
Interference as a Computational Resource: A

Tutorial

Mika Hirvensalo
Department of Mathematics and Statistics

University of Turku
mikhirve@utu.fi

September 25, 2017

1 Introduction

Interference is obviously familiar, at least to some extent, to anyone having
watched the waves propagating on a water surface. Falling rain drops create
a sequence of nested circular, expanding waves. When two such wave pat-
terns meet, sometimes the wave crests amplify each other, but sometimes
the wave crest and hollow cancel each other, forming patterns which a sin-
gle wave propagation never creates; see Figure 1. This is exactly how the
interference in wave propagation is understood: The waves may amplify or
weaken each other.

It may however require good luck or patience and careful design to ob-
serve and photograph clear, large, and systematic interference patterns on
the water surface: The water surface should be calm except some individual
points, where the creation of the circular waves should happen in constant
time intervals.

The water waves are not the only ones where interference can be ob-
served, rather very much on the contrary. A very useful and perhaps the
well-known audio interference effect is the beat: the volume of the sound
varying like tremolo if the sound sources are of slightly different frequency.
For instance, a guitar tuner will press the lowest (E) string against the fifth
fret and leave the second lowest (A) string free. Then picking both strings
simultaneously will produce an audible tremolo effect if the guitar is not
well tuned.

On the other hand, observation of light interference appears practically
much more difficult. Since the days of Huygens and Newton, the scien-

1

Figure 1: Water surface photographed in the rain. Waves crossing each
other may either cancel or amplify each other, creating interference patterns.
Some most visually notable interference patterns in this photograph are
surrounded in a red box.

tific community had been debating over the nature of light: Huygens sup-
ported the undulatory explanation, whereas Newton favoured the corpuscu-
lar model. Certainly, a thin oil film on a water surface shone with all rainbow
colours, but those days it was unknown that the origin of that beautiful vi-
sual phenomenon is light wave interference. Moreover, the commonplace
experience has shown that two light sources such as candles never create
any visible interference pattern like those observed in water.

English polymath Thomas Young was however very optimistic and be-
lieved that the lack of visually observed light interference patterns was due
to the turbulent or mixed nature of the candle light or daylight. In the very
early 19th century, Young devised an ingenious experiment demonstrating
the undulatory nature of light. Young’s idea was to imitate waves propa-
gating on a water surface, and for that purpose, he needed to create two
coherent light sources, hoping that the light emitted by the sources will
create an interference pattern on the screen.

More than two hundred years ago, without modern day laser technology,

2

Young resolved the problem of creating coherent light for two light sources
by letting the light pass through a small hole in the first screen, and then
inserting an intermediate screen with two holes in between the first and the
final one, see Figure 2. It should be noticed also that in early 19th century,
there was no clear idea about the electromagnetic fields yet, but the idea
of aether, a nonvisible substance filling the universe was already launched.
Hence it might have been rather natural to assume that the aether could
indeed be the substance where the light propagates as an undulatory motion.

Figure 2: Young’s interference experiment. The light source is located on
the left, and one small hole in the first screen gives rise to coherent light
waves which propagate to the next screen with two holes. The rightmost
screen on the right displays the interference pattern. The arcs stand for the
(light) wave crests, and the spots on the rightmost screen denote the most
luminous areas in the interference pattern.

With such an ingenious experimental set-up, Young was the first to
demonstrate that the light indeed has at least some inherently undulatory
properties [29]. Young was even able to calculate the approximate wave-
lengths of different colours by using the estimate below Figure 3.

3

d

r1

r2

x

L

θ
θ

Figure 3: Two coherent light waves starting from the holes in the left screen
interfere maximally when the wave crests meet exactly at the right screen;
meaning that r1−r2 = mλ, where λ is the wavelength of the light and m is an
integer. If now d and x both are small compared to L, then r1−r2 ≈ d sin θ.
Basing on the assumptions, θ is small, and then also x

L ≈ tan θ ≈ sin θ. It
follows that mλ ≈ d xL . Using this approximation, Young could calculate the
wavelengths of different colours of the visible light by measuring the light
spot distances in the interference pattern.

These examples above – water, sound, and light waves – are by no means
the only examples of physical wave interference. Water of course can be
replaced with any other material with suitable molecular connections: Sound
waves propagate as well in the air, water, oil, and even in iron rails. With
a suitable experimental design, the interference can be apparently observed
in any physical undulatory phenomenon.

Relatively soon after Young’s experiment, the scientific community ac-
cepted the undulatory nature of the light. We cannot live the history again
even partly with different premises, so we cannot be sure what would have
become of Maxwell without the prior understanding of light as some kind
of wave propagation. The only thing we can be sure about is that Maxwell
mathematically demonstrated how the experimentally observed properties
of electrical and magnetic phenomena can be combined into a general the-
ory, which predicts a wave propagation: An alternation in the electric field,

4

implies an alternation in the magnetic field, which again implies an alterna-
tion in the magnetic field etc., and this is exactly how the electromagnetic
waves propagate.

