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Abstract

Institutions serve various purposes. Often they solve coordination
problems (right- or left-handed traffic regulations) or prisoner’s dilem-
mas (enforcement of contracts), maintain general order, secure cohe-
sion of groups etc. Sometimes they are intentionally designed, notably
by legislatures. In these cases they are based on assumptions regarding
how people and institutions behave under the proposed new legislation.
If the outcomes of these thought experiments are desirable, the legis-
lation is enacted, otherwise probably not. This article focuses on one
standard assumption made in these experiments, viz that individuals
are rational in the sense of having and acting upon a preference ranking
over the outcomes resulting from their and their environment’s actions.
This article purports to show that people can be rational in intuitively
plausible ways without having preference rankings. More specifically,
it is argued that it makes perfect sense to have intransitive, incomplete
or discontinuous preferences at least in some cases. In fact, acting upon
reasons may well be associated with intransitivity, incompleteness and
discontinuous preferences. The implications of this argument for in-
stitution design are thereafter discussed. Particular attention is paid
on preference tournaments as a starting point for modeling individual
opinions. Zermelo’s early work on tournaments will also be discussed
in a new setting.

Keywords: institution design, intransitivity of preferences, incomplete-
ness of preferences, aggregation paradox, preference proximity, tournament,
Zermelo

1 Introduction

The principle of rationality is often invoked in non-scientific contexts as a
means of understanding behavior. The concept rational behavior is also
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the main ingredient of modern decision theory. No decision theorist would
maintain that all human behaviour is rational, but many would probably
argue that rational behaviour provides a useful benchmark for evaluating,
explaining and predicting various forms of behaviour. In particular, if ob-
served behaviour is found to agree with the dictates of rationality, no further
explanation is typically needed for it. It is behaviours that exhibit devia-
tions from rationality that require explanation. But what is then rational
behaviour? The most precise definition – due to Savage (1954) – is based on
a simple choice situation involving two alternatives, say, A and B. Suppose
that the individual making the choice has a strict preference over these two
so that he/she (hereinafter he) strictly prefers A to B. Choice behaviour is
then called rational if it always, that is, with probability 1, results in A be-
ing chosen (see also Harsanyi 1977). Of course, we may encounter situations
where the individual is physically prevented to choose A e.g. by making him
believe that A is not really available or that by taking some new aspects of
the situation into account, he does not prefer A to B or something similar.
These kinds of considerations are, however, irrelevant since by suggesting
that A is not available, the situation is no longer one involving a choice.
Similarly, if the individual is led to believe that he is actually preferring B
to A, the “original” preference no longer holds. So, we may argue that the
definition holds at least as far as preference-based rationality is concerned.
In this setting it is quite straight-forward and trivial to argue that rational
behaviour aims at utility maximization since by assigning a larger utility
value to A than to B, we guarantee that preferences coincide with utility
maximization.

Things get more complicated when the alternative set is expanded. The
standard way to proceed is to impose conditions on preference relations that
guarantee that acting in accordance with preferences amounts to maximizing
utilities. In fact, the theory of choice under certainty, risk and uncertainty
focuses precisely on those conditions. In what follows we shall restrict our-
selves to the most elementary decision setting involving a finite set of more
than two alternatives, viz. the choice under certainty. The standard repre-
sentation theorem (see e.g. Harsanyi 1977, 31) states that if the individual
is endowed with a continuous, complete and transitive weak preference re-
lation over the alternatives, then his choice behaviour – if it conforms with
his preferences – can be represented as utility maximizing. In the following
sections we shall consider each one of these properties of preference relations
in turn and discuss their plausibility. Our aim is to show that under rela-
tively general circumstances each one of them can be questioned. We shall
thereafter endeavour to show that individual preference tournaments could
provide a useful starting point for modelling reason-based behaviour and a
more plausible benchmark than the traditional preference-based rationality.
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2 Rationality vs. optimization

