccurate for
high Θ and η. We note that for large Θ and η the solution of the
integral Equation (19) gives negative lx at small x, which is
unphysical; on the other hand, lx computed via Equation (26) is
always positive.

4. Rosseland Mean Opacity

After finding the mean free path lx as a solution of
Equation (19), we can compute the Rosseland mean opacity as
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and n= Q =u x h kT and =B x bx x
3 . The integrals over x

are taken over the energy range where lx is positive. We note
that because of the high accuracy of the approximation (26), the
Rosseland mean can also be computed using an explicit
expression instead of solving integral Equation (19), typically
giving a relative accuracy of better than 10−4. This approx-
imation also allows us to easily find the photon mean free path
when, additionally, true absorption needs to be accounted for:

( ) ( ) ( )a» + -l x r x r x1 x 0 1 , where ( )a x is the standard
absorption coefficient in units of s NT e.

The results of calculations for Λ over a broad range of
temperatures and electron degeneracies h- are presented in
Figures 2 and 3. We present the results taking opacity by
electrons only, as was done also by Sampson (1959) and
Buchler & Yueh (1976), because there are no pairs at low

temperatures or high degeneracies. At low degeneracies and
high temperatures hQ > -1 ; on the other hand, the number
of positrons exceeds the number of electrons, because
h h h= - Q - >+ - -2 , which is unphysical. In the following
we will replace h- by η. The results computed by Sampson
(1959) and Buchler & Yueh (1976) are shown by triangles and
circles, respectively, while our results are shown by black solid
curves. The results of Sampson (1959) are accurate to better
than 1% up to about 25 keV; after that they start to deviate
significantly. This is a direct consequence of his usage of
approximation (24) for the mean free path, which is supported
by our calculations in the same approximation (see dotted blue
curves in Figures 2 and 3(b), and the residuals in the bottom
panel of Figure 2). We see that this approximation system-
atically underestimates the opacity at high temperatures. We
note here that the opacity computed by Chin (1965) for
degenerate electrons and still reprinted in the textbooks (Weiss
et al. 2004) is systematically too large by up to 13% (see black
squares in Figure 3(a)); a rather good agreement at high
temperatures results from a fortuitous cancellation of an error
and his usage of approximation (24) (Buchler & Yueh 1976).

Figure 2. Rosseland mean opacity (in units of s rNT e ) as a function
temperature for nondegenerate gas. The black solid curve represents the result
of our exact calculations. The dotted blue curves give the Rosseland mean
computed with the help of approximation (24) for the mean free path. The blue
circles give the numerical results of Buchler & Yueh (1976), the black triangles
are the results from Sampson (1959), and the open squares are from Chin
(1965). The dotted red curve is the Paczyński approximation (35), which
underestimates exact results by 2%–3%. The solid pink curve is the best fit in
the temperature range 2–300 keV using function (41) with parameters

=T 41.5 keV0 and a = 0.90 , which is accurate to within 2% in that range.
The dashed blue curve is the same approximation in the temperature range
2–40 keV with parameters =T 39.4 keV0 and a = 0.9760 , which is accurate to
0.7%. The dot-dashed green curve is the approximation (33), which is accurate
to within 3% in the temperature range 1–150 keV and rapidly diverges at
higher temperatures. The long-dashed brown curve represents the flux mean
opacity in the free-streaming limit (49) for the blackbody spectrum. The bottom
panel presents the residuals as a percentage of our exact calculations.
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On the other hand, the results of Buchler & Yueh (1976) are
within 2% of ours above 25 keV (Q > 0.05), but at Q = 0.03
they underestimate the opacity by as much as 6%. The situation
becomes worse if we use the analytical approximations of
Buchler & Yueh (1976) at lower temperatures, where the
opacity would be systematically underestimated by up to 13%.