Maxwell was well aware of the wave-like properties of light and using the
measurement-based estimates of that time for electric and magnetic con-
stants, Maxwell was able to calculate the speed of electromagnetic radiation
approximately as 310000 km/s, close enough to the speed of light measured
then. Maxwell was then confident enough to draw the conclusion: Visible
light and previously found infrared and ultraviolet seem to be only one nar-
row, special part of the wide range of electromagnetic wave propagation.
During the 19th and 20th century, this picture has been further strength-
ened: an enormous variety of electromagnetic waves nowadays known as
gamma rays, X-rays, ultraviolet, visible light, infrared, microwaves, and ra-
dio waves, all those were discovered in a relatively short time after Maxwell
published his theory.

In the turn of 19th and 20th century, the physical sciences were being
developed very enthusiastically: First, the mathematical machinery was im-
proved for better presentation of already known physical structures, but also
new explanations were found: It should be noted that those days, the view
of atoms and molecules as the structural elements of the matter was not
accepted by all notable scientists. However, the atom and molecule -based
explanation of the matter and statistical thermodynamics supported each
other.

Planck’s 1900 interpretation of the black body radiation [21] supported
the long forsaken corpuscular theory of electromagnetic radiation (the visible
light as a special case), and Einstein’s theory of the photoelectric effect
eventually demonstrated that the understanding of light is incomplete, so
there was evidently a need for a more sophisticated theory of the physical
world. Einstein himself was indeed a driving force of the novel relativity
theory, but via the explanation of the photoelectric effect, he become also
one propelling force of quantum physics, which we will shortly focus on more
precisely.

Quantum mechanics was created in the early 20th century because the
classical mechanics was not able to explain newly discovered phenomena in
the physical world. Quantum mechanical description of the physical world
involves the idea of wave-particle dualism: All very small physical objects
describable as particles may be portrayed as waves, equally well.

Even though quantum mechanics was already a well-established theory
in 1930’s when computer science sought its foundations through the semi-
nal works of Church, Turing, and Kleene, it seems that the physical nature

5

of computers was not considered for many decades. One of the first ob-
servations – if not the very first one – of the implications of the quantum
mechanics to the computational complexity was made by a most famous
physicist, Nobel Prize winner Richard P. Feynman, who proposed in his
seminal article [8] that a quantum physical system of R particles cannot be
simulated by an ordinary computer without an exponential slowdown in the
speed of the simulation. On the other hand, the simulation of a system of
R particles in classical physics is possible with only a polynomial slowdown.
The main reason for this is that the mathematical description size of a par-
ticle system is linear in R in classical physics but exponential in R according
to quantum physics. As Feynman himself expressed:

But the full description of quantum mechanics for a large system with R par-
ticles is given by a function ψ(x1, x2, . . . , xR, t) which we call the amplitude to
find the particles x1, . . ., xR, and therefore, because it has too many variables,
it cannot be simulated with a normal computer with a number of elements
proportional to R or proportional to N . [8]

Number N in the previous citation refers to the accuracy of the simulation:
“the number of points in the space”, as Feynman formulates. In the same
article, Feynman considered the problem of “negative probabilities”, and
returned to the same issue a couple of years later [9]. Feynman’s approach
may be earliest formulations to understand the role of interference in the
probabilities induced by quantum mechanics.

In my opinion, it is justified to say that the quantum computing era
started in 1982, and that the starting force was indeed the aforesaid Feyn-
man’s article. It is certainly true that Paul Benioff [4] and Yury Manin
[17] both introduced their quantum mechanical model of computing, but
Feynman appears to be the first one to suggest that the computational com-
plexity may depend on the underlying physical model – at least for some
computational tasks.

Following Feynman’s idea and using quantum mechanical systems for
bearing the information and carrying out the computation, it is possible to
design algorithms that benefit from the interference: the undesired compu-
tational paths may cancel each other, whereas the desired ones may amplify.
This phenomenon is generally believed to be the very source of the power
of quantum computing.

In this tutorial, we are not going to refute the aforesaid picture about
the power source of quantum computing. Instead, we are going to highlight
some notable interference patterns used in famous quantum algorithms, but
also to point out that the phenomenon itself – interference, and especially
its destructive version – has been used as a computational resource even

6

before the quantum computing era.

Required preliminaries: This tutorial is not intended to be an intro-
duction to quantum computing. Even though the basics on representing
quantum information are reviewed in Section 3, it would be very useful
– but not compulsory – to have some, even vague knowledge of quantum
computing. If no such background exists, then a knowledge of basic linear
algebra and an open mind to extend it to complex numbers is required.
Also, some bachelor-level knowledge of group theory will be useful.