Is rationality always associated with optimization? This question has been
discussed by many authors, especially after Simon introduced (1983) the
idea of bounded rationality and satisficing. Simon’s argues that this is not
the case. Mongin (2000) examines the plausibility of the opposite implica-
tion and asks whether optimization implies rationality. The question is well
worth posing even if one accepts Simon’s view which leaves this implication
basically open. After careful analysis, Mongin concludes that the answer is
negative, optimization does not imply rationality. For our purposes it is not
necessary to re-examine Mongin’s and Simon’s arguments in detail, but it
is important to point out the difference of our focus vis-à-vis Mongin’s and
Simon’s. We basically accept the thin rationality view, i.e rational behav-
ior amounts to acting upon one’s preferences in two-alternative settings. In
multi-alternative ones the conditions imposed on preferences (completeness,
transitivity, continuity) guarantee the existence of a utility function and
acting upon preferences, therefore, means maximizing one’s utility function.
We find this plausible. That is, if a person’s preferences satisfy the con-
ditions mentioned, then it makes sense to call his behavior rational to the
extent he acts upon his preferences and maximizes his utility function. How-
ever, the conditions needed for the utility function to exist may not hold. It
will be argued in the following, that reasonable (rational) choices can still
be made and are actually being made. What is being rejected here is the
position according to which complete and transitive preference relations are
necessary and sufficient for rational behavior. They may be sufficient, but
not necessary. In the following some new arguments are presented in sup-
port of the claim that it is quite plausible that individual preferences are
occasionally intransitive, incomplete and discontinuous. Our approach that
stemming from multiple criterion decision theory is new, although some of
the conclusions – especially those that pertain to intransitivity – are well
known from previous literature.

3 Can one question transitivity?

It is common to assume that preferences are revealed by choices. This is,
in fact, stated in the definition of preference. In the world of empirical ob-
servations it may, however, happen that a person may, for one reason or
another, occasionally choose B even though his preference is for A over B.
It would, then, be more plausible to translate the preference of A over B
into a probability statement according to which the probability of A be-
ing chosen by the person is larger than the probability that B is chosen.
Starting from this somewhat milder probability definition of preference, we
shall now consider the transitivity property. May (1954) suggests that the
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appropriate definition of preference-based choice is one that – in addition
to choice probability – includes the alternative set considered as well as the
description of the experimental setting. In this framework the preference for
A over B is expressed as the following probability statement:

p(A|A,B,E) > p(B|A,B,E)

Here E denotes the experimental setup.
Suppose now that A is preferred to B and B is preferred to C. I.e.

p(A|A,B,E) > p(B|A,B,E) (1)

p(B|B,C,E) > p(C|B,C,E) (2)

Now, transitivity would require that Equation 1 and Equation 2 imply
that

p(A|A,C,E) > p(C|A,C,E) (3)

It is, however, difficult to associate this implication with rationality, since
the alternative sets considered are different in each equation: in Equation 1
it is {A,B}, in Equation 2 it is {B,C} and in Equation 3 it is {A,C}. What
May (1954, 2) argues is “that transitivity does not follow from this empirical
[probabilistic] interpretation of preference, but must be established, if at all,
by empirical observation.” This point on which we completely agree leaves,
however, open the possibility that transitivity would be normatively com-
pelling (even if empirically contestable). Our position is stronger here: while
we agree that there are circumstances where transitivity seems normatively
plausible 1, there are others where it is not. Hence, defining rationality so
that transitivity of preferences is a necessary part of it, is not acceptable in
our view.

The reason is rather straight-forward. The grounds for preferring A over
B might well be different from those used in ranking B ahead of C. Hence, it
is purely contingent whether these or other grounds are used in preferring C
to A or vice versa. Alternatively, the decision maker may use several criteria
of “performance” of alternatives. Each of these may result in a complete and
transitive relation over alternatives, but when forming the overall preference
relation on the basis of these rankings, the decision maker may well end up
with a intransitive relation. Consider a fictitious example.

Three universities A, B and C are being compared along three criteria:
(i) research output (scholarly publications), (ii) teaching output (degrees),
(iii) external impact (expert assignments, media visibility, R& D projects,
etc.)

