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ABSTRACT: Novel biorefineries could transform lignin, an
abundant biopolymer, from side-stream waste to high-value-
added byproducts at their site of production and with minimal
experiments. Here, we report the optimization of the AquaSolv
omni biorefinery for lignin using Bayesian optimization, a machine
learning framework for sample-efficient and guided data collection.
This tool allows us to relate the biorefinery conditions like
hydrothermal pretreatment reaction severity and temperature with
multiple experimental outputs, such as lignin structural features
characterized using 2D nuclear magnetic resonance spectroscopy.
By applying a Pareto front analysis to our models, we can find the
processing conditions that simultaneously optimize the lignin yield
and the amount of β-O-4 linkages for the depolymerization of
lignin into platform chemicals. Our study demonstrates the potential of machine learning to accelerate the development of
sustainable chemical processing techniques for targeted applications and products.
KEYWORDS: Biomass, Valorization, Lignin, Biorefinery, Machine learning, Bayesian optimization

■ INTRODUCTION
The transition to a green and sustainable economy requires
efficient utilization of our natural resources. Lignin, as a part of
lignocellulosic biomatter, is an example of a naturally abundant
but under-utilized resource.1,2 Lignin is currently produced in
large quantities as a side stream of pulping processes.
Valorization of lignin into high-value-added industrially
relevant byproducts, materials,3,4 or chemicals5−8 can therefore
substantially increase both the sustainability and revenue of
biorefineries.4,9 Recently, some of us have developed AquaSolv
Omni (AqSO), a green biorefinery for the integrated
utilization of all biomass components, with special focus on
the lignin-containing streams.10,11 In the AqSO process,
hydrothermal treatment (HTT) is first applied to the biomass
feedstock, and the resulting solids are subsequently washed
with a solvent to extract lignin. The aqueous environment of
HTT eliminates the need for extra chemicals in the reaction
medium, which makes AqSO a green process given a suitable
choice of solvent.
Key strengths of the AqSO biorefinery are the highly tunable

processing conditions, which enable high output versatility in
terms of lignin composition, structure, and physicochemical
properties. To make the biorefinery efficient and more
profitable, the processing conditions must be optimized to
ensure that the properties of the extracted lignin are ideal for
the intended end product. In general, optimizing a biomass
valorization process is a difficult task since it requires

knowledge of how the processing conditions relate to the
product properties. The same issue is encountered during the
development of new valorization approaches: learning the
connections between processing conditions and product
properties requires significant time and resources. In particular
for the valorization of lignin, the situation is further
exacerbated by its complex chemical structure.12

To solve experimental optimization tasks, design of
experiment (DOE) methods13,14 are frequently employed.
DOE methods provide general strategies for planning data
collection and for modeling experimental output. In this
context, we refer to the experimental output being modeled as
the design target, abbreviated as target, and the range of
processing conditions being considered as the design space.
Since laboratory-based experiments are often time consuming
and costly, DOE also strives for efficient sampling of the design
space. Conventional approaches to DOE include space-filling
designs,15,16 factorial designs,17 and response surface meth-
ods,18,19 where the latter category is frequently regarded as an
industry standard. A shortcoming of many conventional DOE
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approaches is the predetermined fashion in which they sample
design space, which does not allow for information from new
measurements to be utilized to improve the sampling strategy.
Predetermined sampling strategies also tend to sample
excessively in regions where the design target is relatively
uniform and insufficiently in regions with significant
fluctuations.
We can avoid the shortcomings of classical DOE methods by

turning to machine learning methods, which have solved a
wide range of challenging modeling and optimization problems
in recent decades.20−22 Of particular relevance in the DOE
context is Bayesian optimization (BO), an algorithm for
autonomous complex optimization tasks. In addition to
providing efficient optimization of arbitrary functions, BO
constructs so-called surrogate models of design targets in the
space of the design variables.23,24 The surrogate models are
constructed sequentially through a data collection policy
known as the acquisition function, which ensures that the
new samples are selected to be as informative as possible given
the current state of the model. Consequently, BO is more
sample efficient compared to traditional DOE methods and
supports the incorporation of experimental noise, prior
knowledge, and parallel experiments through batch acquisition
functions.25 Recently, BO has become a popular tool in
computational materials science, where it has been used both
as a means of efficient global optimization26−28 and to guide
materials discovery.29 BO is also increasingly being used for
optimization in DOE applications.30−34 Here, we highlight the
power of BO’s surrogate model aspect, which provides us with
insight into lignin chemistry and facilitates easy multiobjective
optimization for green chemistry applications.
The overarching goal of our work is to optimize the AqSO

