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We sought to investigate white matter abnormalities in mild traumatic brain injury (mTBI) using diffusion-
weighted magnetic resonance imaging (DW-MRI). We applied a global approach based on tract-based spatial
statistics skeleton as well as constrained spherical deconvolution tractography.
DW-MRI was performed on 102 patients with mTBI within two months post-injury and 30 control subjects.
A robust global approach considering only the voxels with a single-fiber configuration was used in addition to
global analysis of the tract skeleton and probabilisticwhole-brain tractography. In addition,we assessedwhether
the microstructural parameters correlated with age, time from injury, patient's outcome and white matter MRI
hyperintensities. We found that whole-brain global approach restricted to single-fiber voxels showed significantly
decreased fractional anisotropy (FA) (p = 0.002) and increased radial diffusivity (p = 0.011) in patients with
mTBI compared with controls. The results restricted to single-fiber voxels were more significant and reproducible
than those with the complete tract skeleton or the whole-brain tractography. FA correlated with patient outcomes,
white matter hyperintensities and age. No correlation was observed between FA and time of scan post-injury. In
conclusion, the global approach could be a promising imaging biomarker to detect white matter abnormalities
following traumatic brain injury.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Traumatic brain injury (TBI) may become one of the main causes of
death and disability by 2020 according to World Health Organization
(Hyder et al., 2007). Approximately 80% of all TBI cases are considered
to be mild (mTBI) (Bazarian et al., 2005). mTBI causes symptoms
from transient post-concussion syndrome to long-term morbidity
(Sigurdardottir et al., 2009). Even though the majority of the patients
with mTBI eventually recover completely, half of patients develop
-spherical deconvolution; DAI,
DW-MRI, diffusion-weighted
CS, Glasgow Coma Scale; GOSe,
resolution diffusion imaging;

; PTA, post-traumatic amnesia;
ct-based spatial statistics.
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neurocognitive problems within the first month and almost one-fourth
may have residual symptoms at one year (McMahon et al., 2014). The
current clinical and imaging determinants insufficiently correlate with
incidence of posttraumatic sequels in patientswithmTBI. Commonneu-
roimaging techniques such as computed tomography and conventional
magnetic resonance imaging (MRI) have been widely used in TBI to de-
tect macroscopic changes in the brain (Shenton et al., 2012), but they
often fail to show diffuse axonal injury (DAI) (Mechtler et al., 2014;
Shenton et al., 2012). Diffusion-weighted (DW)MRI is capable of show-
ingwhite matter abnormalities not visible in routineMRI due to its sen-
sitivity to microstructural changes. Diffusion tensor imaging (DTI)
(Basser et al., 1994a, 1994b), which is commonly used to study white
matter pathology non-invasively (Xu et al., 2007) has been shown to
be sensitive and one of the most promisingmethods in revealing subtle
brain changes in mTBI (Eierud et al., 2014; Shenton et al., 2012).

Several studies have shown that DW-MRI and in particular DTI could
be helpful in identifying TBI-related alterations in brain structure
(Shetty et al., 2016). Reduced fractional anisotropy (FA) and increased
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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mean diffusivity (MD) have been reported in patients with mTBI in
acute or sub-acute stage (Aoki et al., 2012; Gu et al., 2013; Kumar
et al., 2009; Toth et al., 2013; Wilde et al., 2008). DTI findings in acute
and sub-acute phase of mTBI have been related to clinical outcome
(Edlow et al., 2016; Messé et al., 2011; Yuh et al., 2014). However, DTI
is not yetwidely used as an imaging biomarker of TBI in clinical practice.