1E.g. in preferences over monetary payoffs.
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publications teaching external impact

A B C
B C A
C A B

Assuming that each criterion is a roughly equal importance, it is natural
to form the overall preference relation between the universities on the basis
of majority rule: which one of any two universities is ranked higher than
the other is preferred to the latter. In the present example this leads to a
cycle: A � B � C � A � . . .. Hence, an intransitive individual preference
relations can be made intelligible by multiple criterion setting and majority
principle (cf. May 1954; Fishburn 1970; Bar-Hillel and Margalit 1988).

Given that intransitity of preferences may plausibly emerge in decision
making under certainty, it is to be expected that it may also occur un-
der the risk modality, i.e. in choosing among lotteries. The attractiveness
of a lottery depends on two components: the amount of payoff and the
probability of winning it. Let there be a sequence of two-outcome lotteries
(Ai, pi; 0, 1−pi), i = 1, . . . , k where a positive sum Ai is won with probability
pi and nothing is won with the complementary probability 1− pi. Suppose
that these lotteries form a sequence so that moving from top to bottom of
the sequence, the payoffs diminish in each step, i.e. Aj > Aj+1, for each
j = 1, . . . , k− 1. Assume moreover that pj+1 > pj , for each j = 1, . . . , k− 1,
i.e. the winning probabilities increase when moving down the sequence.
Then it is quite plausible to prefer the first lottery to the second one (be-
cause of the payoff difference), the second to the third etc., but at some
point, say at stage m, to prefer the m’th lottery to the first one (because of
of the probability difference). In fact, Tversky (1969) found that this kind
of behaviour is common in choice experiments under risk.

4 Or completeness?

As we pointed out above, the completeness of weak preference relation entails
that for any pair (A,B) of alternatives either A is preferred to B or vice
versa or both. Stated in another way, completeness means that it cannot
be the case that A is not preferred to B and B is not preferred to A. In
the following we show that there is is nothing unnatural or irrational in
situations where there are grounds for saying that neither A is preferred to
B nor B is preferred to A. Perhaps the simplest way to show this is via a
phenomenon known as Ostrogorski’s paradox. It refers to the ambiguity in
determining the popular preference among two alternatives (Daudt and Rae
1978). In the following we recast this paradox in an individual decision-
making setting. The nominating individual is to make a choice between two
alternatives A and B, e.g. applicants to the chair of political science in a
university. Three types of merits are deemed of primary importance for this
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office, viz. research merits, teaching skills and ability to attract external
funding to the university. The nominating individual has received advice
from three other individuals: one representing the peers (i.e. other political
science professors), one representing the students of political science and one
representing the university administration. The following table indicates the
preferred applicant of each representative on each area of merit. Thus, e.g.
applicant A has a preferable research record according to the peers than
applicant B. Similarly, the representative of the administration deems B
preferable in each merit area.2

merit area research teaching funding potential row choice

advisor 1 A B A A
advisor 2 A A B A
advisor 3 B B B B

column result
choice A B B ?

Suppose now that the nominating individual forms his preference in a
neutral and anonymous manner, i.e. each merit area and each advisor is
considered equally important. It would then appear natural that whichever
applicant is deemed more suitable by more advisors than its competitor,
is preferable in the respective merit area. Similarly, whichever candidate
is more suitable than his competitor in more merit areas, is regarded as
preferable by each advisor. Under these assumptions the nominating indi-
vidual faces a quandary: if the aggregation of valuations is first done over
columns – i.e. each advisor’s overall preference is determined first – and
then over rows – i.e. picking the applicant regarded more appropriate by
the majority of advisors – the outcome is that B cannot be preferred to A.
If the aggregations are performed in the opposite order – first over rows and
then over columns – the outcome is that A cannot be preferred to B. Hence,
the preference relation over {A,B} is not complete.

It should be observed that there is nothing arbitrary or irrational in the
above example. The use of expert information (advisors) or other evalua-
tion criteria in assessing applicants would seem quite obvious way to proceed.
Also, the duties to be performed by the successful applicant often has sev-
eral aspects (merit areas) to it. Similarly, the use of majority principle in
determining the “winners” of aggregation is quite reasonable, certainly not
counterintuitive.