biorefinery by making it more resource efficient and capable of
producing lignin with structural properties tailored to specific
applications in lignin valorization. Our first step is to use BO to
obtain surrogate models that relate the key AqSO processing
conditions, namely, the hydrothermal pretreatment temper-
ature and reaction severity, to multiple experimental targets.
These consist of the yield of the extracted lignin and the
content of various structural properties obtained using 2D
nuclear magnetic resonance (NMR) characterization. For the
latter, we focus on the β-O-4 content, the ratio of syringyl and
guaiacyl (S/G) units, and the content of carbohydrates present
as lignin−carbohydrate complexes (LCCs). To accomplish our
stated goal, we then apply a Pareto front analysis35 to the
surrogate models, which allows us to simultaneously maximize
the lignin yield and optimize structural properties for selected
applications. By ensuring that the lignin yield is maximized, we
achieve better resource efficiency in the AqSO process.
The interplay between laboratory experiments and machine

learning in our approach is conceptually illustrated in Figure 1.
Processing conditions for new experiments are first selected by
the BO algorithm. After the recommended experiments have
been performed and experimental targets recorded, the results
are used to update the BO model so that the cycle can start
over.
Another important objective in this study is to understand

how to efficiently apply a BO-guided workflow to optimize
multiple experimental targets. Specifically, we consider
solutions where the data collection is performed in batches
to be more compatible with experimental workflows. With
traditional BO, we would collect data sequentially and build
surrogate models for each experimental target independently.

This is not convenient for experimental data gathering,
especially since each sample characterization produces
information on multiple targets. We also consider a strategy
for shared data collection where the experiments recom-
mended to advance different targets are combined into one
batch and performed at the same time. This conveniently
drives the data collection toward different areas of the design
space, and we deploy two acquisition strategies in parallel to
further boost exploration. Batch characterization outcomes are
then used to advance the models over all experimental targets.

■ MATERIALS AND METHODS
Materials and Chemicals. We debarked, chipped, and ground a

birch wood (Betula sp.) stem into sawdust (0.5−1.5 mm particle were
size selected). Prior to the HTT, we subjected the sawdust to acetone
(100%) extraction to remove the lipophilic extractives and eliminate
their influence on the determination of lignin yield and structure. We
purchased acetone (C3H6O, 95 vol %) and used it without
purification, as well as deuterated dimethyl sulfoxide (DMSO-d6)
for NMR spectroscopy. Both chemicals were of analytical grade and
purchased from Sigma-Aldrich.
Hydrothermal Treatment. We applied HTT to the extractive-

free sawdust (4 g) in a swing reactor equipped with temperature
controls both in the heating block and inside the reactor. A schematic
overview of the AqSO process is shown in Figure 2a. Several
adjustable parameters influence the outcome of the lignin extraction
and its structure, most importantly the reactor temperature (T),
residence time (tf), and liquid to solid ratio L:S. Since the heating
period significantly affects the extraction process, we work with the
reaction severity instead of the residence time. The HTT reaction
severity is quantified in terms of the P-factor, which is calculated
according to36

P T t t
k T t
k

e( ),
( ( ))
(100 )

dt dtf f

t t
T t

0 0

40.48 15106/ ( )f f
[ ] =

°
=

(1)

Here, the residence time is measured in hours, and the temperature is
given in kelvin. The rate constant k of the reaction is assumed to obey
the Arrenhius equation with an activation energy of 125.6 kJ mold

−1.36

We employed a fixed liquid-to-solid ratio L:S = 1, motivated by our
earlier investigation of the AqSO biorefinery that indicated this ratio
to be favorable for the yield and structural properties of the lignin-
containing products.11

Once the desired severity was reached, we immediately transferred
the reactor into cold water. We subsequently separated the HTT
solids and hydrolysate by filtration using a glass crucible (pore size 3
μm) and exhaustively washed the solids with deionized water. We
then extracted lignin from the washed HTT solids with 90% (v/v)

Figure 1. Machine learning-driven workflow for designing the AqSO
biorefinery. Values for the HTT reactor’s temperature and P-factor
are selected using BO. After performing an extraction at these
conditions, the lignin yield and structural properties are measured and
fed back to the BO model. The new data (extraction conditions and
measured properties) are used to update the program, and then, the
cycle starts over.
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aqueous acetone. We rotary-evaporated the solution (at 40 °C) to
produce acetone-extracted lignin, which was finally vacuum dried at
40 °C to constant weight to determine the yield.
2D HSQC NMR Analysis. We recorded HSQC NMR spectra

using a Bruker AVANCE 600 NMR spectrometer equipped with a
CryoProbe. We dissolved approximately 80 mg of each sample in 0.6
mL of dimethyl sulfoxide-d6 (DMSO). We set an acquisition time of
77.8 ms for the 1H-dimension and collected 36 scans per block using
1024 complex data points. For the 13C-dimension, we set the
acquisition time to 3.94 ms and recorded 256 time increments. We
then processed the 2D HSQC NMR data (1024 × 1024 data points)
by applying a QSINE window function to both the 1H and 13C
dimensions. For calibration, we used the DMSO peak at δC = 39.5
ppm and δH = 2.49 ppm. To quantify the specific lignin moieties, we
carried out volume integration of the HSQC spectra of the acetone-
extracted lignin (Figure 2b). This procedure is described in greater
detail elsewhere.37−40 The intensities of the signals are expressed in
mol %, i.e., per 100 aromatic units (Ar) assuming the sum of the
signals of guaiacyl (G) and syringyl (S) units as 100% from their
characteristic CH signals at G2 and S2,6 positions, correspondingly: G2
+ S2,6/2 = 100%.