The calculations of Buchler & Yueh (1976) gave rise to at
least two different approximate formulae for the Rosseland
mean opacity. Weaver et al. (1978) separated the dependences
on Θ and η:

( ) ( )hL Q = hQf f, , 33W78

where

( )
( ) ( )h

= + Q - Q Q <
= + -h

Qf

f

1 14.1 12.7 for 0.4 ,

1 exp 0.522 1.563 . 34

2

Expressions (33) and (34) were claimed to be accurate to better
than 10% over a wide range of degeneracy parameters and
temperatures ( h-¥ < 4, < Q <0.04 0.4). This approx-
imation is used in the codes developed for simulation of stellar
evolution and explosions, including X-ray bursts (Woosley
et al. 2002, 2004). We see (Figure 3(a)) that it diverges above
150 keV for any η. Because the dependences on T and η are
separated, the temperature range of applicability of this
approximation becomes smaller for large η. For h = 4
deviations from the exact values reach 50% in the middle of
the temperature range where the approximation is supposed
to work.

A different approximation that is widely used in theory of
X-ray bursts was given by Paczynski (1983):
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for m = 2e . We see from Figures 2 and 3(a) that Paczyński’s
approximation is rather good for small η. At large η it becomes
highly inaccurate at low temperatures.
For the approximation of the Rosseland mean opacity, we

propose to use a combination of the forms proposed by Buchler
& Yueh (1976) and Paczynski (1983):

( ) ( )[ ( ) ] ( )h hL Q = + af T T, 1 , 36app 1 br

where

( ) ( )h=T T f , 37br 0 2

( ) ( )a a h= f , 380 3

( ) ( )h x x= + + =f c c i1 , 1, 2, 3, 39i i i1 2
2

( ) ( )x h h= +c cexp . 4001 02
2

The coefficients are given in Table 1 for two fitting intervals
2–40 and 2–300 keV. This form approximates the opacity to
better than 4% and 6.5% over the whole range of degeneracy
parameter - ¼10, ,7 in the temperature ranges 2–40 and
2–300 keV, respectively (see Figure 3(b)). In case of a
nondegenerate gas, h  -¥, the expressions simplify

Figure 3. Rosseland mean opacity (in units of s rNT e ) as a function of temperature for various values of the degeneracy parameter η. The solid black curves represent
the result of our exact calculations (the flux mean opacity is equal to the Rosseland mean to within 10−4). The top curve corresponds to h = -10; for the following
curves η varies from −1 to 7. (a) The blue circles give the numerical results of Buchler & Yueh (1976) for h = - -10, 1 , .., 4 and the black open squares are from
Chin (1965) for h = -¥ -, 1, 0, 1, 2, 4 (for five values of Θ, except for h = -¥ for which the opacity is given for only three, Q = 0.05, 0.15, 0.25). The dot-
dashed green curves are the approximation (33) and dotted red curves give Paczyński’s approximation (35). (b) The dotted blue curves are the Rosseland mean
computed using approximation (24) for the mean free path and the dashed red curves correspond to our approximate expression (36) for the range 2–300 keV.
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because all fi=1:

( ) ( ) ( )L Q = + aT T1 , 41app 0 0

with the best-fit parameters given in Table 1. The goodness of
the fits is demonstrated in Figure 2. We note, however, that
physically realistic parameters should correspond to >- +N N ,
which demands hQ < -1 , i.e., for h = -10 the temperature
is limited to 50 keV.

5. Radiative Acceleration and the Flux Mean Opacity

Radiative acceleration of the medium can be given by the
product of the flux and the flux mean opacity. As we mentioned
in the Introduction, the flux mean is identical (in the diffusion
approximation) to the Rosseland mean only in the case of pure
absorption and coherent isotropic scattering. These conditions
are not satisfied in case of Compton scattering. Obviously, in
the optically thin limit the flux mean depends on the photon
spectral energy distribution and cannot be determined a priori.
In this section, we derive expressions for the flux mean
opacities in both the free-streaming and diffusion limits.

