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Abstract: The modification of genes in animal models has evidently and comprehensively improved
our knowledge on proteins and signaling pathways in human physiology and pathology. In this
review, we discuss almost 40 monogenic rare diseases that are enriched in the Finnish population
and defined as the Finnish disease heritage (FDH). We will highlight how gene-modified mouse
models have greatly facilitated the understanding of the pathological manifestations of these diseases
and how some of the diseases still lack proper models. We urge the establishment of subsequent
international consortiums to cooperatively plan and carry out future human disease modeling
strategies. Detailed information on disease mechanisms brings along broader understanding of
the molecular pathways they act along both parallel and transverse to the proteins affected in rare
diseases, therefore also aiding understanding of common disease pathologies.

Keywords: rare diseases; monogenic diseases; mouse models; CRISPR/Cas9; genome engineering;
Finnish disease heritage

1. Introduction

Understanding and treating human diseases requires thorough knowledge of disease-
causing molecular and pathophysiological mechanisms. Despite the recent advances in
induced pluripotent stem cell techniques, many of these aspects remain challenging to
study, especially under physiological conditions in patient-derived material [1,2]. In order
to be reliable and valuable, the disease model should recapitulate if not the entire human
disease phenotype, then at least the key features of each specific disease under study [3].
For precision medicine, a good understanding of the genetic bases of variation in pheno-
types and their interaction with the environment in health and disease are required [4,5].
Thus, animal models, and especially genetically modified (GM) mice, offer great poten-
tial to serve as precious preclinical models that facilitate basic understanding of disease
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pathomechanisms and provide clues for the development of treatment options and novel
strategies to follow a treatment’s response.

Mice as a Genetically Modified Model for Diseases

Mice have been used as an animal model in biomedical studies for decades and
for many reasons, including their small size, efficient reproduction, relatively reasonable
expenses and similarities in anatomy and physiology to humans [4]. The fact that mice are
housed in controlled environment and that its genome was the first that was sequenced
among the rodents makes it the quintessential and by far most extensively used animal
employed in genetically modified models [6,7]. The possibility to derive and successfully
culture mouse embryonic stem (ES) cells together with the importance of similarities
between human and mouse genomes significantly contributed to the dominance of the
mouse in genetic modeling [8,9].

Almost 15 years ago, an international knockout (KO) mouse consortium (IKMC) with
the aim to inactivate all known mouse genes was established [10,11]. It has been extremely
successful in generating and providing mouse gene inactivation models either in the form of
targeted ES cells or mouse lines as, at least two thirds of the protein coding genes have been
knocked out [12,13]. Together with the research community and systematic phenotyping
conducted by the International Mouse Phenotyping Consortium (IMPC, https://www.
mousephenotype.org, accessed on 15 September 2021), these models have produced a
wealth of novel information on gene functions and facilitated the understanding of essential
genetic requirements for life [12,14,15]. Detailed phenotyping of KO mice has also identified
various full inactivation models that correlate or associate with Mendelian diseases [14,15].
However, straightforward full-gene inactivation appears to be less successful at modeling
monogenic diseases than originally thought, and thus more precise models are urged.

One of the big challenges at hand is to model the approximately 6500 different human
monogenic diseases in mice [16]. Although typically classified as rare diseases, many
monogenic diseases are relatively common, either in general or in certain geographical
regions and among certain ethnicities. In this review, we discuss a group of monogenic rare
diseases enriched in the Finnish population and defined as the Finnish disease heritage
(FDH) [17]. We will highlight how appropriate mouse models have greatly facilitated the
understanding of disease manifestation in certain monogenic diseases and, on the other
hand, emphasize the barriers in other diseases, as studies have been carried out mainly in
cell culture models.

2. The Finnish Disease Heritage

The first scientific reports of FDH were published in early 1970s by Perheentupa
et al. [18] and Norio et al. [19] who referred to a group of inherited clinical phenotypes
that are, in proportion to population size, more common in Finland than elsewhere in the
world. Today, 36 mostly autosomal recessive diseases (Table 1) are defined as FDH, varying
in severity from embryonic lethal to adult-onset milder phenotypes [20]. The collection
of monogenic FDH is constantly evolving (Table 1), as new diseases following the same
patterns of enriched founder mutations are still being identified [21].

https://www.mousephenotype.org
https://www.mousephenotype.org
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Table 1. Finnish disease heritage diseases and the affected genes with the major Finnish mutation.

Disease Gene Major Mutation
Mouse Model
Recapitulating

Disease

Aspartylglucosaminuria (AGU) Aspartylglucosaminidase (AGA) c.488G > C p.C163S Aga KO +

Autoimmune polyendocrinopathy
-candidiasis-ectodermal dystrophy

(APECED)
Autoimmune regulator (AIRE) c.769C > T p.R257X Aire KO +/−

Cartilage hair hypoplasia (CHH)
RNA component of

mitochondrial RNA processing
endoribonuclease (RMRP)

n.71A > G Rmrp KO −

Choroideremia (CHM) Rab escort protein 1 (REP1) c.1639 + 2insT Rep1 cKO +

Lactase deficiency, congenital
(CLD) Lactase (LCT) c.4170T > A p.Y1390X N/A

Ceroid lipofuscinosis, neuronal,
1 (CLN1)

Palmitoyl-protein thioesterase
1 (PPT1) c.364A > T p.R122W Ppt1 KO +

Ceroid lipofuscinosis, neuronal,
3 (CLN3) CLN3, battenin (CLN3) g.462-677del p.G154Afs*29 Cln3 KO +/−

Cln3(∆ex7/8) KI +/−
Ceroid lipofuscinosis, neuronal,

5 (CLN5)
CLN5-intracellular trafficking

protein (CLN5) c.1175_1176delAT p.Tyr392* Cln5 KO +/−

Cornea plana 2 (Cornea plana
congenital, CNA2) Keratocan (KERA) c.740A > G p.N247S Kera KO +/−

Finnish congenital nephrosis (CNF) Nephrin (NPHS1) c.121_122delCT p.R1109X Nphs1 KO +

Cohen syndrome (COH1) Vacuolar protein sorting 13
homolog B (VPS13B) c.3348_3349delCT p.C1117fs N/A

Diarrhea, secretory chloride,
congenital (DIAR1)

Solute carrier family 26, member
3 (SLC26A3) c.-26 + 2T > C p.V317del Slc26a3 KO +/−

Diastrophic dysplasia (DTD) Solute carrier family 26 member 2
(SLC26A2) c.-26 + 2T > C Slc26a2 KI +

Epilepsy, progressive myoclonic,
1 (EPM1) Cystatin B (CSTB) 12 nucleotide expansion in

promoter Cstb KO +

Epilepsy, progressive, with mental
retardation (EPMR)