The characterized moieties analyzed in this paper consist of the
number of β-O-4 linkages, the ratios of syringyl to guaiacyl (S/G)
units, and the carbohydrate content (present as LCCs). β-O-4
linkages are the main reactive centers in native lignin, and the extent
to which they are present in lignin/LCCs after the HTT extraction
characterizes the degree of lignin transformation. In addition, good
correlations between the amounts of β-O-4 linkages and other lignin
characteristics have previously been reported for the AqSO process.11

We note that 2D HSQC NMR analysis also lets us determine the
content of several other moieties, the analysis of which has been
omitted for brevity in the present work.
Bayesian Optimization. Here, we provide a short overview of

Bayesian optimization and refer readers to the SI and extensive
literature for more detailed accounts.24,41 BO involves two main
components, namely, a surrogate model that approximates the target
function and an acquisition function that provides a data collection
policy. During a BO iteration, the surrogate model is fit to the current
data set using Gaussian process regression. The posterior mean of the
Gaussian process represents the most probable approximation of the
target, and the posterior variance provides a measure of the model
uncertainty. By minimizing the acquisition function, a new sampling
location is determined and used to augment the existing data set.

Acquisition functions come in many flavors that provide different
trade-offs between exploitation and exploration. Exploitation refers to
sampling regions of design space where the target is likely to achieve a

minimum or maximum, while exploration visits regions of high model
uncertainty where data have not been acquired before. In this work,
we generate acquisitions with the exploration-modified lower
confidence bound (eLCB) function41,42 as well as through the
standard deviation of the model (which we term the pure exploration
function).

We carried out BO using the recently released BOSS code,28,43

which provides a Python-based implementation of BO for
applications in materials science. BOSS has previously been applied
to a range of different problems in materials modeling.44−47 The
Gaussian processes used by BOSS were assigned uninformative zero
priors for the mean functions, and radial basis set kernels, which
reflect the smoothness of the materials properties, were used for the
covariance functions. We initialized the kernel hyperparameters using
inverse gamma priors and subsequently updated them during the BO
process by maximizing the marginal likelihood. Initial data for the
surrogate models were obtained from a batch of five Sobol points.48

To account for the measurement uncertainty in the targets and
achieve a better statistical fit to the observed data, we incorporated
Gaussian noise terms with zero mean in the surrogate models. The
standard deviations of the noise terms were chosen to reflect the
estimated measurement errors of 5% for the lignin yield and 5%−10%
for the structural properties.
Applying Bayesian Optimization to Experiments. When

applying BO in an experimental context, the target function can be
any measurable output from the experiment. We use the BO process
to determine how the target function depends on the design variables,
such as adjustable experimental parameters, while performing as few
experiments as possible. During a BO iteration, new experiments are
performed using the values for the design variables suggested by the
acquisition function. The measured experimental target values are
then used together with the processing conditions to update the
surrogate model (Figure 1). The next iteration then proceeds using
the updated surrogate model, and this cycle is repeated until
convergence is observed. Next, we consider the practical details of
implementing this workflow.

We focus on several target lignin properties that include the
extracted lignin yield, the number of β-O-4 linkages, the S/G ratio,
and the carbohydrate content. The design variables correspond to the
HTT processing conditions, namely, the P-factor and temperature
(Figure 2). The P-factor and temperature ranges we investigated were
determined based on a combination of the feasible operating range of
the experimental apparatus and processing conditions that were
expected to give appreciable lignin yield based on previous work:10

500 ≤ Pf ≤ 2500 and 180 ≤ T ≤ 210 (°C). The two variables and

Figure 2. (a) Schematic of experimental setup employed for the optimization of AqSO biorefinery. A mixture of birch sawdust and water is
subjected to hydrothermal treatment (HTT) in a reactor whose state can be described by the reactor temperature (T), liquid-to-solid ratio (L:S =
1), and P-factor (Pf). The reaction produces a hydrolysate and HTT solids. Extraction of the HTT solids with aqueous acetone results in acetone-
extracted lignin and extracted solids. The structural properties of the acetone-extracted lignin are characterized with 2D NMR spectroscopy. The
hydrolysate and extracted solids are not addressed in this study. (b) Expanded region of interest in a heteronuclear single quantum coherence
(HSQC) spectrum of acetone-extracted lignin produced at Pf = 500 and T = 180 °C. The amounts of β-O-4 linkages, S/G ratio, and LCC content
were quantified by volume integration of the signal regions highlighted in the spectrum.
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their corresponding limits make up the design space of our
optimization problem.