Moreover, although DTI is a useful tool for detection of changes in
brain white matter, it has its inherent limitations (Jones and
Cercignani, 2010; Tournier et al., 2011) and there are inconsistencies
in results with regard to DTI measurements such as FA and MD in TBI
(Lin et al., 2015). DTI can onlymodel Gaussiandiffusionwhile not all dif-
fusion processes that occur in the brain are Gaussian (Bammer et al.,
2003). Crossing fibers, present in the majority of white matter voxels
(Jeurissen et al., 2013), are an issue that cannot be addressed by DTI.
By utilizing DTI, results will yield lower FA values in voxels with com-
plex fiber configurations. High angular resolution diffusion imaging
methods have been developed to overcome these shortcomings
(Descoteaux and Deriche, 2015; Tournier et al., 2011). Constrained-
spherical deconvolution (CSD) is one of these methods, and is shown
to be a robust way to resolve the crossing fiber issue associated with
DTI (Farquharson et al., 2013; Tournier et al., 2004, 2007). In this
study, we used a robust global approach (Hsu et al., 2012; Roine et al.,
2013) by calculating mean anisotropy and diffusivity measures in the
whole brain and CSD-based tractography (Jeurissen et al., 2011) to in-
vestigate microstructural abnormalities within two months of mTBI.
CSD-based tractography has recently been in use to investigate abnor-
malities and network alterations following mTBI (van der Horn et al.,
2016). We restricted the analysis to voxels with a single fiber orienta-
tion in order to remove the confounding effect of fiber complexity
(Jeurissen et al., 2013; Tax et al., 2015; Vos et al., 2011) and to investi-
gate changes in voxels with higher FA values than normal DTI between
patients and controls.

2. Materials and methods

2.1. Subjects

During the EU-funded international TBICare (Evidence-based Diag-
nostic and Treatment Planning Solution for Traumatic Brain Injuries)
project, 102 prospectively recruited patients with acute or sub-acute
mTBI (age 47 ± 20) underwent DW-MRI in Turku, Finland within two
months post-injury (21.2± 14.9 days) (Table 1). In addition, 30 control
subjects with acute orthopedic injuries without acute or previous brain
disorders (age 50 ± 20) were recruited (Table 1). The participants gave
written informed consent, and the study was approved by the Ethical
Committee of the Hospital district of South-West Finland. Patients
with TBI were recruited using wide inclusion and few exclusion criteria
as previously described (Takala et al., 2015). Glasgow Coma Scale (GCS)
was used to assess severity of TBI (Braakman et al., 1980; Teasdale et al.,
1978). Patients with GCS ≥ 13 were further divided into two groups
Table 1
Characteristics of the study subjects and injury to MR imaging intervals.

Study group Number of subjects

mTBI patients (GCS ≥ 13) 102

mTBI patients (GCS ≥ 13 & PTA ≤ 24 h) 78

mTBI patients (GCS ≥ 13 & PTA N 24 h) 24

Controls 30
(≤24 or N24 h) according to the duration of post-traumatic amnesia
(PTA). The outcomes of patients with TBI were assessed using Extended
GlasgowOutcome Scale (GOSe) that divides patients with TBI into eight
groups allowing the standardized assessment of their recovery (Wilson
et al., 1998). The outcome assessment was done 3–6 months after the
injury. GOSe score was used as an ordinal variable ranging from 1
(death) to 8 (full recovery). For 21 of the control subjects, MRI was re-
peated later to evaluate reproducibility. Fazekas grading (Fazekas et
al., 1987) was used to assess white matter hyperintensities potentially
indicative of small vessel disease.

2.2. MR acquisition

MRI data was acquired using a Siemens 3 TMRI scanner (Magnetom
Verio 3 T, Siemens Healthcare, Erlangen, Germany). Axial DW-MR im-
ages were obtained by a spin-echo echo-planar imaging sequence
with repetition time 11.7 s, echo time 106 ms, 2 × 2 × 2 mm voxel
size and 77 axial slices; the field of view was 192 × 192 mm. Diffusion
gradientswith b=1000 s/mm2were applied in 64directions uniformly
distributed on a unit sphere (Jones et al., 1999).