CLN8 transmembrane ER and
ERGIC protein (CLN8) c.70C > G p.R24G Cln8mnd +/−

Amyloidosis, Finnish type (FAF) Gelsolin (GSN) c.654G > A p.D187N hGSN Tg +/−
Glycine encephalopathy (GCE) Glycine decarboxylase (GLDC) c.1691G > T p.S564I Gldc KO +

Gracile syndrome (GRACILE)
BCS1 homolog,

ubiquinol-cytochrome c reductase
complex chaperone (BCS1L)

c.232A > G p.S78G Bcs1l KI +

Hydrolethalus syndrome 1 (HLS1) HYLS1 centriolar and ciliogenesis
associated (HYLS1) c.1416A > G p.D211G N/A

Hyperornithinemia with gyrate
atrophy of choroid and retina

(HOGA)

Ornithine aminotransferase
(OAT) c.1205T > C p.L402P Oat KO +/−

Imerslund-Grasbeck syndrome
1 (IGS1) Cubilin (CUBN) c.3891G > A p.P1297L Cubn KO −

Infantile onset spinocerebellar
ataxia (IOSCA)

C10ORF2-chromosome 10 open
reading frame 2 (C10ORF2) c.1708A > G p.Y508C C10orf2 KI +
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Table 1. Cont.

Disease Gene Major Mutation
Mouse Model
Recapitulating

Disease

Lethal arthrogryposis with anterior
horn cell disease (LAAHD)

RNA transport mediator (GLE1)
c.432-10A > G

p.T144_E145insPFQ N/A

Compound heterozygote

Lethal congenital contracture
syndrome 1 (LCCS1) RNA transport mediator (GLE1) c.432-10A > G

p.T144_E145insPFQ N/A

Long-chain 3-hydroxyacyl-CoA
dehydrogenase (LCHAD)

deficiency *

Hydroxyacyl-coenzyme A
dehydrogenase trifunctional

multienzyme complex subunit
alpha (HADHA)

c.1528G > C p.E510Q Hadha KO +/−

Lysinuric protein intolerance (LPI) Solute carrier family 7 member
7 (SLC7A7) c.895-2A > T p.T299IfsX128 Slc7a7 KO1 + Slc7a7

KO2 −
Muscular

dystrophy-dystroglycanopathy
(congenital with brain and eye

anomalies), type a, 3 (MDDGA3)

Protein O-linked mannose
N-acetylglucosaminyltransferase

1 (beta 1,2-) (POMGNT1)

c.1539+1G > A
p.L472_H513del

Pomgnt1 KO1 +
Pomgnt1 KO2 +/−

Meckel syndrome type 1 (MKS1) MKS transition zone complex
subunit 1 (MKS1) c.1408-7_35del p.G470fs Mks1 KO +

Mulibrey nanism (MUL) Tripartite motif containing
37 (TRIM37) c.493-2A > G p.R166fs Trim37 KO +

Ovarian dysgenesis 1 (ODG1) Follicle stimulating hormone
receptor (FSHR) c.566C > T p.A189V Fshr KO +

Progressive encephalopathy with
edema, hypsarrhythmia and optic

atrophy (PEHO)

Zinc finger HIT-type containing
3 (ZNHIT3) c.92C > T p.S31L N/A

Polycystic lipomembranous
osteodysplasia with sclerosing

leukoencephalopathy 1 (PLOSL1)

Transmembrane immune
signaling adaptor TYROBP

(TYROBP)
Ex1-4del: 5,3 kb deletion Tyrobp KO +

RAPADILINO syndrome RecQ like helicase 4 (RECQL4) c.1390+2delT Recql4 KO1-3 +/−
Retinoschisis (RS1) Retinoschisin 1 (RS1) c.214G > A p.E72K Rs1 KO +/−

Salla disease (SD) Solute carrier family 17 member
5 (SLC17A5) c.115C > T p.R39C Slc17a5 KO +/−

Tibial muscular dystrophy (TMD) Titin (TTN)

11-bp change in the last
exon

Ttn cKO +/−Glu→ Val
Val→ Lys
Thr→ Glu
Trp→ Lys

Usher syndrome, type III (USH3) Clarin (CLRN1) c.528T > G p.Tyr176Ter Clrn1 KO +/−
* Currently under consideration for FDH. c. = coding DNA variant; cKO = conditional knockout; KI = knock-in; KO = knockout;
n. = non-coding DNA variant; p. = protein variant; + = mouse model(s) exists and recapitulates the majority of the human disease
symptoms; +/− = mouse model(s) exists and recapitulates some of the disease symptoms; N/A = mouse model does not exist or
recapitulate disease symptoms.

The enrichment of some monogenic diseases in Finland (especially in the north and
east) was caused by geographical, linguistic and cultural isolation of this population in
history [22]. The resultant characteristic features of population isolation (e.g., the founder
effect, genetic drift and genetic isolation) have shaped the gene pool of Finns over the
centuries, leading to the enrichment of certain disease-causing gene variants [23]. Although
FDH diseases are rare, many of them share similarities with more common diseases, and
this may sometimes delay a correct diagnosis. Thus, the importance of consultation of
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national expert centers that are linked to international networks is of ultimate importance
for rare disease patients (https://ec.europa.eu/health/ern/, accessed on 1 September
2021). One example of such networks is European Reference Networks on rare diseases,
which help professionals and expert centers to share knowledge on rare diseases requiring
special care, serve as research and knowledge centers for treating patients from other EU
countries, ensure the availability of treatment facilities and provide high-quality training
for students and members of multidisciplinary teams.

2.1. State of the Art in Modeling the FDH in Mice

Thanks to the IKMC, many of the FDH genes have already been knocked out in mice
(Table 1). However, only a few of the existing KO mouse lines recapitulate the full spectrum
of FDH disease symptoms (Table 2). Moreover, as described in Table 2 for all FDH diseases,
KO and rare transgenic (TG) and knock-in (KI) mouse models that have been generated for
certain diseases selectively manifest only some of the disease features.

Table 2. Description of characteristic clinical features of FDH diseases and respective studies in possible knockout (KO),
transgenic (TG) or knock-in (KI) mouse model(s).