This essay is by means the first to question the plausibility of the com-
pleteness condition. In the beginning of 1960’s Aumann (1962) pursued the
possibility of constructing a theory of utility without this condition. His

2The composition of the advisory body may raise some eyebrows. So, instead of these
particular categories of advisors, one may simply think of a body that consists of three
peers.
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focus is, however, in expected utility theory under risk where the decison
maker is faced with risky prospects or lotteries, i.e. probability distributions
over certain outcomes of the type described in the last paragraph of the pre-
ceding section. Our interest is mainly on the more elementary setting, viz.
decision under certainty. Despite this difference in focus, it is interesting to
note that Aumann sees the completeness condition as the most problematic
among the conditions underlying those guaranteeing that preferences can
be represented by utility functions. In fact, some doubt concerning the em-
pirical and normative plausibility was expressed by the pioneers of decision
theory, von Neumann and Morgenstern (2004, 28), some seventy years ago.

5 What about continuity?

Continuity condition states that both the inferior and superior sets for any
given alternative are closed (Harsanyi 1977, 31). To elaborate this a little,
consider a set X of alternatives and an element x in it. Let now x1, x2, . . .,
a sequence of alternatives converging to x0, have the property that for each
xi in the sequence, x �j xi. In other words, individual j prefers x to each
element of the sequence. Then, continuity requires that x �j x0 as well.
Similarly, if the sequence has the property that xi �j x, then x0 �j x
as well. Intuitively stated, continuity requires that small changes in the
alternatives are accompanied with small changes in their desirability.

Let us now see how continuity assumption translates into multiple-criterion
settings. We shall take advantage of Baigent’s (1987) fundamental result in
social choice theory. This result has subsequently been augmented, modified
and generalized by Eckert and Lane (2002), Baigent and Eckert (2004), as
well as by Baigent and Klamler (2004). We shall, however, first and foremost
make use of the early version (Baigent 1987). It states the following.

Theorem 1 Anonymity and respect for unanimity of a social choice func-
tion cannot be reconciled with proximity preservation.

Proximity preservation is a property defined for social choice functions.
It amounts to the requirement that choices made in profiles more close to
each other ought to be closer to each other than those made in profiles less
close to each other. Profiles – it will be recalled – are n-tuples of preference
rankings over the set of alternatives (n being the number of individuals).
What this requirements intuitively means is that if we make a small modifi-
cation in the preference rankings, the outcome of the social choice function
should change less than if we make a larger modification. Anonymity, in
turn, requires that relabelling of the individuals does not change the choice
outcomes. In multi-criterion setting anonymity means that permuting the
criteria does not change the outcome of evaluation. Respect for unanimity
is satisfied whenever the choice function agrees with a preference ranking
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held by all individuals, i.e. if x �j y for all individuals j, then this will also
be the social ranking between x and y. In multi-criterion environment this
amounts to the requirement that if all criteria suggest the same ranking of
alternatives, then this ranking should also be the outcome.

To illustrate the incompatibility exhibited by Baigent’s theorem, let us
turn again to the fictitious example of nominating the chair of poitical sci-
ence. Suppose that there are two applicants A and B. Moreover, only two
criteria are being used by the nominating authority: research merits (R) and
teaching record (T). 3 To simplify things, assume that only strict preferences
are possible, i.e. each criterion produces a strict ranking of the applicants.
Four different configurations of rankings (S1, . . . , S4) are now possible:

S1 S2 S3 S4

R T R T R T R T

A A B B B A A B
B B A A A B B A

Let us denote the rankings in various configurations by Pmi where m
is the number of the configuration and i the criterion. We consider two
types of metrics: one that is defined on pairs of rankings and one defined on
configurations. The former is denoted by dr an the latter by dP . They are
related as follows:

dP (Pm, Pj) =
∑
i∈N

dr(Pmi, Pji).

In other words, the distance between two configurations is the sum of dis-
tances between the pairs of rankings of the first, second, etc. criterion.