2.3. Data analysis

The DW-MRI data were analyzed using ExploreDTI (Leemans et al.,
2009) and MATLAB (Mathworks, Natick, MA) software. Images were
first corrected for motion and eddy current distortions (Leemans and
Jones, 2009). Then, white matter FA skeleton was reconstructed based
on tract-based spatial statistics (TBSS) (Smith et al., 2006). Fiber orien-
tation distributions were estimatedwith CSD using spherical harmonics
up to order six (Tournier et al., 2004, 2007), and recursive calibration of
the single-fiber response function (Tax et al., 2014).

As the microstructural indices based on traditional DTI are affected
by the complexity of the fiber configurations, we chose to investigate
only the voxels with a single fiber orientation detected by CSD within
the white matter skeleton. In addition, we compared these results to
themicrostructural indicesmeasuredwithin the completewhitematter
skeleton and thewhole-brain fiber tractogram generated with probabi-
listic CSD-based tractography (Jeurissen et al., 2011). To calculate the
mean microstructural values for the whole-brain tractogram, we first
constructed a tract density image (Calamante et al., 2010) in diffusion
space, which was multiplied voxel-wise with the microstructural
values. These valueswere then added together and divided by the glob-
al sumof the tract density image. Seedingwas performed using a grid of
1 × 1 × 1 mm3 (8 seeds per voxel) and tractography was terminated
using anangular threshold of 45°. Fiber orientation density function am-
plitude threshold of 0.1 and step size of 1 mm were used for tracking.
The thresholds for the length of streamlines in the tractography were
from 50 to 500 mm. These parameters resulted in 360,000 ± 250,000
streamlines in the patient group and 380,000 ± 235,000 streamlines
in the control group.
Age (years)
(mean ± std)
(min-max)

Gender Imaging time (days)
(mean ± std)
(min-max)

47 ± 20
18–84

70 M
32 F

21 ± 15
1–52

45 ± 20
18–84

52 M
26 F

21 ± 15
2–51

55 ± 16
20–78

18 M
6 F

21 ± 16
1–52

50 ± 20
22–90

14 M
16 F



Fig. 1. Illustration of different approaches. (A) FA skeleton. (B) Single fiber voxel selection
from the skeletonized FA.

Fig. 2. Histograms of the fractional anisotropy values in patients with mTBI and controls.
Histograms of all fractional anisotropy values in patients with acute or sub-acute mild
traumatic brain injury, and controls using the single-fiber skeleton approach.
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To investigate microstructural white matter properties, global mea-
sures of FA, MD, radial diffusivity (RD), and axial diffusivity (AD) were
calculated using three different approaches: complete skeleton, single-
fiber skeleton (Fig. 1) and whole-brain tractogram. The distribution of
these properties within each subject was also calculated. General linear
model was then used to test for between group changes in all of the
measurements. We applied a repeated measures analysis of variance
(rmANOVA) with method as a within-subject factor and group as a be-
tween-subject factor. Group by region interaction terms were analyzed
to compare different measures in terms of detecting a group difference
in FA. Fazekas grading, and age were included in the statistical model as
covariates (Ilvesmäki et al., 2014; Lebel et al., 2012; Lee et al., 2010,
2009; Stadlbauer et al., 2008; Yoon et al., 2008). Separate linear models
were then created for each method.

In addition, the Pearson correlation coefficients of themicrostructur-
al propertieswith respect to GOSe, time post-injury and agewere calcu-
lated. Non-parametric Spearman correlationwas used to investigate the
correlation of microstructural properties with Fazekas grading.

Statistical analyses were performed using SPSS (version 23, SPSS
IBM, New York, NY). For all statistical analysis, confidence interval of
95% was considered for the statistical significance of the results.