Disease OMIM Disease Manifestation Mouse Model Model Utility

Aspartyl-
glucosaminuria (AGU) 208,400

Lysosomal storage disease with
infantile growth spurt, progressive

mental retardation in
children, abnormalities in the

central nervous system and skeleton
and connective tissue lesions

Aga KO: recapitulates well
lysosomal storage disease, but

manifests symptoms only
in aged animals [24,25]

Enzyme replacement
and gene therapies

successfully used in KO
model [26–28]

Autoimmune
polyendocrinopathy,

candidiasis and
ectodermal dystrophy

(APECED)

240,300
Multi-symptomatic

endocrinopathy with fungal
infections and ectodermal changes

Aire KO: recapitulates
autoimmune symptoms of

APECED [29,30]

Cartilage hair
hypoplasia

(CHH)
250,250

Metaphyseal chondrodysplasia,
short stature, sparse hair, immune

deficiency, gastrointestinal
dysfunctions, anemia,

increased risk for lymphoma and
impaired spermatogenesis

Rmrp KO: embryonic lethal [31]

Choroideremia (CHM) 303,100

X-linked progressive degeneration of
the retinal pigment

epithelium, photoreceptors
and choroid leading to vision

loss of affected males

Rep1 cKO: conditional knockouts
showed the early onset and

progressive retinal degeneration,
patchy depigmentation of the

retinal pigment epithelium and
Rab prenylation defects, leading to

premature accumulation of
deposits in retinal pigment

epithelium [32,33]

Lactase deficiency,
congenital (CLD) 223,000 Infantile-onset severe diarrhea and

failure to thrive N/A

Ceroid
lipofuscinosis,

neuronal, 1
(CLN1)

256,730

Infantile-onset, lethal
neurodegenerative disease leading

to psychomotor deterioration,
muscular hypotonia, ataxia,

myoclonia, microcephaly,
progressive epilepsy and visual
impairment causing blindness

Ppt1 KO: (exon 9 or exon 4):
similar CLN1-like phenotypes
with blindness, seizures and
myoclonic jerks; progressive

motor difficulties leading
to hind limb paralysis

and death [34–39]

Gene therapy testing
conducted using the

Ppt1 KO mice [24,38,40]

https://ec.europa.eu/health/ern/
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Table 2. Cont.

Disease OMIM Disease Manifestation Mouse Model Model Utility

Ceroid
lipofuscinosis,

neuronal, 3
(CLN3)

204,200

Fatal neurodegenerative disorder
with childhood-onset vision

impairment, intellectual disability,
movement problems, speech

difficulties and seizures,
which worsen over time

Cln3 KO: neuronal storage
disorder and other

neuropathologies [41]
Cln3(∆ex7/8) KI: degenerative

changes in retina, cerebral
cortex and cerebellum;

neurological deficits and
premature death [40,42]

Although both mouse
models recapitulate the
aspects of CLN3, they

either also show
non-neuronal or genetic
background-dependent

phenotypes, thus not
being good models for

interventional
studies [40,43]

Ceroid
lipofuscinosis,

neuronal, 5
(CLN5)

256,731

Childhood-onset developmental
regression, myoclonic epilepsy,

ataxia, vision loss, speech
problems and a decline in
intellectual function with

varied life expectancy

Cln5 KO: progressive pathology
of the brain mimics the CLN5

symptoms, and Cln5 deficiency
leads to microglial activation,

defective myelination and changes
in lipid metabolism [44,45]

Cornea plana 2
(cornea plana

congenital)
(CNA2)

217,300

Congenital visual impairment,
reduced curvature and hazy

limbus of the cornea, opacities
in the corneal stroma and

marked corneal arcus at early age

Kera KO: structural alterations
recapitulate disease phenotype,

but corneal transparency
is normal [46]

Finnish congenital
nephrosis

(CNF)
256,300

Prenatal onset of massive
proteinuria, severe steroid-

resistant nephrotic syndrome
at birth and rapid progression

to end-stage renal failure

Nphs1 KO: severe proteinuria
associated with kidney defects

and leading to postnatal
lethality [47,48]

Cohen syndrome (COH1) 216,550

Non-progressive psychomotor
retardation and microcephaly,
characteristic facial features,

retinal dystrophy, cardiac
dysfunction, hyperlaxity of joints

and intermittent neutropenia

Vsp13b KO (IMPC)

Diarrhea, secretory
chloride, congenital

(DIAR1)
214,700

Fetal-onset watery diarrhea,
polyhydramnion and chronic

diarrhea due to chloride
absorption defect

Slc26a3 KO: inpenetrant postnatal
lethality, and survivors suffer from

growth retardation and acidic
chloridorrhea [49]

Diastrophic
dysplasia (DTD) 222,600

Chondrodysplasia causing
severe growth retardation

and structural and functional
abnormalities of joints

Slc26a2 KI (hypomorph):
recapitulates essential aspects of
DTD such as growth retardation,

skeletal dysplasia and joint
contractures [50]

Therapeutic approaches
to improve skeletal
deformity and short

stature in DTD
successfully tested using

Slc26a2 KI mice [51]

Epilepsy, progressive
myoclonic, 1 (EPM1) 254,800

Childhood- or juvenile-onset
progressive myoclonic

epilepsy with variable severity

Cstb KO: phenocopies
progressive ataxia

and myoclonic seizures [52,53]

Epilepsy, progressive,
with mental
retardation

(EPMR)

610,003

A neurodegenerative, lysosomal
storage disease characterized by

childhood-onset epilepsy and
progressive mental retardation

Cln8mnd (267–268insC; frameshift,
predicted truncated protein): early

onset retinal degeneration and
adult-onset hindlimb weakness

and ataxia, progressing to spastic
paralysis of all limbs and death by

9–14 months; accumulation of
intracytoplasmic and lipopigment
immunoreactive to ATP synthase

subunit c [54–57] Cln8 KO (IMPC)

Gene therapy testing
conducted using
Cln8mnd mice [58]
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Table 2. Cont.

Disease OMIM Disease Manifestation Mouse Model Model Utility

Amyloidosis,
Finnish type

(FAF)
105,120

Amyloidogenic disease
characterized by lattice corneal
dystrophy, cranial neuropathy,

bulbar signs, and
dermatologic changes.