Take now two configurations, S1 and S3, from the above list and express
their distance using metric dP as follows:

dP (S1, S3) = dr(P11, P31) + dr(P12, P32).

Since, P12 = P32 = A � B, and hence the latter summand equals zero,
this reduces to:

dP (S1, S3) = dr(P11, P31) = dr((A � B), (B � A)).

Taking now the distance between S3 and S4, we get:

dP (S3, S4) = dr(P31, P41) + dr(P32, P42).

Both summands are equal since by definition:

dr((B � A), (A � B)) =

3The argument is a slight modification of Baigent’s (1987, 163) illustration.
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dr((A � B), (B � A)).

Thus,

dP (S3, S4) = 2× dr((A � B), (B � A)).

In terms of dP , then, S3 is closer to S1 than to S4. This makes sense
intuitively.

We now turn to procedures used in aggregating the information on
criterion-wise rankings into an overall evaluation or choice. Let us denote the
aggregation procedure by g. We make two intuitively plausible restrictions
on choice procedures, viz. that they are anonymous and respect unanimity.
In our example, anonymity requires that whatever is the choice in S3 is also
the choice in S4 since these two profiles can be reduced to each other by
relabelling the criteria. Unanimity, in turn, requires that g(S1) = A, while
g(S2) = B. Therefore, either g(S3) 6= g(S1) or g(S3) 6= g(S2). Assume the
former. It then follows that dr(g(S3), g(S1)) > 0. Recalling the implication
of anonymity, we now have:

dr(g(S3), g(S1)) > 0 = dr(g(S3), g(S4)).

In other words, even though S3 is closer to S1 than to S4, the choice made
in S3 is closer to - indeed identical with - that made in S4. This argument
rests on the assumption that g(S3) 6= g(S1). Similar argument can, however,
easily be made for the alternative assumption, viz. that g(S3) 6= g(S2).

The example shows that small mistakes or errors in criterion measure-
ments are not necessarily accompanied with small changes in evaluation
outcomes. Indeed, if the true criterion rankings are those of S3, then a
mistaken report on criterion 1’s leads to profile S1, while mistakes on both
criteria lead to S4. Yet, the outcome ensuing from S1 is further away from
the outcome resulting from S3 than the outcome that would have resulted
had more – indeed both – criteria been erroneously measured whereupon
S4 would have emerged. This shows that measurement mistakes do make a
difference. It should be emphasized that the violation of proximity preserva-
tion occurs in a wide variety of aggregation systems, viz. those that satisfy
anonymity and unanimity. This result is not dependent on any particular
metric with respect to which the distances between profiles and outcomes
are measured. Expressed in another way the result states that in nearly
all reasonable aggregation systems it is possible that a small number of
measurement errors has greater impact on evaluation outcomes than a big
number of errors.

Eckert and Lane (2002) strengthen Baigent’s theorem by showing that
any choice rule satisfying anonymity and proximity preservation is imposed.
A rule is imposed if it results in a constant outcome regardless of the opin-
ions of the individuals. Hence, by adopting an anonymous and proximity
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preserving choice rule, one cannot guarantee even the slightest degree of
responsiveness of the rule.

The two theorems (Baigent’s as well as Eckert and Lane’s) – when in-
terpreted in the multiple-criterion choice context – do not challenge com-
pleteness or transitivity of individual preferences, but call into question the
continuity of preferences, i.e. their representation by smooth utility func-
tions.

6 Acting upon reasons

The upshot of the preceding is that all assumptions underlying the utility
maximization theory can be questioned, not only from the descriptive ac-
curacy but also from the normative point of view. The deviations from the
assumptions described above are not unreasonable or irrational. In fact, it
can be argued that they are just the opposite, viz. based on reasons for
having opinions (cf. Dietrich and List 2013). Incompleteness of preference
relations as exhibited by Ostrogorski’s paradox is a result of a systematic
comparison of alternatives using a set of criteria and a set of aspects or
dimensions or purposes (“functions”) that the alternatives are associated
with. There is a reason for the incompleteness: simple majority rule gives
different results when row-column aggregation or column-row aggregation is
resorted to. The simple majority rule is not the sole culprit: the paradox
can occur with super-majority rules as well. The point is that one can build
a plausible argument for the incompleteness under some circumstances.

