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Abstract—Biopotentials including Electrocardiography (ECG),
Electromyography (EMG) and Electroencephalography (EEG)
measure the activity of heart, muscles and brain, respectively.
They can be used for noninvasive diagnostic applications, assis-
tance in rehabilitation medicine and human-computer interac-
tion. The concept of Internet of Things (IoT) can bring added
value to applications with biopotential signals in healthcare and
human-computer interaction by integrating multiple technologies
such as sensors, wireless communication and data science. In
this work, we present a wireless biopotentials remote monitoring
and processing system. A prototype with the case study of facial
expression recognition using four channel facial sEMG signals is
implemented. A multivariate Gaussian classifier is trained off-
line from one person’s surface EMG (sEMG) signals with four
facial expressions: neutral, smile, frown and wrinkle nose. The
presented IoT application system is implemented on the basis of
an eight channel biopotential measurement device, Wi-Fi module
as well as signal processing and classification provided as a Cloud
service. In the system, the real-time sEMG data stream is filtered,
feature extracted and classified within each data segment and the
processed data is visualized in a browser remotely together with
the classification result.

Keywords—Biopotentials, sEMG, Healthcare Internet of
Things, Remote Patient Monitoring, Facial Expression Recog-
nition.

I. INTRODUCTION

Facial expression recognition is studied across several fields
such as human emotional intelligence in human-computer
interaction to help improving machine intelligence, patient
monitoring and diagnosis in clinical treatment. For instance,
users’ spontaneous facial expressions can be taken as indicator
when they are confronted with computer-related issues and be
used to show students’ reaction in educational game [1, 2].
In clinical applications such as pain assessment, facial expres-
sions are considered as behavioral signs of pain in patients
regardless of their age [3]. Facial surface Electromyography
(sEMG) is the electrical potential generated by muscle cells
and captured by surface electrodes. It has high temporal
resolution and sensitivity in detecting facial muscle activities.
Compared with facial image processing method, the superi-
ority of facial sEMG method is its unconstraint by lighting
condition and head pose as well as its potential for wearable
or portable devices [4].

Remote patient monitoring is an emerging application in
healthcare exploiting from the concept of Internet of Things

(IoT) and body area network, where sensors and things are
connected to the network thanks to the recent advancements
in information and communication technology. Biopotentials
such as Electrocardiography (ECG), EMG and Electroen-
cephalography (EEG) in a real-time remote monitoring system
need to be processed after acquisition. Signal processing with
biopotentials includes power line interference, baseline drift
and movement artifact denoising, and feature extraction in time
domain or in other domains. Machine learning can be also
added to enhance machine intelligence according to applica-
tion requirements. In a typical IoT platform consisting of smart
device (sensors) layer, Fog (smart gateways) layer, and Cloud
layer, biopotential signals can be potentially processed on any
of these layers, or collaboratively on more than one layer
depending on the complexity of the demanded computation.
However, for computationally intensive applications, Cloud is
more preferred.

There are various methods for classification and biopotential
signal processing which include signal transformation so as
to explore lower information loss as well as more diverse
feature extraction and higher classification performance. For
instance, wavelet analysis is widely applied on denoising and
feature extraction. However, biopotential signal processing
together with classification is generally implemented on an
off-line computer using datasets rather than in an on-line
fashion on data streams such as multiple channel sEMG
where high data-rate is demanded for a remote IoT-based
health monitoring system. Thus, we not only integrate high
data-rate biopotential measurement devices into our IoT-based
system, but also employ on-line biopotential signal processing
and classification. Only essential extracted information and
classification result are visualized for end-users.

In this paper, we present a remote facial expression moni-
toring system which i) acquires multi-channel high data-rate
facial sEMG signals, ii) utilizes Wi-Fi wireless communication
to transfer data streams, and iii) exploits Cloud computing
for heavy signal processing. In our platform, four channels of
unipolar sEMG signals are gathered to differentiate four pre-
set facial expressions, and a multivariate Gaussian classifier is
trained for data streaming classification. The architecture and
implementation of the system can be also reused for other ap-
plications requiring multi-channel biopotential measurements
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with a comparatively high data rate. In summary, our main
contributions are as follows:

• proposing a multi-channel biopotential IoT-based remote
monitoring system with Cloud-based signal processing

• demonstrating the full system in a prototype on a case
study of facial expression recognition with sEMG signals

The rest of this paper is arranged as follows: In Section
II, we summarize the general sEMG acquisition and pro-
cessing procedures and review some former studies on facial
expression recognition system and sEMG remote monitoring
system; Section III first introduces the proposed architecture
then explains its main components and the data transmission
flow in it; Section IV presents our implementation based on
the architecture; In the end, Section V concludes the paper.