Peripheral neuropathy and
renal failure are less common

symptoms

hGSN Tg: transgenic line
expressing human D187N gelsolin

modeling the pathogenic
endoproteolytic cascade that leads
to gelsolin amyloidogenic peptides

and accumulation with
amyloidogenesis is

restricted to muscle tissue [59]

Mouse model was used
to test D187N

gelsolin-targeting
nanobodies with

positive results [60]

Glycine
encephalopathy (GCE) 605,899

Accumulation of glycine in
neonates. Disease varies from
attenuated to fatal form and

presents with lethargy,
hypotonia, myoclonic jerks

and apneas

Gldc KO: neonatal disease
features with increased

glycine levels, premature
lethality and hydrocephalus,

in addition to neural tube
defects [61]

Abnormalities of folate
metabolism and

hydrocephalus were
prevented by maternal

supplementation of
carbon donor to
normalize folate

cycle [62,63]

Gracile syndrome
(GRACILE) 603,358

A mitochondrial disease
characterized by severe growth

retardation, lactic acidosis,
nonspecific amino aciduria,

cholestasis and abnormalities in iron
metabolism, resulting neonatal or

early infancy lethality

Bcs1l KI: similar phenotype to
human diseases such as growth
restriction (>4 wk), progressive
liver disease, renal tubulopathy

and premature death
(<6 wk) [64,65]

Hydrolethalus
syndrome 1

(HLS1)
236,680

A lethal condition of fetus with
hydramnion and multiple

developmental anomalies, including
central nervous system

malformation, micrognathia,
polydactyly, congenital heart defects

and abnormal lung lobuli

Hyls1 KO (IMPC)

Hyperornithinemia with
gyrate atrophy

of the choroid and
retina

(HOGA)

258,870

Hyperornithinemia presumably due
to OAT deficiency; triad of
progressive chorioretinal

degeneration, early cataract
formation and type II muscle

fiber atrophy; progressive
vision loss

Oat KO: neonatal
hypoornithinemia and lethality

rescuable by short-term arginine
supplementation; postweaning

hyperornithinemia; retinal
degeneration in aged mice
recapitulating the HOGA

phenotype [66]

Imerslund-Grasbeck
syndrome 1

(IGS1)
261,100

Infancy- or early childhood-onset
proteinuria and megaloblastic

anemia due to vitamin B12
(cobalamin, Cbl) deficiency caused

by vitamin B12
malabsorption

Cubn KO: no disease
recapitulation,

embryonic lethality [67]

Infantile onset
spinocerebellar ataxia

(IOSCA)
271,245

Severe progressive
neurodegenerative

disorder characterized
primarily by hypotonia, ataxia,

ophthalmoplegia, hearing
impairment, epilepsy and

sensory axonal neuropathy

C10orf2 KI: IOSCA mice
manifest a mitochondrial

epileptic
encephalohepatopathy

replicating the key findings
of IOSCA patients [68,69]

Suitable model for
testing metabolic
interventions as

treatment options for
mitochondrial diseases

Lethal arthrogryposis with
anterior horn cell disease

(LAAHD)
611,890

Prenatal onset of diminished fetal
mobility and contractures and
postnatal respiratory failure
resulting in perinatal death

Gle1 KO (IMPC)
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Table 2. Cont.

Disease OMIM Disease Manifestation Mouse Model Model Utility

Lethal congenital
contracture
syndrome 1

(LCCS1)

253,310

A lethal condition of fetus with lack
of movements,

hydrops, micrognathia,
pulmonary hypoplasia and
multiple joint contractures

Gle1 KO (IMPC)

Long-chain
3-hydroxyacyl-CoA

dehydrogenase (LCHAD)
deficiency *

609,016

A mitochondrial disorder of
long-chain fatty acid oxidation

characterized by infancy- or early
childhood-onset hypoglycemia,

metabolic acidosis, hypotonia, liver
disease, cardiomyopathy and

arrhythmias, as well as a later onset
of chronic peripheral neuropathy

and pigmentary retinopathy

Hadha KO: embryonic lethality
in homozygotes, hepatic steatosis

at a young age (3 mo) and
hepatocellular carcinoma

without cirrhosis at an
older age (>13 mo) in

heterozygotes [70]

Lysinuric protein
intolerance

(LPI)
222,700

Inborn error of amino acid
metabolism resulting in growth

failure, renal disease,
hyperammonemia,

pulmonary
alveolar proteinosis,

autoimmune disorders
and osteoporosis

Slc7a7 KO1: growth restriction
and very early embryonic

lethality [71]
Slc7a7 KO2: deletions do not

recapitulate precisely the variants
that have been reported in humans;
key features of human LPI such as
intrauterine growth restriction and

proximal tubular dysfunction
are present [72]

Muscular dystrophy–
dystroglycanopathy

(congenital with brain and
eye anomalies), type A, 3

(MDDGA3)

253,280

Brain and eye malformations,
severe, congenital muscular

dystrophy, mental retardation and
survival up to

more than 70 years

Pomgnt1 KO1: viable mice
developmental defects in muscle,

eye and brain, similar to the
phenotypes observed in

humans [73,74] Pomgnt1 KO2:
increased postnatal lethality, mild

dystrophy with reduction in
muscle mass and muscle fibers and
impaired muscle regeneration [75]

Meckel syndrome type 1,
(MKS1) 249,000

Genetically heterogenous disease
with the main features being

central nervous system
malformation, polycystic kidneys,

fibrotic changes in the liver,
congenital heart malformation

and polydactyly

Mks1 KO: 259 amino acid deletion
resulted in craniofacial defects,
polydactyly, congenital heart

defects, polycystic kidneys and
randomized left-right patterning,
quite similar to the human MKS1

phenotype [76]

Mulibrey nanism (MUL) 253,250

Multi-organ disorder with
prenatal onset growth failure,

cardiomyopathy, characteristic
craniofacial features, infertility,
insulin resistance with type 2
diabetes and an increased risk

for tumors

Trim37 KO: recapitulates several
features of the multi-organ
human disorder, including
infertility, increased risk for

tumors, fatty liver and
cardiomyopathy [77]

Ovarian
dysgenesis 1

(ODG1)
233,300

Hypergonadotropic
hypogonadism with poorly
developed streak ovaries in

females and smaller testes and from
low to normal sperm

counts in men

Fshr KO: recapitulates human
phenotype quite well; females

have small ovaries due to a
blockage of folliculogenesis, and

male mice have smaller testes and
reduced sperm counts [78–80]

PEHO syndrome 260,565

Early infancy-onset hypotonia,
delayed psychomotor development,

infantile spasms, optic
atrophy, progressive atrophy

of the cerebellum and
brainstem, dysmyelination

and profound mental retardation

N/A
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Table 2. Cont.