The same goes for intransitivity. The argument is, however, somewhat
different in invoking reasons for having a given binary preference: the reason
for preferring A to B may differ from the one for putting B ahead of C and
this, in turn, may differ from the basis for preferring A to C or vice versa.
As May (1954) pointed out, the basic sets from which choices are made are
different in each of these three cases.

The eventual failure on continuity rests on yet another consideration. By
Baigent’s theorem any rule that is anonymous (does not discriminate for or
against individuals) and respects unanimity (in agreeing with the ranking if
that happens to be identical for all individuals) can lead to discontinuities.
One could, hence, argue that any reasonable rule is prone to discontinuous
utility representations.

To reiterate: the grounds for deviating from the assumptions of utility
maximization are normative, not just descriptive. In other words, it makes
perfect sense to have preferences that deviate from the assumptions. The
question now arises: are there alternatives to these assumptions that could
be used in analyzing individual choice behavior? In what follows we shall
argue that there are and, moreover, these alternatives provide adequate
foundations for institutional design.
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7 Deriving rankings from tournaments

The most natural way of handling intransitive preference relations is to
start from complete relations and look for methods to aggregate them. This
approach has a long history. An early precursor is Ramon Lull, a 13’th
century Catalan monk and mystic (Hägele and Pukelsheim 2001; Szpiro
2010). Of the more recent pioneers the most important is undoubtedly
Ernst Zermelo (1929). The starting point is the concept of tournament, i.e.
a complete and asymmetric relation. With a finite (and small) number k of
alternatives this can conveniently be represented as a k×k matrix where the
element aij on the ith row and jth column equals 1 whenever ith alternative
is preferred to the jth one. Otherwise, the element equals 0.

Given an individual preference tournament we might be interested in
forming a ranking that would preserve the essential features of the tourna-
ment, while at the same time augmenting it so that a complete and transitive
relation emerges. The latter might be necessary e.g. for aggregating indi-
vidual preference information to end up with a social ranking or choice.
By the fundamental result of Edward Szpilrajn (1930) every partial order
– that is a asymmetric and transitive relation – has a linear extension. In
other words, if the individual gives a preference relation that is asymmetric
(strict preferences only) and transitive, but not complete (not all pairs of
alternatives are comparable), then preference rankings can be constructed
that preserve those aspects provided by the individual. The problem is that
the resulting rankings are rarely unique. In fact, if x and y are two non-
comparable alternatives in the relation given by the individual, there are
rankings in which x � y and rankings in which y � x (Dushnik and Miller
1941). Thus, there seems to be no general way of extending a partial order
into a unique linear one.

However, tournaments put less structure into individual preferences than
partial orders. After all, they are complete and asymmetric, not necessar-
ily transitive. Over past decades many ways of translating tournaments
into rankings have been suggested. The usual way – called scoring method
by Rubinstein (1980) – is the straight-forward summing of row entries in
the tournament matrix whereby one ends up with a score si =

∑
j aij for

each alternative i. The ranking over the alternatives is then determined by
the order of scores. The resulting ranking is, of course, weak since several
alternatives may receive the same score.4

The scoring method may, however, lead to an outcome ranking where
a higher rank is given to an alternatives that is deemed inferior to one or
several of the lower ranked ones. Several methods to avoid this problem
has been suggested. Thus, for example, Goddard’s (1983) proposal is to