To compute the radiation force on the medium, we need to
construct the first moment of the RKE. Multiplying RKE (14)
by x and integrating over xd , we get
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where we changed the variables «x x1 in the second half of
the equation and introduced the (dimensionless) radiation
pressure tensor
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Let us represent the gradient of the pressure tensor as a sum of
the terms that are linear and quadratic in n:

T T T· · · ( )  = +t t t . 450 1

Integrating over angles wd2
1, the first term becomes

T· ( ) ˆ [ ( )

( )] [ ( ) ( )] ( )

ò ò
ò

wp

p

- =

- = -

t
¥x

x

h

d

x
n x dx xR x x

x R x x x dx s x s x

4 ,

, 4 , 46x

0
0

1 1 0 1

1 1 1
3

0 1

where

ˆ ( ) ˆ ( )ò w w
p

=h xn d
1

4
47x

is the first moment of n and [ ( ) ( )] s-x s x s x N m c0 1 e T e is
the momentum transfer per unit length of photon propagation
averaged over electron distribution and scattered photon
directions ignoring induced scattering (Nagirner & Poutanen
1994; Poutanen & Vurm 2010; Pozdnyakov et al. 1983). Note
that the radiation flux in these notations is

( )òµF hx dx . 48x
3

Thus the flux mean opacity (in units of s rNe T ) in the free-
streaming limit (ignoring induced scattering) is

[ ( ) ( )]
( )ò

ò
k =

-x dx h s x s x

x dx h
. 49

x

x
F

3
0 1

3

For the radiation spectrum close to a diluted blackbody, i.e.,
µh bx x, the flux mean opacity for the case of nondegenerate

electrons is shown in Figure 2. It can be approximated by
Equation (41) with parameters =T 58.5 keV0 and a = 0.9130

to better than 0.8% accuracy in the range 2–300 keV. On the
other hand, a nonrelativistic approximation (2.63) from
Pozdnyakov et al. (1983), k = - Q1 10.26F , fails already
above 5 keV.
In the diffusion approximation (15), we substitute

= - th l bx x x
1

3
. The effect of the induced scattering on the

radiation pressure force in the diffusion approximation can be
computed by substituting Equation (15) into Equation (42). The
nonlinear term becomes

T· ( )

( ) ( )( ˆ ˆ )
( )

ò ò ò ò
w w

w w h

h m

- = + ¶

´ + ¶ -

t t

t

xdx x dx d d b l b

b l b R x x x x, , ,

50

x x x

x x x

1 1 1
2 2

1

1 1 1 11 1 1

where ˆ ( )w h f h f h= - -1 cos , 1 sin ,2 2 and

ˆ ( )w h f h f h= - -1 cos , 1 sin ,1 1
2

1 1
2

1 1 with the z-axis

chosen against the temperature gradient and ∣ ∣¶ ºt tb bx x .
Taking the angular integrals, for the magnitude of the radiation
pressure force we get

T∣ · ∣ [ ( )

( ) ( )
( )]

( )

ò ò
p- =

´ ¶ - ¶ +
´ ¶ - ¶

t

t t

t t

xdx x dx R x x

b xl b b x l b R x x

xb l b x b l b

16

3
,

,

.

51

x x x x x x

x x x x x x

1

2

1 1 0 1

1 1 1

1

1 1 1

1 1 1

Table 1
Coefficients of the Approximate Formulae (41) and (36)

Rosseland Mean Flux Meana

Coefficient 2–40 keV 2–300 keV 2–300 keV

T0 39.4 43.4 41.5 43.3 58.5
a0 0.976 0.902 0.90 0.885 0.913
c01 L 0.777 L 0.682 L
c02 L −0.0509 L −0.0454 L
c11 L 0.25 L 0.24 L
c12 L −0.0045 L 0.0043 L
c21 L 0.0264 L 0.050 L
c22 L −0.0033 L −0.0067 L
c31 L 0.0046 L −0.037 L
c32 L −0.0009 L 0.0031 L

Note.
a The flux mean opacity in the free-streaming limit for a blackbody spectrum of
the same temperature as given by Equation (49).
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Making the change of variables x↔x1 in the terms containing
¶tbx1, we get

T∣ · ∣ {[ ( )

( )] [ ( ) ( )]}
( )

ò ò
p- = ¶

- - -

t txdx l b x dx b xR x x

x R x x xR x x x R x x

16

3
,

, , , .
52

x x x1

2

1 1 0 1

1 1 1 0 1 1 1 1

1

The total pressure gradient becomes

T∣ · ∣ {( )

[ ( ) ( )]
[ ( ) ( )]}

[ ( ) ( )]

[ ( ) ( )] ( )