Disease OMIM Disease Manifestation Mouse Model Model Utility

Polycystic
lipomembranous

osteodysplasia with
sclerosing

leukoencephalopathy 1
(PLOSL1)

221,770

Adult-onset disorder of bones and
central nervous system,

leading to early dementia
and death

Tyrobp KO: recapitulates
skeletal and psychotic

characteristics of
PLOSL1 [81]

Promising drug
therapy testing

conducted using Tyrobp
KO mice [82]

RAPADILINO
syndrome 266,280

Radial and patellar aplasia, cleft or
highly arched palate,

diarrhea, dislocated joints,
small size and limb

malformations, long slender
nose, cancer predisposition

and normal intelligence

Recql4 ex 5-8 KO: embryonic
lethality; Recql4 ex 13 KO: neo-

and postnatal lethality with
growth retardation, skin, hair

and bone
defects; Recql4 ex 9-13 KO: palate

and limb defects and cancer
predisposition [83–85]

Retinoschisis
(RS1) 312,700

X-linked childhood-onset
reduced visual acuity due to
retinal dystrophy leading to
retinoschisis (splitting) of the
neural retina in affected men

Rs1 KO: not exactly
recapitulating the human
phenotype as disrupted

organization of the retina was
in all cell layers [86]

Successful gene
replacement therapy in

KO model [87], and
dorzolamide

treatment improved
morphological features

in 6 of 7 patients [88]

Salla disease
(SD) 604,369

Hypotonia and delayed
development in infancy, cerebellar

ataxia, progressive cerebellar atrophy
and dysmyelination leading to

mental retardation; viscero-
megaly and coarse features,

enlarged lysosomes and high
amounts of free sialic acid

excreted in the urine

Slc17a5 KO: recapitulates
hypomyelinating and

lysosomal accumulation
phenotype in CNS; in
addition to premature

death, poor coordination
and seizures [89,90]

Tibial muscular
dystrophy

(TMD)
600,334 Late adult-onset tibial

muscular dystrophy

Ttn KO: embryonic or postnatal
death; Ttn muscle-specific KO:

adolescent death [91,92]

Usher syndrome,
type III
(USH3)

276,902

Post-lingual,
progressive hearing loss

and loss of central
visual acuity later in life

Clrn1 KO: phenocopies
early onset hearing loss,

but not visual
impairment [93,94]

Transgene strategy used
for possible therapeutic
intervention for Usher

syndrome [94]

* Currently under consideration for FDH. KO (IMPC): mouse knockout has been generated by the International Mouse Knockout Consor-
tium, and preliminary screening has been performed by the International Mouse Phenotyping Consortium (https://www.mousephenotype.
org, accessed on 25 September 2021), but no scientific publication exists yet. CNS: central nervous system; KO: knockout; N/A: not available.

The selected FDH diseases and their animal model statuses are discussed in detail
in the following section. These examples were chosen to highlight the great variation in
disease manifestation and underline the importance of disease-specific knock-in mouse
models for advancing knowledge on the molecular networks involved in normal develop-
ment, physiology and disease pathogenesis. Specific attention was given to diseases with
possible advances or suitability in preclinical treatments (AGU and HOGA), with severe
developmental complications leading to devastating death of the fetus (HLS1), with severe
infancy- or childhood-onset neurodegenerative storage disorders (Northern epilepsy and
Salla disease) and with complex symptom spectrums (CHH and LCHAD). As exemplified
below, strategies to generate and utilize in vivo models that faithfully genocopy their
disease-specific variants and phenocopy major FDH disease symptoms are needed.

2.1.1. Aspartylglucosaminuria (AGU)

AGU (OMIM 208400) represents one of the rare FDH diseases that has been sub-
jected to some treatment strategies and preclinical development (see below). AGU is a
recessive neurodegenerative disease which is characterized by progressive intellectual dis-
ability, skeletal and connective tissue abnormalities, behavioral changes (e.g., hyperactivity,
tantrums and violence) and disruptive sleep patterns followed by premature death, usually

https://www.mousephenotype.org
https://www.mousephenotype.org
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before the age of 50 [95–98]. Developmental delay is the first typical sign of neurological
defects, which become evident at 15–18 months of age. Children may manifest macro-
cephaly and early growth spurts in the infantile phase, but adult affected individuals end
up having small brains and lower than average heights [99–103].

AGU is the most common autosomal recessive disease in Finland, and its prevalence
is 1.7–5 per 100,000 live births [101,104]. AGU is caused by defects in the lysosomal
aspartylglucosaminidase (AGA) enzyme. The AGUFin major variant, which consists of
two nucleotide changes (c.482G > A and c.488G > C), covers 98% of cases in Finland,
while the AGUFin minor variant (two base pairs deleted) is causative for 1.5% of the
cases [105–107]. Although being enriched in Finland, AGU affects all ethnicities, and
approximately 40 different AGA variants have been identified worldwide (A. Banning and
R. Tikkanen, personal communication). Roughly half of the variants are missense mutations,
while the rest represent many different aberrations without proper understanding of the
genotype–phenotype causalities [98]. Notably, recent findings have demonstrated several
patients with high residual AGA activity and a milder phenotype [108]. This is an important
finding for development of treatment options, since it means that even less than 50% AGA
activity (i.e., the carrier level) may result in a significant improvement of the phenotype.

The pathogenic AGA variants result in decreased AGA activity [109–112]. This causes
a failure to break down the N-glycosidic bond of glycoproteins and leads to the progressive
accumulation of AGA substrates, including glycoasparagine in lysosomes [113]. The KO
mice of Aga recapitulated the biochemical defects of AGU, as glycoasparagine accumulation
was evident in the studied tissues, but the model failed to manifest the early onset and
progressive nature of specific disease symptoms [24,25].

Although there are no approved curative therapies currently available for AGU, some
disease-modifying strategies have been and are currently being tested. Enzyme replace-
ment therapy was shown to work in human cells and preclinical KO mouse models but has
not been transferred to clinical trials, due to challenges in the required large-scale protein
production and concerns for the blood–brain barrier transport [29,30,114,115]. Adenoviral
gene therapy in Aga KO mice restored the enzyme activity [116,117]. The latest experi-
ments with serotype-specific adeno-associated viral vectors safely targeting the central
nervous system (AAV9) alleviated the neurological phenotype of Aga KO mice [26] and
suggested clinical translatability due to good adherence with the dosage and blood–brain
barrier transport requirements. Hematopoietic stem cell transplantation as a potential
treatment of AGU showed promising results in the Aga KO mice but failed to improve the
neuropsychologic and other clinical symptoms of AGU in clinical trials [114,115,118,119].
While promising, it is possible that previous enzyme replacement and gene and stem cell
transplantation preclinical trials provoked unmerited hope due to the use of an inappropri-
ate KO mouse model, which does not recapitulate the disease pathomechanisms caused by
misfolded AGA protein.

Currently one AGU treatment option being tested is pharmacological chaperone
therapy, which aims at facilitating proper folding of the mutant AGA protein. It can restore
AGA activity in patient-derived fibroblasts and is currently in phase I or II clinical trials
for efficacy and safety testing [108] (clinical trial). Of note, this clinical trial is conducted
without preclinical animal testing because the Aga KO mouse is not a suitable model for
this type of therapeutic strategy, and animal testing is not required for drug repurposing
with approved agents such as anhydrous betaine (Cystadane), the chaperone used for
AGU treatment, which is already approved for the treatment of homocystinuria. Important
for future studies of targeted therapies in AGU is that a mouse model mimicking human
disease-causing variant(s) is still lacking but would be highly desirable to facilitate drug
development.