We consider two different ways of adjusting the sampling of the
design space to a setting with multiple experimental targets: pure and
combined acquisition strategies. In the pure acquistions (PA) strategy,
we carry out separate BO processes for each target function. This
means that independent acquisitions are made for each target function
and used to update the corresponding surrogate model at every
iteration (Figure 3a) much like in conventional BO. With the

combined acquistions (CA) strategy, our aim is to investigate if the
optimization can be accelerated by allowing data exchange between
two simultaneous BO processes. Here, data acquired for different
target functions are combined and used to update all existing
surrogate models at every BO iteration (Figure 3b).

Another important consideration is which, and how many, target
functions to include in the BO acquisition process. For simplicity, we
elected to focus on two important targets: lignin yield and β-O-4
content. Given the important role that β-O-4 moieties play in
chemical reactions, this will help us produce high yields of chemicals
to target different lignin applications. We emphasize that, in addition
to the lignin yield and β-O-4 content, each experiment performed also
provided data for the S/G ratio and the carbohydrate content. This
enabled us to train surrogate models for all these targets as well, even
if they were not actively employed to generate new acquisitions.

We must also select appropriate acquisition functions for sampling.
Our aim is to fit surrogate models that are predictive over the entire
design space, which necessitates a certain degree of exploration.
However, we are also interested in quickly identifying extremal
regions (minima or maxima) since many applications require, for
example, a high yield. To accomplish both these goals, we chose to
perform two data acquisitions at each iteration: one data point
suggested by the pure exploration function and one by the eLCB
function. Using two different acquisition functions with two different
experimental targets means that one BO iteration entails a batch of
four experiments in total, which can be carried out in parallel in the
laboratory to save time.
Pareto Front Analysis. Once we obtain converged surrogate

models for the experimental targets, we can analyze them to establish
the different processing conditions at which each individual lignin
property is optimal. In this work, we go one step further and consider
which experimental conditions optimize multiple lignin properties at
once. In general, a single solution does not exist for such a multitarget
optimization problem. Instead, we must look for optimal trade-offs
between the targets involved.

Mathematically, the notion of an optimal trade-off is formalized by
the concept of Pareto optimality (see SI for an extended
description).35 The Pareto theory tells us that a combination of
target values constitutes an optimal trade-off, if an improvement in
one target is always detrimental to at least one other target. Consider,
for instance, the lignin yield and the number of β-O-4 linkages. If we

Figure 3. Two strategies for updating surrogate models for different
target functions. (a) In the pure acquisitions strategy, only
acquisitions (red and blue circles) made for a certain target are
used to update the surrogate model for that target. (b) In the
combined acquisitions strategy, acquisitions for different targets are
pooled together so that each surrogate model is updated using the
same set of acquisitions.

Figure 4. Successive improvement of the surrogate models for the lignin yield (top) and β-O-4 content (middle) as new acquisitions (green circles)
are added to the existing data set (black circles). The panels display the surrogate models after adding batches 1, 2, 3, and 4 (fitted with 9, 13, 17,
and 21 data points, respectively). As the landscapes evolve, the models’ capability of predicting the yield in unknown regions of design space
increases. The prediction uncertainties are quantified by the model standard deviation (bottom) which decreases as more data are collected. The
acquisition strategy balances exploitation of regions where the yield is large and exploration of regions with high uncertainty.
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are interested in achieving both high yield and a high β-O-4 content,
we have an optimal trade-off for fixed processing conditions (Pf, T) if
an increase in the yield always leads to a decrease in the β-O-4
content and vice versa. We refer to an optimal trade-off as a Pareto
point and to the set of all Pareto points as the Pareto front. Similarly,
the lignin extraction conditions corresponding to the Pareto points
are known as the Pareto optimal solutions. Once the Pareto front is
known, a particular Pareto point can be chosen as the preferred
solution to the optimization problem based on some additional design
criterion, for example, a minimum required yield.

■ RESULTS AND DISCUSSION
The presentation of our results is organized as follows. First,
we describe the experimental BO data collection and the
qualitative convergence of the surrogate models. We
furthermore consider how useful our two different data
collection strategies (Figure 3) were in this task. Next, we
analyze the surrogate models to gain insight into the extraction
process and its underlying chemistry. Last, we show how to
simultaneously optimize lignin yield and structural properties
to obtain extraction conditions tailored for specific applications
in lignin valorization.
Experimental Data Collection with Bayesian Opti-

mization. The experimental data collection was carried out
iteratively in five batches of acquisitions, until convergence, to
train two surrogate models representing the extracted lignin
yield and the β-O-4 content, respectively. For convenience, we
label the batches 0, 1, 2, 3, and 4, where 0 corresponds to the
initial batch of Sobol points. To visualize a surrogate model, we
use 2D contour plots of the predicted target in the (Pf, T)
space and refer to such plots as landscapes. The evolutions of
the extracted lignin yield and β-O-4 content landscapes as new
batches of data are acquired using the CA strategy are
visualized in Figure 4. The figure also includes the predicted