There will be examples requiring some knowledge of number theory and
automata theory, but only the latter is essential when reading the last sec-
tion. For that, the basic knowledge of deterministic and nondeterministic
automata will be required, and the knowledge of probabilistic automata will
be an advantage.

As the computational complexity also plays an important role here, we
must assume some prior knowledge of Turing machines. Deterministic, non-
determistic, and time-bounded models are useful when defining the com-
plexity classes. It is however not so important to know the quantum models
of Turing machines, since the effect of interference can be studied via more
elementary models as well.

2 Some remarks on computational complexity

The expression “computational resource” in the title can certainly be un-
derstood in many ways, but here we will mainly discuss the following two
issues: First, how the quantum interference can be used to obtain time-
efficient algorithms for some particular computational tasks and what can
be obtained. Second, how the interference has been used to find classical
devices for a computational task seemingly challenging to approach directly.

The second issue is treated in the final chapter, but for the first one, it
is necessary to discuss the computational complexity briefly. For a concise
introduction on the topic, see Papadimitriou’s book [19].

It is rather difficult to trace the roots of nondeterminism, since the phe-
nomenon itself has multiple connotations. Newtonian mechanics is strictly
deterministic and nondeterminism therein arises only from the imperfect
knowledge of the initial state and conditions of the system, hence this non-
determinism is of stochastic nature, which in principle could be removed or
at least reduced by increasing the knowledge of the system. Apparently,
inherent nondeterminism in the physical sciences arose rather late, but at
the latest in the advent of quantum mechanics.

7

In mathematical terms, nondeterminism is not very hard to handle: re-
placing functions with a more general notion of relations will do the job.
As the theory of computation is traditionally described in mathematical
terms, the extension from deterministic to nondeterministic is quite trivial,
but the question about the motivation remains still open: Why to introduce
nondeterministic computation?

There are multiple reasons for studying nondeterministic computation,
and as a mathematician, I like to emphasize the usefulness of nondetermin-
ism as a theoretical tool for obtaining results which were far more difficult
without nondeterminism.

Example 1. The reversal of regular language is regular [28], [7]. This is
very easy to verify by using a nondeterministic automaton, but is more
complicated by relying on deterministic constructions only.

Another, rather fundamental reason to study nondeterministic comput-
ing is that there is a variety of computational problems for which an efficient
deterministic solution is not known, but if some slight uncertainty in the an-
swer is allowed, then the solution becomes efficient.

Example 2. Prime numbers are important in public-key cryptography. The
prime number theorem [12] says that π(x), the number of primes in the
interval [2, x] satisfies

lim
x→∞

π(x)
x

lnx

= 1,

so asymptotically π(x) ∼ x
lnx . It follows that picking randomly lnx numbers

around x you should be able to find a prime number about the magnitude of
x with a non-negligible probability. It is not known how to find such a prime
efficiently and deterministically, with probability of 1. And yet another story
is how to test the primality efficiently.

Example 3. Given a prime number p, a quadratic nonresidue modulo p can
be probabilistically found just by choosing any element Z∗p = {1, 2, . . . p−1}.
As half of the elements in Z∗p are quadratic nonresidues, any choice is correct
with 50% probability. Even the testing is efficient, but it is not known how
to find a quadratic nonresidue modulo p efficiently, if no error probability is
tolerated.

Another reason, different from the above, to study nondeterministic com-
puting is the modelling of imperfect machines. An ideal computational ma-
chine always produces a unique successor from its current state, but in the

8

presence of physical imperfections, also other successors (with some proba-
bilities) are possible.

From the viewpoint of this tutorial, the most important reason for intro-
ducing nondeterministic computing models is the nondeterministic nature of
quantum mechanics itself. When encoding the bits in quantum mechanical
systems and performing the computation based on those, it is impossible to
avoid nondeterminism.

Nondeterministic computation can generally be depicted as a computa-
tion tree, where each node corresponds to a configuration of the computing
machine. The root stands for the initial configuration, and the descendants
of any node n correspond to the configurations reachable from n. Even
assuming that the computation from the root to each leaf is efficient (poly-
nomial time), the general problem in comparing any nondeterministic and
deterministic computation is that in the former, the number of the leaves
may be exponential in the length of the computation, whereas a determinis-
tic procedure gives only one single outcome. See Figure 4 for a general view
on nondeterministic computing.

Figure 4: Computation starts at the root, and each node may have multiple
successors. The leaves correspond to the final configurations, and it may be
possible that only a tiny fraction of the computational paths is successful
(green in this figure).