2.1.2. Cartilage Hair Hypoplasia (CHH)

CHH (OMIM 250250), originally described by McKusick et al. in 1965, is metaphyseal
chondrodysplasia characterized by a short stature, sparse hypoplastic hair and immune



Cells 2021, 10, 3158 11 of 24

deficiency. Patients with CHH may also suffer from gastrointestinal dysfunctions, anemia
and impaired spermatogenesis [120–122]. Especially due to malignancies and diseases of
the respiratory system, patients with CHH have an increased risk of early mortality [123].
CHH is enriched among the Old Order Amish and Finnish populations, and the incidence
in Finland is 1 in 23,000 births [124]. CHH is caused by defects in the long non-coding
RNA gene known as RMRP [125]. The most common pathogenic variant is n.71A > G
(previously known as n.70A > G) substitution, representing 92% of the disease-causing
variants among Finnish CHH patients and also being the most frequent, if not the only one,
in the Amish population [126,127].

RMRP encodes the RNA component of mitochondrial RNA processing endoribonucle-
ase. It has well-characterized roles in many cancers, possibly due to its recently recognized
function to inhibit p53 [128,129]. The RMRP KO mouse model indicates that it is essential
for early embryonic development, as homozygous null mice die in utero [31]. Due to
the missing mammalian CHH model, the pathophysiological mechanisms leading to the
disease symptom spectrum remains poorly understood.

2.1.3. Hydrolethalus Syndrome 1 (HLS1)

HLS1 (OMIM 236680) is a lethal disease with multiple developmental anomalies at
the fetal stage, and it leads to stillbirth or death of the affected child soon after birth. The
characteristic findings of HLS1 in the central nervous system are hydrocephalus, missing
midline structures of the brain and a keyhole-shaped foramen magnum [130–132]. The
incidence of this syndrome is 1 in 20,000 births in Finland [133–135]. Patients with similar
or somewhat milder clinical features have also been reported outside Finland [133,136–138].
However, no causative variants have been confirmed in these cases.

An autosomal recessive variant of the HYLS1 gene carrying the c.1416A > G transition
has been identified as the disease-causing variant in HLS1. This A-to-G nucleotide transi-
tion in exon 6 leads to substitution of the conserved aspartate-211 to glycine (p.D211G) in
the HYLS protein [139]. Hydrolethalus syndrome 2 (HLS2, OMIM 614120) has similar fea-
tures to HLS1, but the causative variant resides in the KIF7 gene [134]. Both HLS1 and HLS2
belong to primary ciliopathies, a diverse spectrum of neurodevelopmental disorders [135].

HYLS1 encodes centriolar- and ciliogenesis-associated protein, which has been shown
to play an important role in ciliogenesis in Caenorhabditis elegans and Drosophila
melanogaster [140–142]. In vitro studies on human-derived cells and the examination of tis-
sues from aborted HLS1 fetuses suggest that HYLS1 is a transcriptional regulator essential
for fetal development [143]. However, the exact cellular and molecular mechanisms behind
severe malformations of the brain and other organs in HLS1 are yet unknown.

Currently, there are no publications on mouse models lacking HYLS1 or replicating the
disease-causing variant of HLS1. The severity of the syndrome and the utmost significance
of HYLS1 protein to fetal development highlight the importance of further studies to
advance our knowledge on molecular networks involved in embryo development both in
health and disease.

2.1.4. Hyperornithinemia with Gyrate Atrophy of the Choroid and Retina (HOGA)

HOGA (also known as GACR, OMIM 258870) is a rare autosomal recessive disorder
characterized by progressive chorioretinal degeneration showing clinical symptoms during
the first and second decades of life. It leads to visual impairment and blindness in adoles-
cence or adulthood and early cataract formation, and it also often leads to neurological
abnormalities and type II muscle fiber atrophy [144,145].

HOGA has an estimated global incidence of 1 in 1,500,000, being the highest in
the Finnish population with an incidence of 1 in 50,000 [145,146]. This rare genetic dis-
ease is caused by defects in the ornithine-degrading mitochondrial enzyme, ornithine
delta-aminotransferase (OAT, OMIM 613349), which leads to hyperornithinemia in the
plasma [144]. To date, more than 60 variants have been identified in the OAT gene that
cause HOGA, 90% of which account for missense or frameshift changes [145]. From all the
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different variants, the C-terminal domain leucine-402 to the proline variant (L402P) and
the catalytic site variant arginine-180 to the threonine (R180T) are the most frequent ones
among the Finnish population [145].

The OAT enzyme function is bidirectional; in the early neonatal period it is more
active in ornithine production, but later, this is reversed. Therefore, the adolescence-onset
clinical HOGA manifestation can be delayed by a rigorous arginine-restricted diet, since
this amino acid is the main source of ornithine. Several of the human variants have
only been studied in patient-derived cells, human cell lines or in yeast [147–149]. In
addition, there are two mouse models available for studying the function of the Oat and
HOGA disease: a full KO line (Oattm1Dva) and a mouse line with a spontaneous recessive
mutation, called retarded hair growth (Oatrhg), that harbors glycine-353 to alanine (G353A)
substitution in OAT protein [150]. Studies with KO mice showed that the loss of Oat leads
to neonatal lethality due to hypoornithinemia and subsequent arginine synthesis failure
in the small intestine [66]. Notably, neonatal lethality has not been observed in HOGA
patients, although one asymptomatic individual was reported to have transient neonatal
hypoornithinemia. This suggests that in human infants, the biochemical phenotype might
be similar, albeit milder than in KO mice. The neonatal lethality observed in KO mice can
be rescued by arginine supplementation, and adult mice develop hyperornithinemia and
retinal degeneration comparable to humans. The Oatrhg mice model the classical gyrate
atrophy disease with chorioretinal deterioration and hyperornithinemia [151].

Despite the existence of two mouse models, the HOGA pathogenesis and the exact
molecular mechanism of the different OAT variants remain elusive, which reflects the
current lack of treatments. This highlights the necessity for generating animal models that
recapitulate the human variants to facilitate understanding of the HOGA disease and the
development of efficient therapies.