standard deviation, which quantifies the prediction uncertainty.
We note that for the CA strategy the standard deviations of
both targets are identical, up to differences in scale, since the
surrogate models are all based on the same acquisition set.
Hence, one set of contours is sufficient to represent the
standard deviation of both the lignin yield and β-O-4 content
(Figure 4, bottom).
The initial batch of Sobol points yields landscapes that, due

to the overall data scarcity, are dominated by the mean of the
observed values, and the surrogate models have essentially no
predictive power. The lack of data at this stage is also reflected
in the predicted standard deviation, which is uniformly high at
a distance from the Sobol points. As the data set is extended in
batches 2−4, the landscapes become smoother, and the
surrogate model’s predictive power, i.e., ability to accurately
interpolate between acquisitions, increases. In the converged
model, the lignin yield and β-O-4 content landscapes have
resolved into regions of high and low values. The refinement of
the landscapes is accompanied by a corresponding decrease in
the predicted standard deviation. In batch 4, we obtain a
uniformly low standard deviation and approach the lower limit
set by the experimental noise built into the surrogate models.
At this stage, the landscapes are converging, as qualitatively
suggested by the relatively small feature changes observed
between the batches 3 and 4. We furthermore observe that the
design space is sampled nonuniformly, as exemplified by the
locations of the acquisition points in batches 1−4. This
nonuniformity results from the exploitation−exploration trade-
off in the acquisition functions and leads to a rapid
improvement of the surrogate models with added data,
which is one of the key features that makes BO an effective
approach to experimental design problems.

Figure 5. Comparison of the combined acquisitions (CA, top) and pure acquisitions (PA, bottom) strategies. Snapshots of the lignin yield
surrogate models are shown for batches 0, 2, and 4 with new (green) and existing (black) acquisitions labeled according to the experimental target
and acquisition function from which they were obtained: circles/squares, lignin yield eLCB/pure exploration; triangles/crosses, β-O-4 content
eLCB/pure exploration. In the CA scheme, combining acquisitions from different targets before the model updates leads to more informed
acquisitions in subsequent batches and more rapid exploration of relevant regions of the design space. Notably, PA fails to discover the region of
high yield around Pf = 2500 and T = 210 K.
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Performance of Different Acquisition Strategies. In
this section, we compare the CA and PA strategies in terms of
the information contents of their respective acquisitions. While
the relative information content of an acquisition is difficult to
quantify directly, we associate higher information content with
faster convergence of the surrogate model. We carry out the
comparison between the strategies by studying the batch-by-
batch development of the landscapes, as well as the locations of
acquisitions made with the eLCB and pure exploration
acquisition functions.
A comparison of the two strategies for selected snapshots of

the lignin yield landscape is shown in Figure 5. Here,
acquisitions are labeled according to whether they are acquired
for the lignin yield or β-O-4 content and whether they are
generated by the eLCB or pure exploration function.
Corresponding snapshots for the β-O-4 content are shown in
Figure S2. For both CA and PA, the lignin yield eLCB
acquisitions are primarily exploitative in nature and probe the
region where Pf ≥ 1500. Similarly, the β-O-4 eLCB
acquisitions all occur in the vicinity of the Pf ≈ 500 region
with a high β-O-4 content. As expected, the batch 2 and 4
landscapes reveal that the CA-generated surrogate model is
more developed compared to its PA equivalent, since it utilizes
more of the available data points.
While Figure 5 clearly illustrates how acquisitions from the

eLCB and pure exploration functions relate to features in the
landscape, it does not allow us to compare the convergence
rate of the CA and PA strategies since the PA surrogate models
use fewer data points than their CA counterparts. This is a
consequence of how we defined the PA acquisition strategy.
That is, data are collected separately for the two targets and
used to build independent surrogate models; hence, the β-O-4
acquisitions are not included in the bottom row of Figure 5. To
obtain a better comparison for the convergence rates of CA
and PA, we instead compare the CA surrogate models to
corresponding PA models constructed from the entire PA data
set, i.e., including all the β-O-4 acquisitions (Figures S3 and
S4). When comparing these landscapes, the differences

between the strategies thus lie solely in the locations of the
acquisitions, rather than their numbers. The comparison
reveals that CA does indeed yield a more accurate surrogate
model, as evidenced by the fact that the PA model fails to
predict the region surrounding maximum yield obtained for
high Pf and T. This can be attributed to the fact that in the CA
strategy, new acquisitions always take the full set of previous
acquisitions into account, even if they were made for another
target, allowing for more informative points to be picked
during both exploitation and exploration. We can thus
conclude that CA is a more effective acquisition strategy
than PA for a BO-driven experiment design.
In generating eLCB acquisitions for more than one target,