II. RELATED WORK

sEMG signal pattern recognition is studied in facial ex-
pression recognition with facial sEMG as well as hand ges-
ture recognition with sEMG from upper limb muscles. They
both have great potentials in the human-computer interaction
field and have been utilized in different applications such
as myoeletrical control system (e.g., prosthesis control). In
most cases, sEMG signals are sampled, amplified, denoised,
and segmented, then, features are extracted as inputs to a
classifier. Some sEMG features in time and frequency domains
are summarized in [4], among them, features such as mean
absolute value and root mean square (RMS) are extensively
used because of their computational simplicity and high clas-
sification performance in general.

Gibert et al. [5] employ eight channel bipolar facial sEMG
to discriminate the facial expressions of six basic emotions
from a test subject. The feature for classification is the
envelope values derived from the absolute value of sEMG
signal. Six Gaussian models are built for each expression and
are tested for 92% average recognition rate. The sEMG data
is collected by using commercial devices and software. They
conclude that this system will be capable of delivering real-
time recognition response, if simple and light-weight computa-
tions (without segmentation) are employed. However, because
of using unsegmented data as an input to the classifier, there
is too much jitter in classification outputs. Broek et al. [6] use
three channel biopolar facial sEMG plus electrodermal activity
to classify four emotion states: neutral, positive, negative and
mixed. Data is recorded from 21 people and the classification
reaches an upper correctness of 61.31% among several clas-
sifiers including k-nearest neighbors, support vector machines
and artificial neural networks with features of mean, absolute
deviation, standard deviation, variance, skewness, and kurtosis.

Regarding remote real-time sEMG data monitoring, Atten-
berger et al. [7] present a setup for transmission and visualiza-
tion of sEMG data on a tablet PC. They utilize a commercial
EMG system for gathering one channel sEMG data at 1kHz
from forearm. Then the data is transmitted using an Aruidno
Uno board with an Ethernet shield to an iPad via an access
point. Finally, sEMG data and the corresponding extracted
features are visualized on a specific iPad application. In this

TABLE I
PAIN RELATED FACIAL MUSCLES AND FACIAL ACTION UNITS

Facial muscle Facial Action Units
Corrugator Brow lower

Orbicularis oculi
Lids tighten
Cheek raise
Eyes closed

Levator
Nose wrinkle
Upper lip raiser
Eyes closed

Zygomaticus Lip corner pull

system, raw and processed sEMG signal can be monitored
remotely, however wireless communication is not provided and
the device is not portable. Moreover, they applied threshold
based approach to recognise two hand gestures where it
can be better classified and recognised if classification based
approaches are adopted.

With the aim of providing a wireless system for health-
care environments, Kobayashi introduces a universal interface
which together with electrodes and a wireless module is used
for collecting bio-signals (e.g., ECG, EMG) and transmitting
the signals to a computer via ZigBee protocol [8]. Even
though the approach is efficient in terms of cost and real-
time response, it can handle only a single EMG channel as
the maximum bandwidth is about 22kbps. Another approach
called VAMPIRE-BAT is also based on Zigbee protocol for
transmitting EMG data [9]. The system provides several ben-
efits such as low cost, small, and light-weight implementation,
and on-line parameter adjustment. However, the system only
supports up to 22kbps per channel and it handle a single
EMG channel in maximum. The aforementioned ZigBee-based
systems are targeted and designed for data acquisition and
wireless transmission for a miniaturized single device, and
they do not focus on on-line signal processing and data
analysis. It should be also mentioned that in the Internet-
of-Things era, devices are supposed to be connected (often
in a 24/7 fashion) to Internet in a way that the extension
of the conventional Internet is realized. This necessitates to
follow Internet Protocol (IP) and be compatible with the
IP-based networks. That is the reason why either IP based
protocols such as 6LoWPAN or Wi-Fi is preferred, or protocol
conversion from non-IP-based protocols (e.g., ZigBee) to IP-
based protocols is needed at gateways. This is another factor
which differentiates the aforementioned ZigBee-based systems
with our IoT-based platform.