2.1.5. Northern Epilepsy (EPMR)

Northern epilepsy (progressive epilepsy with mental retardation (EPMR), OMIM
610003) is a neurodegenerative storage disease and a form of neuronal ceroid lipofuscinosis
(NCL) [152]. The disease onset is at 5–10 years of age and marked by the appearance of
generalized tonic-clonic seizures. The frequency of epileptic seizures increases toward
puberty, after which the epileptic activity decreases. Mental deterioration is typically
observed 2–5 years after the onset of epilepsy, and it is progressive despite the decline
in the frequency of epileptic seizures toward adulthood. Other features associated with
Northern epilepsy are pubertal behavioral difficulties as well as problems in fine motor
tasks and equilibrium [153]. Progressive brain atrophy [147] and the accumulation of
lipopigment in the cytoplasm of neurons and other cell types are observed at the tissue
level [152].

Northern epilepsy is caused by a missense variant (c.70C > G) in the CLN8 gene
encoding the CLN8 transmembrane ER and ERGIC protein [154], which is involved in
the transport of newly synthesized lysosomal enzymes from the endoplasmic reticulum
(ER) to the Golgi apparatus [148]. This pathogenic variant results in arginine to glycine
substitution at amino acid 24 (R24G) of CLN8 [154]. While the variant causing Northern
epilepsy has only been found in the Finnish population, other pathogenic variants in CLN8
have been found elsewhere with different NCL disease phenotypes (OMIM 600143). In
addition to its role in the ER for Golgi trafficking of lysosomal enzymes, CLN8 has recently
been suggested to function in the regulation of endo-lysosomal dynamics and dendritic
morphology [149].

Motor neuron degeneration (mnd) in mice, caused by spontaneous mutation in Cln8, is
the most characterized murine model for CLN8 deficiency. This naturally occurring variant
(c.267–268insC at codon 90 of Cln8) results in frameshift mutation and a premature stop
codon [154]. While the Cln8mnd/mnd mouse recapitulates many NCL features [57,155], the
genotype, intracellular targeting and some of the phenotypic features do not correspond to
those observed specifically in Northern epilepsy [156–158]. Recently, AAV9 gene therapy
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was tested in Cln8mnd mice, with promising NCL-alleviating results [58]. To date, no specific
KI models of Northern epilepsy have been published.

2.1.6. Salla Disease (SD)

Salla disease (OMIM 604369) is a slowly progressing neurodegenerative lysosomal
sialic acid storage disorder. Its first clinical signs, such as muscular hypotonia, ataxia,
transient nystagmus and retarded motor development, are usually observed during the
first year of life. The life expectancy of the patients is considered to have slightly decreased.
The severity of the clinical manifestations may vary, but all patients are intellectually dis-
abled [159], and characteristic MRI findings include delayed myelination in the brain [160].
Salla disease manifests with the accumulation of sialic acid in lysosomes due to deficient
sialic acid transportation out of the lysosomal membrane, and one of the key clinical
characteristics of the patients includes excessive amounts of secreted sialic acid in their
urine [159].

Salla disease and other related and often more severe sialic acid storage diseases
(SASD) are caused by pathogenic variants in the SLC17A5 protein, which functions as
a sialic acid transporter in lysosomes [161]. Most of the Finnish Salla disease patients
are homozygous for missense variant R39C [162]. SLC17A5 also has nitrate transporter
activity [156], and the extralysosomal localization in the CNS indicates that it may have
other functional roles in addition to lysosomal sialic acid transport [163].

The SLC17A5 gene is highly conserved across species. The mouse Slc17A5 sequence
is an 86.26% match with its human ortholog (Ensembl release 104, May 2021 [164]). The
Slc17A5 KO mouse model has a severe hypomyelination phenotype leading to death after
3 weeks of life [89,90]. Even though the KO phenotype in mice resembles a human disease
in the terms of hypomyelination and lysosomal accumulation, the short life span and
total loss of the protein do not facilitate studies of the disease mechanisms that could be
causative for human patients. Different SLC17A5 variants cause different disease pheno-
types, varying from mild to severe due to the amount of residual functional activity [162].
Interestingly, SLC17A5 variants have also been recognized as candidates for Parkinson’s
disease susceptibility genes [165]. Therefore, specific KI mouse models that recapitulate
the phenotype of Salla disease are needed to better understand the versatile functions of
the SLC17A5 protein and pathogenetic processes behind the phenotypic spectrum.

2.1.7. Evolving FDH: An Example of Long-Chain 3-hydroxyacyl-CoA Dehydrogenase
Deficiency (LCHAD)

Although the definition for FDH has remained the same for decades, new diseases
have been identified and are constantly included in this definition. One of the diseases
currently under consideration for FDH is long-chain 3-hydroxyacyl-CoA dehydrogenase
deficiency (LCHAD, OMIM 609016), which is a mitochondrial disorder of long-chain
fatty acid oxidation characterized by infancy- or early childhood-onset metabolic acidosis,
hypoketotic hypoglycemia, hypotonia, liver dysfunction, cardiomyopathy and arrhyth-
mias [157,158]. Other symptoms of LCHAD deficiency include later-onset chronic periph-
eral neuropathy and pigmentary retinopathy. Furthermore, LCHAD deficiency carriers
have an increased risk of pregnancy complications, including acute fatty liver; hemolysis,
elevated liver enzymes and low platelets (HELLP) syndrome; and pre-eclampsia [166–168].
Treatment of LCHAD deficiency comprises a low-fat and high-carbohydrate diet, as well
as avoidance of fasting. To obviate the fasting period during the nighttime in infants and
small children, a nasogastric tube or gastrostomy is beneficial. During metabolic stress, like
infections such as gastroenteritis, an infusion of intravenous glucose is used [169].

LCHAD deficiency in Finland is typically caused by the c.1528G > C founder muta-
tion in the hydroxyacyl-coenzyme A dehydrogenase trifunctional multienzyme complex
subunit alpha (HADHA) gene encoding the α-subunit of the mitochondrial trifunctional
protein (MPT) complex. The missense variant leads to the substitution of glutamate-510 to
glutamine (E510Q) [170]. This results in the accumulation of long-chain 3-hydroxy fatty
acids and long-chain 3-hydroxyacylcarnitines in the patients’ tissues, but the damaging
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mechanisms causing the spectrum of symptoms manifesting at very different stages of life
are not fully understood [171,172]. Early studies suggested that defects in mitochondrial en-
ergy metabolism might underlay the skeletal muscle defects, and this has been supported
by in vitro studies with mitochondria isolated from rat skeletal muscle [173–175]. Ho-
mozygote Hadha KO mice with exon 15 deletion are reported to result in either early
postnatal or embryonic lethality, while heterozygosity leads to hepatic steatosis at a
young age (3 months) and hepatocellular carcinoma without cirrhosis at an older age
(>13 months) [70,176].