our results further highlight the importance of choosing targets
with dissimilar landscapes to guide the data collection. In the
case of lignin yield and β-O-4 content, we see that their
respective eLCB acquisitions are complementary since high
target values are attained for high and low Pf, respectively
(Figure 5). In contrast, similar landscapes would lead to similar
suggestions for new experiments and, consequently, slower
model convergence.
Last, we see that, using either strategy, a significant fraction

of the suggested experiments lies on the design space
boundary. Accordingly, the design variable bounds need to
be chosen carefully to avoid extreme processing conditions
under which experiments are not feasible.
Surrogate Model Validation. Model validation refers to

the process of assessing how well the model can make
predictions for a set of test data that was not included in the
model training and is therefore a crucial part of any machine
learning application. To this end, we compiled a set of test data
from seven experiments that were conducted independently
from the CA acquisition strategy. We evaluated the predictive
power of the converged surrogate models for lignin yield and
β-O-4 content for both the test set as well as the acquisitions
used to train the model. From the comparison of the
predictions with the experimentally measured values (Figure
6b, d), we can qualitatively observe that both surrogate models

Figure 6. Validation of the surrogate models trained for the lignin yield (a, b) and β-O-4 content (c, d). To assess the accuracy of the models’
predictions, the measured target values for a set of independently collected test data are used (right). The predictions for the test set are contrasted
to the predictions for the set of acquisitions used to train the models (left). The error bars indicate the predicted standard deviations. Both models
provide accurate predictions that are comparable across the acquisitions and test data, indicating that the models strike a good balance between
generalizing to new data and reproducing the training data.
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perform well on the test set and that the measured values all
fall within one standard deviation of the predictions.
On the basis of the validation data, we calculated averaged

predictions errors on both the acquisitions and the test set
Table 1. For the acquisitions set, the MAPE is 6.8% and 11.0%

for the lignin yield and β-O-4 content, respectively. These
numbers reflect the estimated experimental error, which was
encoded into the surrogate models as a fixed Gaussian noise.
The corresponding MAPEs for the test data are 7.8% for the
lignin yield and 8.6% for the β-O-4 content.
We notice that the prediction errors for the test set are

comparable to the estimated experimental error of 5% for the
lignin yield and 5%−10% for the β-O-4 content. Previously, we
have also seen that the lignin yield and β-O-4 landscapes only
undergo minor changes between batches 3 and 4 (Figure 4),
which indicates that the surrogate models are converged.
Coupled with this observation, the small prediction errors
obtained in Table 1 imply that extending the data set beyond
the existing 21 data points would not lead to a significant
change in the landscapes nor an increase in the predictive
power of the surrogate models.
We emphasize the role of exploratory acquisitions in

obtaining this level of surrogate model accuracy over all of
design space despite using a relatively small data set. An
additional benefit of promoting exploration is that the final
data set is better suited for fitting surrogate models for other
targets that were measured during the BO-guided data
collection, since exploration, unlike exploitation, is not specific
to an experimental target. While the added emphasis on
exploration impedes the convergence of the landscape maxima,
we can observe from the evolution of the predicted maxima
(Figure S3a, b) that changes between the third and fourth
batches are small.
Additional insight into the surrogate models and their

convergence can also be gleaned by studying the length scale λ
and variance hyperparameters of the radial basis set kernels (eq
S7) used for the GPs. In Figure S6, we observe that the
surrogate model hyperparameters have converged with the
number of data points in the model, although variance appears
to be more sensitive to statistical fluctuations in model fitting.
Of particular relevance to chemical interpretation are the
length scales, which represent the characteristic distances over
which the surrogate model varies. For the lignin yield, the
length scales have converged to (λT, λP df

) ≈ (750, 18 °C)

(Figure S6a) and are thus comparable to ranges of our
processing conditions. In other words, the surrogate models
must vary slowly over design space, as confirmed by the fact
that the minimum and maximum yields are separated by Pf =
2000 ≈ 2.67λP df

(Figure S6). An interesting consequence is that
while we have no direct knowledge of the surrogate model
outside the current design space limits, we would not expect to
find significant differences in the predicted yields if we only
look a distance d ≪ λ outside the limits. A similar analysis
holds also for β-O-4 surrogate models (Figure S6b), see the
Supporting Information (SI) for additional details.
Model Predictions for Key Lignin Properties. In this

section, we use surrogate model predictions for the lignin yield,
β-O-4 content, S/G ratio, and total carbohydrate content to
learn more about the chemical reactions underlying the AqSO
process.
The lignin yield increases with P-factor and temperature

(Figure 7a), with a predicted maximum yield of 98 ± 13% at

(Pf, T) = (2500, 207 °C). We explain the relation between
yield and P-factor by an increased cleavage of interunit lignin
and lignin−carbohydrate linkages and the formation of more
acetone-soluble lignin fragments under more severe reaction
conditions. The experimentally measured lignin yield of 108%
at (Pf, T) = (2500, 210 °C) is larger than the maximum yield
predicted by the surrogate models but is still contained within
one standard deviation of the prediction. The yield measured
at these conditions furthermore exceeds 100 mass%, indicating
the formation of polyfurans from xylan degradation products
(furfural) that is quantified as lignin (so-called pseudolignin).11