4In social choice literature the scoring method described here is known as Copeland’s
rule and usually dated to 1950’s. Arguably it was, however, introduced already in late
13’th century by Ramon Lull (Hägele and Pukelsheim (2001).
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choose those rankings that minimize the number of times a binary prefer-
ence between any two alternatives is upset (i.e. reversed) in the outcome
ranking. 5 Upon closer inspection this proposal turns out to be similar to
Kemeny’s (1959) rule. Viewed as a social choice function this rule has a host
of desirable properties (see, e.g. Nurmi 2012, 257). It is, however, intended
for finding the “closest” social ranking for any given set of individual rank-
ings over several alternatives. A function that – given a set of individual
preference tournaments – looks for the collective one that is closest to the
individual tournaments in a specific sense is – regrettably nowadays largely
forgotten – Slater’s (1961) rule. It seems identical to the rule that God-
dard advocates. It works, as was already stated, on the basis of individual
tournaments, i.e. complete and asymmetric relations. It then generates all
k! complete and transitive relations (strict rankings) that can be obtained
from the k alternatives and converts them into tournament matrices. Each
of these generated matrices is then a candidate for the collective preference
tournament (i.e. the winning tournament). The winning tournament has
the distinction that it is closest to the individual tournaments in the sense
that it requires the minimum number of changes from 0 to 1 or vice versa
in individual opinions to be unanimously adopted.

The principle of Slater’s rule can, of course, be used in individual de-
cision making as well. To wit, given an individual preference tournament
one generates the tournaments corresponding to all k! preference rankings
involving the same number of alternatives. One then determines whether
the individual tournament coincides with one of them. If it does, then this
gives us the ranking we are looking for. Otherwise one determines which
of the generated tournaments is closest to the individual’s. The closest one
indicates the ranking. It may happen that there are several equally close
tournaments and thus there may be several “solutions”.

Zermelo’s (1929) approach to tournaments is based on observations of
chess playing contests which often take the form of a tournament.6 Each
player plays against every other player several times. The outcome of each
game is either a victory of one player or a tie. We assume that the games
are independent binomial trials so that the probability of player i beating
player j is pij . Zermelo then introduces the concept Spielstärke, playing
strength, denoted by Vi, that determines the winning probability as follows:

pij =
Vi

Vi + Vj
.

The order of the Vi values is the ranking of the players in terms of playing

5Goddard is not the first to suggest this method. For earlier discussions, see Kendall
(1955) and Brunk (1960).

6The differences between Zermelo’s and Goddard’s approaches are cogently analyzed
by Stob (1985). Much of what is said in this and the next paragraph is based on Stob’s
brief note.
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strength. Apparently player i is ranked no lower than player j if and only if
pij ≥ 1/2, i.e. players with greater strength defeat contestants with smaller
strength more often than not. Now, given the matrix A of results, i.e. a
k × k matrix of 0’s and 1’s denoting losses and victories of the alternatives
represented by the rows, Zermelo defines maximum likelihood estimates,
denoted by vi, for the playing strengths of players. Consider any k vector
of strengths v. One can associate with it the probability that the observed
matrix A is the result of the tournament when the strengths are distributed
according to v. The probability is the following:

p(v) =
∏
i,j

(
vi

vi + vj
).

and this is what is to be maximized. Conditions under which a unique maxi-
mizing vector of strengths can be found are discussed by Zermelo and found
to be rather general. A particularly noteworthy property of the Zermelo
rankings is that they always coincide with the rankings in terms of scores
defined above. So, were one interested in rankings only, the easy way to
find them is simply to compute the scores. However, the vi values give us
more information about the players than just their order of strength; it also
reveals how much stronger player i is when compared with player j.

Leaving aside now the game context and looking at Zermelo’s method
from the point of view of fuzzy systems, it is not difficult to envision a
new interpretation whereby the outcome matrix expresses the individual’s
choice between pairs of alternatives. The values Vi and their estimates vi
can be viewed as values of desirability of alternatives. A ranking based on
desirability of alternatives is certainly a worthy goal of inquiry and Zermelo’s
approach gives us plausible way to achieve it. 7

One more point on tournaments is worth making, viz. the individual’s
preference relation may be incomplete and we are still able to construct a
tournament matrix. The score of alternatives not included in the preference
relation is determined solely on the basis of comparisons with those alter-
natives which are included in the preference relation. Hence, tournament
methods are capable of handling incomplete tournaments as well. In fact,
incomplete tournaments are the starting point of Zermelo’s analysis.