III. SEMG SIGNAL AQUISITION, PROCESSING AND
PATTERN TRAINING

As a part of work for facial expression recognition, pain
expressions are chosen for a case study and four pain expres-
sions related facial muscles are the sEMG inputs. The names
of muscles and the facial action units they dominate in adults
are listed in Table I. Electrodes are reduced in number by
utilizing unipolar configuration in amplifier to mitigate their
obtrusiveness on face. To capture facial muscle activities, pre-
gelled Ag/AgCl sensors are placed on four muscles on the



Fig. 1. sEMG signal processing and pattern training flow chart

left side of a face according to the human electromyographic
guidelines [10]. The common reference electrode is placed on
the bony area behind the left ear. Facial sEMG signals are
gathered when the person is with a neutral expression and
three facial expressions: smile, frown and wrinkle nose.

The steps to process sEMG data for training a classifier are
shown in Figure 1. sEMG signals are sampled from the four
channels at 1000 SPS. After the sampling, a 20Hz highpass
Butterworth filter and a 50Hz notch Butterworth filter are
applied to each signal to diminish the influence of artifacts
and power line interference coupled to lead wire. Before RMS
feature extraction and constructing a feature matrix, the data is
segmented into 200ms slices. The RMS features are extracted
using the following formula:

RMS =

√√√√ 1

N

N∑
i=1

x2i

A multivariate classifier is trained for expression classifica-
tion. Parameters of Gaussian distribution for each expression
are estimated from training data, i.e. the feature matrix. Then
the posterior probability of a given class c in the test data is
calculated for pattern recognition [11]. The equation below
is Bayes theorem for the univariate Gaussian, where the
probability density function of continuous random variable x
given class c is represented as a Gaussian with mean µc and
variance σ2

c .

P (c|x) ∝ 1

2πσc
exp

(
−(x− µc)

2

2σ2
c

)
P (c)

IV. SYSTEM ARCHITECTURE

The architecture of the proposed system is presented in
Figure 2. The system enables remote monitoring of bio-
potentials using a multi-channel biopotential measurement
device. The device is battery powered and transmits data to
Cloud wirelessly via the e-Health gateway. In Cloud, data is
processed and classified after which it can be shown to an end
user using a webpage or a dedicated Cloud-based application.

A. Data Gathering

Biopotential is a voltage produced by a tissue of the body,
particularly muscle tissue during a contraction [12]. For exam-
ple, ECG depends on measurement of changing potential in

Fig. 2. Data transmission flow in the system

contracting heart muscle and it is for heart activity monitoring.
Similarly, EMG and EEG are applied in the examination of
neuromuscular and brain activities, separately. Besides being
applied in clinical monitoring and diagnosis, biopotentials are
also widely applied in emerging human-computer interaction
when human beings’ hand gestures, affective states or brain
activity pattern are read and understood by a machine.

Although biopotentials are applied in different scenarios,
most of them need multiple channels of biopotentials as the
system input. To recognise facial expressions with sEMG
method, three to eight channels of sEMG signals are needed.
The requirement of the amount of electrodes varies in ECG
monitoring, which depends on ECG leads. There are 1-lead,
3-lead and 12-lead ECG and they need two electrodes, three
electrodes and ten electrodes, respectively [13]. While EEG
applications need the largest number of channel which can be
as large as 35 or even more [14]. The sample rate of each
biopotential channel when being digitalized is usually at least
250 SPS. For sEMG signal, the sample rate less than 1000
SPS may irreparably distort the signal due to aliasing [15].

B. Data Transmission

Data transmission plays an essential role in IoT-based
applications in various fields. In healthcare applications, data
including environmental and bio-data is collected by sensor
nodes. This data, which can be raw data without any process-
ing, is transmitted via one or several wireless communication
protocols to a Cloud server through a wireless access gateway.
Then, the data can be accessed by end users such as medical
doctors or caregivers via a mobile application or a browser
[16]. As mentioned, data transmission in healthcare applica-
tions is carried our via a multitude of devices. Accordingly,
a possibility of invalid data during transmitting in the might
be elevated. The invalid data, which can be mismatch data
caused by network’s high latency, may cause serious impacts
on disease analysis and treatments. Therefore, with the view
of ascertaining data validity in terms of network’s latency, a
standard for e-heatlh data shown in Table II defined by IEEE
1073 (e.g. X73) [17, 18] is considered as a vital requirement.