The β-O-4 content is negatively correlated with the lignin
yield in the sense that a high β-O-4 content can only be
achieved at a low P-factor (Figure 7b). This behavior is due to
a decrease in the break down of native lignin-rich moieties,
such as β-O-4, at low reaction severity. The S/G ratio, which is
important for specific high-value-added lignin applications,
follows trends similar to those observed for the β-O-4 content
(Figure 7c). We find the highest S/G ratio at low severity,
which is likely due to the higher reactivity of S units in lignin

Table 1. Summary of Model Validation Metrics for Lignin
Yield and β-O-4 Contenta

Target Exp. error Data set RMSE MAE MAPE

Lignin yield (%) 5% Acquisitions 4.7 3.8 6.8
Test 6.0 4.8 7.8

β-O-4 content
(per 100 Ar)

5%−10% Acquisitions 2.0 1.6 11.0

Test 1.1 0.9 8.6
aThe estimated experimental error is followed by the root mean
square error (RMSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE). The mean absolute percentage
error (MAPE) obtained for the test set is similar to the MAPE of the
acquisitions and comparable to the estimated experimental error,
indicating that the surrogate models are able to make accurate
predictions.

Figure 7. Predicted landscapes for key lignin properties. (a) Lignin
yield increases with both temperature and P-factor. (b) β-O-4 content
exhibits an antagonistic relationship with the lignin yield and is large
when the P-factor is low. (c) Ratio of syringyl to guaiacyl units is also
large when the P-factor is low but is less sensitive to changes in P-
factor at higher temperatures. (d) Significant amounts of carbohy-
drates can only be obtained at low to intermediate temperatures and
low P-factors. Large measurement uncertainties relative to the local
landscape corrugation leads to fitting issues for surrogate model.
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fragmentation and therefore their predominant release during
the initial stages of the AqSO process. As expected from our
previous work,11 we observe the highest carbohydrate content,
corresponding to LCC moieties, at low severities where the
formation of new LCC linkages is more favorable than the
cleavage of native LCCs (Figure 7d). With increasing process
severity, the equilibrium shifts to the degradation of LCCs,
both due to cleavage of the linkages between lignin and
carbohydrates as well as the degradation of carbohydrates
(mainly xylan) themselves. Thus, while the current ranges of
the processing conditions are not favorable for the generation
of LCCs, our surrogate model captures important trends and
suggests lower severities and temperatures as a starting point
for future investigations. We furthermore see that the predicted
carbohydrate content fluctuates between 0 to 30 units per 100
Ar several times as the P-factor increases under moderate
temperatures. This behavior can be an indication of a larger
measurement noise at lower P-factors than initially assumed for
the carbohydrate content. Surrogate model landscapes are thus
not only useful for predictions but can also highlight issues
with the experimental process.
Our landscapes reveal that the lignin characteristics do not

only depend on the P-factor, as observed for xylan extraction
from wood,36 but also on the reaction temperature at a fixed P-
factor. The landscape shows that this dependence is
surprisingly complex. For example, at a low P-factor (e.g., P
= 500), the highest yield is observed for a low reaction
temperature (180 °C), but at a high P-factor (e.g., P = 2000),
it occurs for the highest reaction temperature (210 °C). This
complex dependence can be explained by competing
reactions11,49 with different activation energies that con-
sequently contribute differently to the overall process.
The (Pf, T) dependence of all the structural properties we

have modeled can, to some extent, be qualitatively explained
by well-known principles from lignin chemistry. However, the
surrogate model landscapes provide the quantitative predic-
tions necessary for large-scale applications in lignin valor-
ization. As noted for the carbohydrate content, the surrogate
models can also provide information on potential problems in
the experimental characterization, such as larger than expected
measurement noise.
Tailoring Extraction Conditions for Different Lignin

Applications. Using our trained surrogate models, we can

derive optimal extraction conditions for arbitrary design
criteria associated with lignin-based products. In this context,
the design criteria are a set of requirements placed on the
extracted lignin by a potential application. For instance, the
lignin yield should typically exceed some minimum threshold,
and we might require high amounts of specific moieties. To
solve this problem, we can employ a Pareto front analysis to
our surrogate models to find optimal trade-offs between the
design criteria. The practical implication of having multiple
optimal trade-offs is that changing the extraction conditions to
bring one target closer to its design criteria will result in at least
one other target having a less optimal value.
As a concrete example of how to apply a Pareto front