Intraclass correlation coefficients (ICC) of the microstructural prop-
erties were calculated to evaluate the reproducibility of the methods
in control subjects (Owen et al., 2013; Shrout and Fleiss, 1979; Shrout,
1998).
3. Results

3.1. Microstructural white matter abnormalities in mTBI

FA values were significantly lower in patients with mTBI compared
to healthy controls (p = 0.002), and this difference depended on the
Table 2
Global fractional anisotropy (FA) values measured with the three different methods in acute or
matic amnesia (PTA)≤ 24 h, GCS ≥ 13 and PTA N 24 h) vs controls. Age and white matter hype

Study group FA skeleton, single-fiber only

mean ± SD F-value
(p-value)

All mTBI (GCS ≥ 13) 0.576 ± 0.042 9.917
Controls 0.591 ± 0.034 0.002

mTBI (GCS ≥ 13 & PTA ≤ 24 h) 0.582 ± 0.040 7.808
Controls 0.591 ± 0.034 0.006

mTBI (GCS ≥ 13 & PTA N 24 h) 0.556 ± 0.042 9.497
Controls 0.591 ± 0.034 0.003
method (group by method interaction, F = 3.36, p = 0.039). The
group difference was statistically significant for each method
(Table 2). The difference in FA was significant both in patients with
≤ 24 h of PTA (p = 0.006) and those with N24 h of PTA (p = 0.003).
Group-wise histograms showed that mTBI patients had less voxels
with high FA values and more voxels with low FA values compared
with controls (Fig. 2). The rmANOVA also indicated significant main ef-
fects of group (F = 8.54, p = 0.004), age (F = 86.6, p b 0.001), and
Fazekas grade (F = 4.92, p = 0.028).

RD was increased in all patients compared with controls (p =
0.011), and separately in patients with PTA ≤ 24 h (p = 0.033) and
N24 h of PTA (p = 0.006). AD and MD did not show significant differ-
ences (Table 3). Results without controlling for white matter
hyperintensities showed significant differences between patients and
controls in FA, MD and RD (Supplementary Tables 1 and 2).
3.2. Comparison of methods

The method restricted to single-fiber skeleton voxels, which consti-
tuted 29.13% of theWM skeleton voxels in average, produced the most
significant results compared to whole skeleton and whole-brain CSD-
based tractogram (Table 2). In addition, the single-fiber method was
the most reproducible, as shown by the ICC values calculated from the
control subjects (Table 4). Of the microstructural properties, RD and
sub-acute mild traumatic brain injury (mTBI defined as GCS ≥ 13, GCS ≥ 13 and post trau-
rintensities (measured by Fazekas scale) were used as covariates.

FA skeleton FA tractogram

mean ± SD F-value
(p-value)

mean ± SD F-value
(p-value)

0.412 ± 0.025 4.606 0.521 ± 0.047 6.764
0.419 ± 0.021 0.034 0.534 ± 0.043 0.010

0.416 ± 0.022 3.195 0.527 ± 0.048 4.806
0.419 ± 0.021 0.077 0.534 ± 0.043 0.031

0.399 ± 0.030 5.954 0.501 ± 0.040 6.565
0.419 ± 021 0.018 0.534 ± 0.043 0.013



Table 3
Global mean (MD), axial (AD) and radial (RD) diffusivity values measured with the single-fiber skeleton approach in acute or sub-acute mild traumatic brain injury (mTBI defined as
GCS ≥ 13, GCS ≥ 13 and post traumatic amnesia (PTA) ≥ 24 h, GCS ≥ 13 and PTA N 24 h) vs controls. Age and white matter hyperintensities (measured by Fazekas scale) were used as
covariates.

Study group MD
(×10−3 mm2/s)

AD
(×10−3 mm2/s)

RD
(×10−3 mm2/s)

mean ± SD F-value
(p-value)

mean ± SD F-value
(p-value)

mean ± SD F-value
(p-value)