The above remarks pertain to situations where we are given an indi-
vidual preference tournament (complete or incomplete) and, for one reason
or another, are looking for a ranking that would best approximate it. It is,
however, quite easy to envision situations where no ranking at all is required,
but rather choice of a subset of “best alternatives”.

7We shall here ignore the ties in pairwise comparisons. These can certainly be dealt
with in fuzzy systems theory. Also the tournament literature referred to here is capable
of handling them. Ties are typically considered as half-victories, i.e. given a value 1/2 in
the tournament matrices.
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8 Tournament solutions

Since tournaments are basically sets of pairwise comparisons, it is custom-
ary to suggest that Condorcet winners be elected whenever they exist. In
other words, all tournament solutions ought to be Condorcet extensions.
Starting from this requirement leaves us open to the criticism stemming
from Saari’s (1995) important results regarding the instability of Condorcet
winners under certain transformations of preference rankings (esp. adding
or subtracting Condorcet components, that is, groups of voters whose rank-
ings form fully symmetric Condorcet paradox profiles). Yet, basically all
currently discussed tournament solutions are Condorcet extensions and, as-
suming that no ordinal information about alternatives is at hand, this makes
sense.

Since all Condorcet extensions result in the same outcome when a Con-
dorcet winner exists, the variations come about when this is not the case, i.e.
when no alternative defeats all the others in pairwise contests with a major-
ity of “votes”. In individual decision making contexts, the non-existence of
a Condorcet winner means that for each alternative there is another that is
preferred to it on a majority of criteria. What would be the plausible choice,
then, under such circumstances? A plausible subset of winning alternatives
can be formed by using the following dominance relation over the alterna-
tives: alternative x dominates alternative y if it defeats by a majority of
criteria not only y but also all those alternatives that y defeats. Obviously,
such a dominance relation is asymmetric and transitive, but not complete.
Nonetheless, it enables us to define the set of uncovered alternatives, i.e. a
set of those alternatives that are not dominated by any other alternative.
This set can, however, be quite large. Indeed, it may include all alternatives
as in the case of the Condorcet’s paradox. On the other hand it may also be
a relatively small subset of the alternatives and when a Condorcet winner
exists, it collapses into this single alternative. Two important subsets of the
uncovered set can be defined: the Banks set and the set of Copeland winners
(Banks 1986; Moulin 1988). The latter represents the long tradition of tour-
nament solutions, while the former can be used to characterize all outcomes
of sophisticated – as opposed to sincere – voting in amedment systems that
consist of pairwise comparisons of alternatives. The Copeland winners have
a practical advantage over the Banks set: the scores underlying it can be
used to form a ranking. Both sets are always nonempty and, hence, genuine
Condorcet extensions.

9 Conclusion: institutions based on tournaments

We have attempted to show above that there are quite plausible reasons for
individuals to deviate from the behavior dictated by preference-based utility
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maximization theory. Indeed, behavior based on reasons would seem to be
particularly prone to these kinds of deviations. Rankings being the basic
concept underlying the maximization theory, our main conclusion is that
alternatives to ranking assumption already exist. One of these, individual
preference tournament, has been discussed above. Of particular interest is
the re-discovery of Zermelo’s approach to tournaments since it provides a
natural link between directly observable pairwise choices and the underlying
notion of desirability. It thus provides a method for estimating preference
degrees for observational data. Replacing individual preference rankings
with tournaments enables us to deal with more general choice settings than
those underlying the maximization theory. However, this comes with a cost.
To wit, if the individuals possess complete and transitive preference rela-
tions over the alternatives (i.e. have rankings), this ordinal information
is essentially lost in the aggregation based on the induced tournaments.
In particular, when the tournaments are used first in aggregating individ-
ual opinions into collective tournaments and then into collective preference
rankings, the outcome may be quite different from one obtained by aggre-
gating the original preference rankings e.g by Kemeny’s rule. As pointed
out above, however, there are the conditions underlying preference rankings
that are not always satisfied. What we have aimed to suggest is that rea-
sonable choices and even rankings can be made in their absence. Hence,
there is a case to be made for institutions aggregating individual preference
tournaments.
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