Although dietary restrictions such as prevention of fasting and supplementation of
carbohydrates and medium-chain triacylglycerols, together with acute infection avoidance,
form the basis of LCHAD deficiency management, they insufficiently protect patients from
long-term adverse effects. Better in vivo understanding of the consequences of metabolite
accumulation in different tissues is needed to improve the life quality and expectancy of
LCHAD deficiency patients.

3. Conclusions

For practical and ethical reasons, model organisms have been used as simplified
models of humans to study the genetic, molecular and physiological basis of complex traits
and to find therapeutic targets for human diseases [4]. At the same time, the use of animal
experiments is ethically controversial and needs to be thoroughly justified. Non-animal
approaches, based mainly on cell or tissue culture and in silico computational methods,
may help to reduce the number of animals used for experimentation and predict clinical
outcomes in a limited manner. Many rare hereditary diseases have a multi-organic clinical
presentation. Cell and organ culture or computational models are incapable of modeling
such biological complexity. Thus, deciphering the physiological functions, pathological
processes and interactions between tissues necessitates the use of the whole organism.
Consequently, mouse models continue to have a crucial role in biomedical research as well
as drug discovery and development [177].

Although traditional KO mice have been valuable tools for studying gene functions,
in many cases, the use of full inactivation of gene function has not successfully modeled
the human monogenic diseases caused by point mutations in the corresponding gene
(Table 2). The accurate recapitulation of disease-causing variants in mice could be the
key to providing valuable tools for studying rare diseases. In recent years, the clustered
and regularly interspaced palindromic sequences and CAS9 endonuclease (CRISPR/Cas9)
genome editing technique have significantly improved the efficiency of generating animal
models and been proven especially useful for the generation of point mutation models. In
addition, CRISPR/Cas9 technology may alleviate some of the ethical concerns of animal
use, especially during model creation. The three Rs principle—replacement, reduction and
refinement [178]—could be tackled in several ways when using the CRISPR/Cas9 method,
which increases the precision in genome editing and may help to refine and reduce mice,
especially when generating complex models or engineering a mutation to the existing
mutant background [179].

Importantly, in addition to providing valuable tools for diagnostic, prognostic and
therapeutic strategies for rare diseases, precision mouse models facilitate our understand-
ing of the pathomechanisms in the more common diseases affecting the same signaling
pathways or cell and tissue types. A good example of this is a rare inherited Tangier
disease, named after the location in which it was initially discovered and characterized
by significantly reduced levels of high-density lipoproteins (HDLs) in the blood. Tangier
disease is caused by a mutation in the ABCA1 gene encoding the ATP-binding cassette
transporter A1 (ABCA1), leading to impaired cholesterol efflux capacity. Research on
Tangier disease and ABCA1 has had a tremendous impact on the understanding of HDL
cholesterol metabolism and atherosclerosis [180,181]. Furthermore, the involvement of
ABCA1 has been demonstrated in the pathophysiology of Alzheimer’s disease, for which
it is now studied as a novel therapeutic target [182].
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Owing to pioneer work by clinicians and geneticists working with FDH patients, the
clinical implications and the genetic etiologies of the FDH are well known. However, the
consequences of pathogenic variants and their contribution to disease progression at the
molecular, cellular and tissue levels remain to be resolved for many diseases. CRISPR/Cas9
technology now allows the generation of disease models for the FDH with exact correspon-
dence of disease-causing human variants in the mouse genome. From a total of 36 FDH
diseases, 8 completely lack a mouse model, and in 14 diseases with the existing mouse
model(s), only part of the disease symptoms is recapitulated (Tables 1 and 2). In 2020, the
corresponding authors of this review established a national FinnDisMice research consor-
tium with the aim of generating mouse models that recapitulate the human disease-causing
variants of the equivalent disease. The overall goal of this effort is to facilitate understand-
ing of the disease pathomechanisms, provide preclinical tools for the development of novel
treatment strategies and increase understanding of the molecular mechanisms behind
similar common diseases, such as amyotrophic lateral sclerosis (ALS), Parkinson’s disease
and other degenerative disorders.

Future technical developments in genome engineering will likely simplify the gen-
eration of humanized mouse models, with whole mouse genes substituted with human
orthologs with or without disease-causing mutations [183]. Humanized models would
be especially useful in the cases where there is low homology between the mouse and
human orthologs, as well as in therapeutic development. Humanizing whole genes can
be performed either by replacing the mouse gene with the human protein coding region
and intervening introns or by excluding some or all the introns to reduce the size of the
genomic fragment to be inserted. However, the latter option can result in unexpected
surprises, such as in splicing [183]. Thus, when humanizing entire genes, the size of the ge-
nomic fragment inserted tends to be dozens or even hundreds of kilobases. The traditional
targeting via homologous recombination in mouse ES cells is very inefficient, especially
for inserting such long sequences. CRISPR/Cas9 in combination with the vectors accept-
ing large genomic inserts (bacterial artificial chromosomes (BACs)) or single-stranded
oligodeoxynucleotides has been proven to improve the targeted insertion of human TERT
and SIRPA genes [184,185]. With the use of CRISPR/Cas9, the generation of humanized
mice has become easier; however, it is still far from routine work. The current and future
developments in the technique are likely to provide easier and more efficient ways of
humanizing mice. While waiting for those technical advances, point mutation models of
monogenic diseases provide a great preclinical tool for a wide research community.

Interestingly, a recent work with so-called “wildling” mice revealed that C57Bl/6
laboratory mice, which represent a much-used wild type strain where genetic engineering is
carried out, with natural microbiota and pathogens phenocopy human immune responses
better than the normally used pathogen-free C57Bl/6 mice [186]. Wildling mice were
generated by transferring C57Bl/6NTac embryos into the oviducts of wild female mice.
The resulting wildling mice had bacterial microbiomes in the gut, skin and vagina similar to
those of wild mice, and the microbiota remained stable during several further generations
(tested until F5 generation). Using a similar strategy in genetic manipulations could provide
better translational value for precision medicine mouse models, especially in the cases
where disease pathomechanisms involve the immune system (CHH) or neurodegeneration
(Northern epilepsy and Salla disease).

Animal studies remain indispensable for understanding the complex biology and
physiology of living organisms, and many regulatory authorities require them as a safety
checkpoint in testing new treatments, whether based on drugs, genetic solutions or regener-
ative processes. Additionally, animal-based research often plays a crucial role in providing
new insight into the understanding of diseases, associated pathologies and the identifica-
tion of targets to which the treatment is directed [6]. Thus, animal experiments remain the
best—but yet imperfect—model to predict and characterize human diseases [187].
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