TABLE II
REQUIREMENTS OF VARIOUS E-HEALTH SIGNALS DATA RATE AND

LATENCY

Bio-medical Signal Data Rate Latency
Heart Rate 80-800bps <1s
Blood Pressure 80-800bps <1s
Respiration 50-120bps <300ms
Accelerometer <100bps <300ms
ECG 4kbps per channel <250ms per channel
EMG 64 kbps per channel <15.6ms per channel
EEG 3kbps per channel s <350ms per channel

The standard includes requirements of vital e-health signals
such as heart rate, blood pressure, respiration, ECG, EMG, and
EEG. In this paper, with the intention of providing a real-time
EMG monitoring IoT-based system, those strict requirements
of e-health data are fulfilled. As mentioned, e-health data
in health monitoring IoT-based system cannot reach to end-
users without an assistance of a wireless communication
protocol such as Bluetooth Low Energy (BLE), Zigbee, Wi-
Fi or IPv6 over Low power Wireless Personal Area Net-
works (6LoWPAN) [19]. Each wireless protocol has particular
characteristics regarding to radio frequency, communication
distance, power consumption, and bandwidth as shown in
Table III [18, 20, 21]. For example, some protocols including
BLE and 6LoWPAN have a short communication range, low
transmission data rate but consume low power for data trans-
mission whilst some others such as Wi-Fi are utterly opposite.
Depending on a specific health monitoring application, a par-
ticular wireless communication protocol should be effectively
utilized. For example, an application for monitoring athlete’s
heart rate and posture does not require high transmission
data rate due to requirements and characteristics of heart rate
and accelerometer data. In meanwhile, the application must
have a capability of operating during a long period of time
with low energy consumption. Therefore, BLE should be the
most suitable candidate for this application. In contrast, the
proposed system’s main target is to monitor 8 EMG channel
signals which must be acquired and transmitted with high data
rate around 24KB/s per channel for achieving a high signal
quality. In addition, in a view of providing a system which can
support a multitude of wireless sensor nodes simultaneously,
there is a need of a wireless protocol offering high bandwidth
transmission. For these reasons, Wi-Fi is considered as the
most suitable protocol for our approach as well as other EMG
monitoring applications.

C. Data Processing and Result Visualization

For most of raw biopotential data, contaminated by the en-
vironment noise or human body movement are inevitable. One
common contamination source among biopotential signals is
power line interference, composed with 50Hz or 60Hz and its
harmonics. Another common noise source in ECG and EMG
is body movement that dominates low frequency part of the
signal. There are some other noise sources in EMG and EEG.
For example, EMG from limb muscles can be contaminated by
ECG signal and similarly, EEG can be contaminated by EMG

TABLE III
CHARACTERISTICS OF POPULAR WIRELESS COMMUNICATION PROTOCOLS

Protocol 6LoWPAN/Zigbee Wi-Fi (IEEE
802.11)

Bluetooth
Low Energy

Radio
Frequency 2.4GHz 2.4GHz 2.4GHz

Bandwidth 250Kbps 100Mbps 1Mbps
Range
(meters) 1-75 1-100 (typical) 1-100 (typical)

Topology Star, Mesh, Tree Tree Tree
Peak Current <15mA <300mA <15mA
Standby Cur-
rent 0.003mA 20mA 0.2mA

and ECG and ocular artifacts. Therefore, denoising is the basic
processing applied in biopotential signals. A variety of filters
from FIR or IIR, adaptive ones, to wavelet method can be
applied in terms of noise cancellation in order to improve
signal to noise rate. In addition to displaying biopotential
signals, many applications combine machine learning with
biopotential signal processing to achieve automated diagnosis
system or pattern recognition system. The signal processing
procedures are similar with the ones shown in Figure 1, where
feature or features are extracted from the segmented signals
for training or testing a classifier.