ò ò

ò ò

ò

p

p

p
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´ -
- -

= ¶
-
-

´ -

= ¶ -

t t

t

t

- Q

- Q

xdx l b x dx b

xR x x x R x x
b xR x x x R x x

xdx l b x dx
e

e
xR x x x R x x

x dx l b r x r x

16

3
1

, ,
, ,

16

3

1

1
, ,

4

3
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1 1

0 1 1 1 1

0 1 1 1 1
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1 1
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3
0 1

1

1

1

Thus the flux mean opacity is then

[ ( ) ( )]
( )

ò

ò
k =

-
¥ ¶

¶Q
¥ ¶

¶Q

l r x r x dx

l dx
. 54

x
B

x
BF

0 0 1

0

x

x

Because approximation (26), i.e., ( ) ( )» -l r x r x1 x 0 1 , is very
accurate in the region of the photon energies ~ Qx
contributing to the integral, the flux mean opacity in the
diffusion approximation turned out to be nearly identical (but
not equal: the relative difference is less than 10−4) to the
Rosseland mean over the full range of temperatures and
degeneracies considered. The flux mean opacity can thus be
approximated by simple analytical expressions (36) and (41),
which also describe well the radiative acceleration in the
atmospheres of hot neutron stars obtained from the solution of
the radiative transfer equation with the exact Compton
redistribution function where the diffusion approximation has
not been used (Suleimanov et al. 2012).

6. Summary

In this paper, we have critically evaluated the results of
previous works on the Rosseland mean opacity for Compton
scattering. In order to obtain the photon mean free path as a
function of photon energy we have solved in the diffusion
approximation the relativistic kinetic equation describing
photon interactions via Compton scattering with the possibly
degenerate electron gas. We demonstrated that the mean free
path can be also accurately evaluated using explicit approx-
imate formulae, which can also be used for calculations of the
Rosseland mean opacity and can provide a simple way to
account for the true absorption.

We have computed the Rosseland mean opacity over a broad
range of temperature and electron degeneracy parameter. We
compared our results to previous calculations and found a
significant difference in the low-temperature regime. We have
also presented useful analytical expressions that approximate
the numerical results well. We then computed the flux mean
opacities in the free-streaming limit as well as in the diffusion
approximation, finding that the latter is nearly identical to the
Rosseland mean opacity.

The author thanks Valery Suleimanov, Dmitri Nagirner, and
Dmitry Yakovlev for useful discussions. This work was
supported by the Foundations’ Professor Pool, the Finnish
Cultural Foundation, and the Academy of Finland grant
268740. The author also acknowledges useful conversations
with the members of the X-ray burst team of the International
Space Science Institute (Bern, Switzerland).

Appendix
Redistribution Functions

The RF defined by Equation (11) has been studied in detail
before in the case of nondegenerate electrons (Aharonian &
Atoyan 1981; Prasad et al. 1986; Nagirner & Poutanen 1994;
Poutanen & Vurm 2010). This RF can be simplified to the one-
dimensional integral over the electron energy. It turned out that
the derivation is identical for degenerate electrons, and also in
this case the RF can be presented in terms of one integral that
can be taken numerically.
For the isotropic electron distribution, expression (11) for the

RF can be simplified by taking the integral over p with the help
of the three-dimensional delta function and using the identity

( ) ( · · ( ))d g g gd+ - - = - +x x x p x p x1 1 1 1 1 1 :

( ) ˜ ( )[ ˜ ( )] ( )

( )

òm
p l g

g g d= - G


 
p

R x x
N

d
n n F, ,

3

16

2
1 ,

55

1
C
3

1

1
1

where

( )g g= + -x x, 561 1

( ) ( ˆ ˆ ) · ˆ ( )w wg WG = - - - -x x p x x q, 571 1 1 1 1 1

· ( ) ( )m= = -x xq xx 1 . 581 1

The RF also depends implicitly on the electron temperature Θ

and degeneracy parameter h. To integrate over angles in
Equation (A1) we follow the recipe proposed by Aharonian &
Atoyan (1981) (see also Prasad et al. 1986; Poutanen &
Vurm 2010), choosing the polar axis along the direction of the
transferred momentum