analysis, we consider optimizing the AqSO biorefinery for
extracting lignin suitable as a feedstock in the production of
aromatic platform chemicals. For this purpose, most processes
require a maximal number of β-O-4 linkages to maximize the
yield of the targeted monomers.6−8 Hence, the maximum
revenue per original biomass correlates with both high lignin
yield and high β-O-4 content. Using our surrogate models, we
can determine all feasible combinations of yield and β-O-4
content, i.e., those obtainable by varying the processing
conditions in their allowed range. These feasible points
forms a two-dimensional space, as indicated in blue in Figure
8a. By subsequently calculating the Pareto front, we see that it
lies on the boundary of the space of feasible points; these are
the optimal trade-offs. We observe from the shape of the
Pareto front that high values of the lignin yield are correlated
with low β-O-4 content, in agreement with Figure 7a and b.
The corresponding Pareto optimal solutions, i.e., the
processing conditions (Pf, T) that produce optimal trade-offs,
are then found by projecting the Pareto front onto (Pf, T)
space (Figure 8b).
Since every point on the Pareto front represents an optimal

trade-off, no point is inherently preferred over another. This
gives us the freedom to adjust the extraction conditions to
particular applications and to take physicochemical constraints
and cost−benefit considerations into account. For our
aromatic platform chemicals example, we might choose to
accept a slightly smaller yield of 60% in return for a higher β-
O-4 content. We can then determine from Figure 8 that this
trade-off results in 17.5 β-O-4 linkages per 100 Ar and can be
achieved by extracting the lignin at (Pf, T) = (1227, 210 °C).

Figure 8. Tailoring the AqSO biorefinery for production of aromatic platform chemicals by simultaneously attempting to maximize lignin yield and
β-O-4 content. The result is a set of optimal trade-offs for which an increase in one of the experimental targets always leads to a decrease in the
other. The optimal trade-offs are known as the Pareto front (a) and can be projected into Pareto optimal solutions in (Pf, T) space (b). A single
point on the Pareto front can be selected by assigning a desired value to one of the targets. The corresponding Pareto optimal solution then
provides the optimal extraction conditions for the valorization.
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As a second application case, we consider the use of lignin as
an antioxidant, for which a high amount of phenolic OH
groups would be beneficial.50 While we have not measured the
phenolic OH content directly in this work, we note that it is a
typical product of β-O-4-unit cleavage, and thus, we expect the
highest phenolic OH content at the lowest number of β-O-4
linkages.11 We can then infer from Figure 7a and b that
phenolic OH content correlates positively with the lignin yield
and hence we should be able to obtain phenolic OH-rich lignin
with high yield. To find suitable extraction conditions, we
again apply a Pareto front analysis where we look for trade-offs
involving low β-O-4 content and high lignin yield. We then
find that the trade-off involving the lowest β-O-4 content equal
to 5.5 units per 100 Ar can be obtained with 72% yield at (Pf,
T) = (2397, 182 °C). We thus expect that these extraction
conditions are favorable for extraction of lignin with
antioxidant properties.
Further examples of applications could be given for the

optimal S/G ratio and amounts of carbohydrates in lignin
(present as LCC). For instance, higher proportions of S units
should be beneficial for lignin depolymerization due to the
higher reactivity of S units compared to that of G units.7 In
contrast, S units are not suitable for various cross-linking
reactions as both ortho positions to the phenolic OH (typical
reaction centers in cross-linking) in the aromatic ring of S units
are occupied by OMe groups.51 In surfactant applications, the
presence of hydrophilic carbohydrates moieties (as LCC) can
be advantageous, while, for example, the production of
aromatic monomers requires high purity lignin.7

It is important to keep in mind that there is no all-purpose
lignin; different applications call for optimization of different
properties. In future work, we aim to establish surrogate
models that correlate lignin structure with optimal product
properties for specific applications. This would allow us to link
the effects of the processing conditions on lignin structure and
effects of those properties on the performance of lignin in
specific applications.

■ CONCLUSIONS
We have improved the AqSO biorefinery by increasing its
resource efficiency and by optimizing properties of the
extracted lignin for valorization applications. We accomplished
this by using BO to construct surrogate models capable of
predicting experimental targets (lignin yield and moieties
quantified using 2D NMR) in terms of the processing
conditions (temperature, P-factor). Using the depolymeriza-
tion of lignin into platform chemicals as an example
application, we subsequently applied a Pareto front analysis
to determine the processing conditions that provide optimal
balance between high lignin yield and a high amount of β-O-4
linkages. The derived processing conditions thus allow for
resource-efficient extraction of β-O-4-rich lignin suitable for
depolymerization applications.
While we have presently focused on refining the AqSO

biorefinery concept, our work also highlights how BO can
function as the cornerstone of a holistic framework for
developing sustainable materials technologies. The key
advantage provided by BO in this context is the ability to
establish surrogate models from a small set of data that is
automatically curated by the algorithm. Here, we showed how
the data can be efficiently collected in batches and shared
between multiple surrogate models to accelerate convergence
and provide predictive power over the entire design space. A

Pareto front analysis can then be applied as a general tool to
optimize products and increase resource efficiency, without the
need to conduct further experiments. This will in turn help
increase the long-term sustainability of the technology. Our
work thus shows the potential of machine learning methods,
such as BO, to both improve and expedite the development of
sustainable materials processing and engineering.
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