In a IoT-based system shown in Figure 2, there are several
options for implementing signal processing, in one part or
several parts separately from the embedded processor in the
biopotential measurement device, to a potential smart gateway
[22], to the Cloud. Although for supervised or unsupervised
learning, training is pre-established off-line, current machine
learning algorithms require less constrained computation re-
sources, which makes the Cloud as a proper candidate to
implement part or all of the signal processing and data
analysis. The data processing and analysis program can receive
streaming data by opening the User Datagram Protocol (UDP)
socket based on the port or service name.

V. IMPLEMENTATION AND RESULTS

When employing multivariate Gaussian classifier, as intro-
duced in Section III, 10 fold cross-validation is applied and the
classification accuracy is 82.4%. The scatter plot of the RMS
features of four expressions from one fold training dataset
with three of the four channels sEMG are shown in Figure
3. Each test dataset is combined by four expressions in the
sequence of neutral, smile, frown and wrinkle nose. Figure
4 presents the classification result from one test dataset. The
number on the y-axis in Figure 4 indicates the classification
result. From one to four, the number represents neutral, smile,
frown and wrinkle nose, respectively. It shows that there is
a classification error at the 41st data point where the frown
expression is misclassified as the neutral expression.

The prototype of the system is implemented as the block
diagram presents in Figure 5. There are five main parts
cooperating in it, they are multi-channel biopotential measure-
ment device with Wi-Fi data transmission, gateway, LabVIEW
in Cloud, Node.js server in Cloud and webpage for end



Fig. 5. System implementation block diagram
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Fig. 4. Classification result

users. In the prototype, ADS1299EEG-FE EVM daughter card
from Texas Instruments is used as the sEMG data gathering
device. The core of it is an 8-channel, 24-bit analog front
end for biopotential measurements. The sample rate of each
channel can be set between 250 SPS and 16 kSPS. Arduino
microcontroller is used to configure ADS1299 and read data
continuously through serial peripheral interface. Arduino Wi-

Fi shield, together with Aruidno Uno is utilized for transferring
data wirelessly to the access point. A laptop connected to
the Internet with Ethernet cable works as the Wi-Fi access
point and a desktop connected to Internet works as a Cloud
server. In the Cloud, data receiving and processing features
are built in LabVIEW virtual instrument where there are built-
in UDP and TCP/IP communication functions, together with
signal processing functions including several types of filters
and installable toolkit such as machine learning toolkit and
biomedical toolkit [23, 24]. The web socket runs as one part
of the node.js server, which is lightweight and can handle a
large number of simultaneous requests. It takes the processed
data from LabVIEW also through UDP protocol.

Figure 6 shows the front panel of the LabVIEW virtual
machine where sEMG data stream is processed and updated
every one second. Butterworth notch and highpass filters are
applied in every one thousand samples each channel. Applying
filters causes signal distortion with amplitude shooting up
in the front of every signal segment, so the RMS feature
extracted only from the last 600 filtered samples is classi-
fied. The presented signals are filtered sEMG signals from a
smile expression. Trained multivariate Gaussian classifier with
mean and covariance parameters is embedded in the virtual
instrument as MATLAB script nodes. Figure 7 illustrates the
web page for remote data visualization, which can display
the downsampled processed data stream and the classified
expression result. The data and information is updated every
one second.

VI. CONCLUSION AND FUTURE WORK

In this paper, we implemented a IoT-based remote multi-
channel biopotential monitoring system with supervised ma-
chine learning. The biopotential measurement device is
portable with wireless data stream transmission. Four channel
biopotential measurements are taken according to the ap-
plication requirement. However, current system can support
wireless data transmitting and on-line processing for the full
eight channels with bytes transmitting at a data rate of 24KB/s.
The system can also work for other multi-channel biopotential



Fig. 6. EMG data stream processing and classification in LabVIEW

Fig. 7. Web page for remote sEMG data visualization

applications where needs remote monitoring and on-line data
analysis such as multi-lead ECG analysis and EEG pattern
analysis. The future work can be expanded from several
aspects on implementation such as integrating electrodes,
lead wires, multi-channel biopotential measurement front end,
microcontroller, Wi-Fi module and battery into one wearable
device in small size and extending the system for facial
expression remote monitoring serving multiple users. At the
same time, other classifier options as well as algorithms
regarding signals processing can be added to the system,
for example, applying wavelet analysis and Hilbert-Huang
transform in biopotential signal processing.
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