ˆ ( ˆ ˆ ) ( )w wº -n x x Q, 591 1

where

( ˆ ˆ ) ( ) ( )w w= - = - +Q x x x x q2 . 602
1 1

2
1

2

Thus the integration variables become ˆ · ˆa W= ncos 1 and the
corresponding azimuth Φ. The RF (55) then can be written as

( ) ˜ ( )[ ˜ ( )]

( )

( )

ò

ò ò

m
p l

g g g

d a

= -

´ G F
p




¥

 

-

R x x
N

n n p d

d Fd

, ,
3

16

2
1

cos ,

61

1
C
3 1

1 1 1

1

1

0

2

where now

( ) ( )g aG = - - -x x q p Q cos . 621 1 1

Integrating over acos using the delta function, we get

( ) ˜ ( )

[ ˜ ( )] ( ) ( )
*

òm
l

g

g m g g

=

´ -
g




¥





R x x
N

n

n R x x d

, ,
3

8

2

1 , , , , 63

1
C
3 1

1 1 1
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with integration over the electron distribution done numeri-
cally. Here we introduced the RF for monoenergetic electrons

( ) ( )òm g
p

= F
p

R x x
Q

F d, , ,
1 1

2
. 641 1

0

2

The function F depends on ( )x g z= -x p1 1 1 and x x= + q1 ,
where

ˆ · ˆ ( )wz a k a kW= = + Fcos cos sin sin cos , 651

ˆ · ˆ [ ( ) ] ( )a gW= = - -n x x q p Qcos , 661 1 1 1

ˆ · ˆ ( ) ( )wk m= = -n x x Qcos . 671

The condition ∣ ∣ acos 1, gives a constraint

( ) ( ) ( )*g g m = - + +x x x x Q q, , 1 2 2. 681 1 1

Integrating over azimuth Φ in Equation (64) gives the exact
analytical expression for the RF valid for any photon and
electron energy (Buchler & Yueh 1976; Aharonian &
Atoyan 1981; Prasad et al. 1986; Nagirner & Poutanen 1994;
Poutanen & Vurm 2010), which we use in our calculations:

( )

( )

m g = +
- -

-

+ +

- +

-

-

+

+

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

R x x
Q

q q

q a a

q

d

a

d

a

, , ,
2 2 2 1 1

1
, 69

1 1

2

2

2 3 3

where

( ) ( )

( )
( )

g
m
m

g
m
m

= - +
+
-

= + +
+
-

= - 

- +

 + -

a x a x

d a a Q

1

1
,

1

1
,

2.

70

2
1

2 2
1 1

2

2 2 2

The cancellations at small photon energies have been handled
by Nagirner & Poutanen (1993). We note that the RF (69)
satisfies the detailed balance condition (Nagirner & Pouta-
nen 1994):

( ) ( ) ( )m g m g= + -R x x R x x x x, , , , , , . 711 1 1 1 1

The RF (55) is related to the scattering kernel (8.13) in
Pomraning (1973) by ( ) ( )m s m= R x x x x x x, , ,s1 1 1 . The
form given by Equation (61) is equivalent to Equation (A4) in
Buchler & Yueh (1976). The derived RF for monoenergetic
electrons (69) is equivalent to Equation (A5) from Buchler &
Yueh (1976) and Equation (14) in Aharonian & Atoyan (1981).

The angle-averaged RF functions (20) and (21), used in the
calculations of the mean free path, can be expressed through
the single integral over the electron and positron distributions

( ) ( ) { ˜ ( )[ ˜ ( )]

˜ ( )[ ˜ ( )]}
( )


òl

g g g g

g g

= -

+ - =
g ¢

¥
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+ +

R x x
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R x x d n n
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,
3
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2
, , 1

1 , 0, 1,
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x x
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xx
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2 2
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1
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1 2 if 2 .

73

1

1 1

1
1 1

1 1 1 1

The explicit analytical expressions for the angle-integrated
functions ( )gR x x, ,0 1 1 and -R R0 1 under the integral in
Equation (72) can be found in Sections 8.1 and 8.2 of Nagirner
& Poutanen (1994).
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