All mTBI (GCS ≥ 13) 0.783 ± 0.073 2.801 1.389 ± 0.081 1.528 0.560 ± 0.105 6.672
Controls 0.765 ± 0.058 0.097 1.368 ± 0.073 0.219 0.525 ± 0.085 0.011

mTBI (GCS ≥ 13 & PTA ≤ 24 h) 0.775 ± 0.073 1.677 1.383 ± 0.083 0.808 0.546 ± 0.103 4.671
Controls 0.765 ± 0.058 0.198 1.368 ± 0.073 0.371 0.525 ± 0.085 0.033

mTBI (GCS ≥ 13 & PTA N 24 h) 0.809 ± 0.066 3.99 1.411 ± 0.074 2.403 0.604 ± 0.103 8.087
Controls 0.765 ± 0.058 0.051 1.368 ± 0.073 0.127 0.525 ± 0.085 0.006

Table 4
Reproducibility measured with intraclass correlation coefficient
(ICC) of the global microstructural properties (In 21 control sub-
jects with repeated scans). FA: fractional anisotropy; MD: mean
diffusivity; RD: radial diffusivity; AD: axial diffusivity.

Microstructural property ICC

FA, single-fiber skeleton 0.970
FA, whole skeleton 0.920
FA, tractogram 0.958
MD, single-fiber skeleton 0.939
RD, single-fiber skeleton 0.979
AD, single-fiber skeleton 0.863
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FA were the most reproducible measures. The histograms showed that
single-fiber method produced higher mean FA values than whole-
brain tractogram or the complete skeleton (Fig. 3).
3.3. Correlation of white matter properties to age, time of scan post-injury,
patient's outcome and white matter hyperintensities

FA did not correlate significantly with post-injury scan delay in pa-
tients with GCS ≥ 13 (p = 0.899 in all patients, p = 0.535 in patients
with ≤ 24 h of PTA and p = 0.170 in patients with N24 h of PTA), al-
though it was negatively associated with age (p b 0.0001 in all patients
and also in both patient groups divided by the duration of PTA) and
Fig. 3. Differences in fractional anisotropy between the three approaches. (A) Histograms o
tractography approaches in acute or sub-acute mild traumatic brain injury (mTBI). (B) Boxp
matter skeleton, white matter skeleton restricted to single-fiber voxels and whole brain trac
San Diego, California, USA, www.graphpad.com).
positively associated with GOSe (p = 0.0003 in all patients and p =
0.004 in patientswith ≤ 24 h of PTA) (Table 5). In addition, FA correlated
negatively with Fazekas grading (p b 0.0001 in all patients and patients
with ≤ 24 h of PTA). No statistically significant correlation was observed
between FA and GOSe (p = 0.311) and FA and Fazekas (p = 0.092) in
patients with N24 h of PTA. On average, patients hadmorewhitematter
hyperintensities than controls (p = 0.015). Nevertheless, our main
analysis controlled for this potential confounder in the statistical model.

4. Discussion

We found lower white matter FA values in patients with mTBI com-
pared with controls, consistent with white matter damage. FA values
were also associated with mTBI outcome measured using the GOSe, al-
though this correlation was not statistically significant in patients with
N24 h of PTA. Importantly, the group difference depended on the analysis
method, such that the global whole-brain approach based on TBSS skele-
ton and restricted to single-fiber voxels using CSD had the best sensitivity
to detect this difference and it was also themost reproducible. Thismeth-
od may have clinical utility in aiding the diagnostics of mTBI.

Our findings of decreased FA and increased MD, RD and AD in pa-
tients with mTBI compared to controls is in accordance with previous
studies in acute or sub-acute phase of mTBI (Arfanakis et al., 2002;
Gray et al., 2013; Messé et al., 2011; Miles et al., 2008; Narayana et al.,
2014; Rutgers et al., 2008; Toth et al., 2013). The use of white matter
f mean fractional anisotropy values using the single-fiber skeleton, whole skeleton and
lot of FA values in patients and controls yielded by three approaches: complete white
togram. (This graph was generated by GraphPad Prism version 7.0, GraphPad Software,

http://www.graphpad.com


Table 5
Pearson correlation coefficients of fractional anisotropy (FA) with neurological outcome measured with Glasgow Outcome Scale extended (GOSe), white matter hyperintensities mea-
sured, time post-injury, and age as well as non-parametric Spearman correlation coefficient of FA with Fazekas. Two-tailed significance was used to test the statistically significant corre-
lation (p b 0.05).

Study group FA and GOSe FA and Fazekas FA and time FA and age

All mTBI
(n = 102)

r = 0.363
p = 0.0003

r = −0.619
p b 0.0001

r = −0.013
p = 0.899

r = −0.787
p b 0.0001

mTBI with PTA ≤ 24 h
(n = 78)

r = 0.341
p = 0.004

r = −0.646
p b 0.0001

r = 0.071
p = 0.535

r = −0.814
p b 0.0001

mTBI with PTA N 24 h
(n = 24)

r = 0.227
p = 0.311

r = −0.352
p = 0.092

r = −0.289
p = 0.170

r = −0.639
p b 0.001
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skeleton minimizes the effect of isotropic partial volume effects, shown
to affect CSD (Roine et al., 2014, 2015a) andDTI (Alexander et al., 2001),
but has other inherent limitations (Bach et al., 2014). However, these
limitations are largely related to registration problems, which could be
eliminated by applying a globalwhole-brainwide approach. In addition,
the robustness of our findings was further demonstrated by their repli-
cation with CSD-basedwhole-brain tractography, which avoids most of
the limitations of the skeletonization.

Our findings of increased diffusivity and reduced anisotropymay in-
dicate extracellular brain edema (Iffland et al., 2014; Veeramuthu et al.,
2015), axonal degradation (Beaulieu, 2002), or demyelination (Song et
al., 2002) of white matter structures affecting their integrity. It has been
shown that at the acute stage of the injury, the axonal degradation is the
primary pathology (Mac Donald et al., 2007) while demyelination,
which can be the cause of the increase in RD is the major pathological
change after the acute stage (Mac Donald et al., 2007; Song et al., 2005).

Patients with longer duration of PTA tended to have lower anisotro-
py and higher diffusivity values compared to patients with shorter PTA.
However, the differences between these two severity groups were not
statistically significant.

Whole-brain histograms demonstrated that the difference in mean
FA between the controls and patients with mTBI manifests as both
higher number of low FA values and lower number of high FA values
in the histogram. Previously, whole-brain histogram analysis did not
differentiate between mTBI patients and controls (Inglese et al., 2005),
suggesting that white matter microstructural abnormalities may be
too subtle to be detected with DTI. However, the previous study had
only six gradient directions and the analysis included all gray and
white matter voxels within the brain (Inglese et al., 2005).

A recent study showed no local white matter changes in acute mTBI
compared to controls (Ilvesmäki et al., 2014). In that study, MRI was
performed on the average 48 h post-injury, while our MR imaging
was done at amean of 21.3 days post-injury. These differing results sug-
gest that white matter changes develop slowly andmay not bemeasur-
able immediately after injury. In addition, our robust global approach
and elimination of complex fiber configurations compared to their
voxel-based approach could account for the differences in these studies.

A limitation of this study is that the b-value describing the amount of
diffusionweightingwas lower than optimal for CSD-based tractography
(Tournier et al., 2013). However, 64 gradient orientations were likely
sufficient and crossing fibers could reliably be detected as previously
shown in e.g. (Annen et al., 2016; Roine et al., 2015b, 2015c). In addi-
tion, patients in both acute and sub-acute stages of mTBI were included
in this study, whichmight have affected the results althoughwithin this
time range our results did not correlate with the time from injury. Final-
ly, patients with mTBI tended to have higher incidence of white matter
hyperintensities, which is a potential confounder in assessing mTBI-re-
lated alterations in mTBI. However, these visible white matter changes
may also be related to the mTBI and additionally we controlled for this
potential confounder in the statistical models.
In conclusion, our study shows thatmTBI is associatedwithmicrostruc-
tural changes in the white matter and that these changes correlate with
the outcome. As a novel finding, we show that a single-fiber approach im-
proves the sensitivity and reliability in detecting these alterations.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.nicl.2016.11.016.
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