The above considerations will raise a plenty of interesting complexity
classes; here we will only mention some of the most relevant for this tutorial.
A reader willing to learn more about the complexity classes is recommended
to consult Papadimitriou [19], if a formal and detailed representation is

9

required, or Aaronson [1] for informal and even entertaining presentation.
The most usual way to define the complexity classes goes through Turing

machine formalism, which is accepted as the basic model of computing.
While clumsy for any practical programming, the Turing machines still have
the advantage of a well-defined notions of the time and space needed for
computation. Moreover, the Turing machine formalism is very tolerant:
constant factors will not affect the complexity classes, and nondeterministic
and probabilistic models generalizations are straightforward [19].

Almost all the below complexity classes require somewhat standardized
models of computations. When defining the nondeterministic time complex-
ity classes, it may be important to know that all computational paths are
equally long. This may be achieved by running two Turing machines simul-
taneously, one designed for resolving the given problem, and the other one
acting as a clock [19].

A decision problem is a computational problem with (yes,no)-answer,
such as “is the given number a quadratic nonresidue modulo p?” or “is the
given Boolean expression satisfiable?”

A generalization of the decision problems are the function problems [19],
where, instead of simple decision (yes,no) (or equally well {0, 1}), some non-
binary value is required. For instance, given an integer n, it is a decision
problem to find out whether n is composite or not. On the other hand, it is
a function problem to discover the least factor of n larger than 1.

In many cases, the function problems can be converted into a sequence
of decision problems. For instance, when looking for the least factor d > 1
of integer n, we may ask for the bits of d sequentially: least, second least,
etc.

In this tutorial, we will speak about the following complexity classes:

• P (Polynomial time): The class of decision problems solvable deter-
ministically in polynomial time with respect to the input size.

• PP (Probabilistic Polynomial time): The class of decision problems
solvable nondeterministically in polynomial time so that more than
half computational paths give the correct answer for “yes”-instances,
but at most half computational paths accept a “no”-instance.

• NP (Nondeterministic Polynomial time): The class of decision prob-
lems solvable nondeterministically in polynomial time so for any “yes”-
instance, there is at least one accepting computational path, and for
“no”-instances there are none.1

1Equivalently, NP is the class of the decision problems that can be verified in polyno-

10

• BPP (Bounded-error Probabilistic Polynomial time): The class of
decision problems solvable nondeterministically in polynomial time so
that at least 2

3 computational paths give the correct answer.

• BQP (Bounded-error Quantum probabilistic Polynomial time): The
class of decision problems solvable by quantum Turing machine in
polynomial time so that at least 2

3 computational paths give the correct
answer.

• PSPACE (Polynomial Space): The class of decision problems solvable
deterministically in polynomial space, i.e. in O(nk) space for some k.

• EXPSPACE (Exponential Space): The class of decision problems

solvable deterministically in exponential space, i.e., in O(2n
k
) space

for some k.

In the continuation, we will refer to these complexity classes when dis-
cussing the effect and role of the interference. It is also possible to show that
the classes defined via the proportion of the computational paths such as
NP, PP, and BPP can be equally well defined by using nondeterministic
machines using transition probabilities and defining the acceptance proba-
bilities accordingly, see [19]. According to such definition,

• P stands for polynomial time computing with correctness probability
1.

• PP is asymmetric: For any “yes”-instance, the acceptance probability
must be greater than 1

2 , but all “no”-instances must be rejected with
a probability of greater than or equal to 1

2 .

• NP is also asymmetric: For any “yes”-instance, the correctness prob-
ability must be positive, but for any “no”-instance, it should be 1.

• BPP stands for polynomial time computing with correctness proba-
bility at least 2

3 .

• BQP stands for polynomial time quantum computing with correctness
probability at least 2

3 .

Remark 1. According to the traditional view (from 1970’s until now) of
the computational complexity, polynomial time computing is practically fea-
sible, whereas computational time exceeding all polynomials is considered
unfeasible in practice.

mial time, when a certificate is given. See Papadimitriou [19] for details.

11

It is very much possible to criticize this viewpoint: n20 is a polynomial
which initially grows very much faster than the non-polynomial nln ln lnn.
Yet, the latter is preferable time complexity for any practical computation
whatsoever. In fact, the latter function exceeds the former only for values
of n which are far beyond everyday human experience. Even to write such
numbers in decimal is impossible as the needed digits will outnumber the
elementary particles in the known universe.

Here we will not focus on this kind of criticism but ignore the slowly
growing non-polynomial functions. Instead, we will sharpen the question:
Which versions of the polynomial time computation, P, NP, PP, and BPP
(or even BQP) should be considered “practically feasible?” The usual re-
ply is: BPP (and therefore also P) for classical and BQP for quantum
computers.

There is a very good reason why the class PP algorithms are not consid-
ered practically feasible. It becomes clear when thinking about the following
example: Consider the Boolean satisfiability problem and resolve it by just
guessing an assignment for all the variables of the input expression. Then
check whether the assignment was satisfying, and in the positive case, reply
“yes”. However, in the negative case, reply “yes” or “no” just by flipping a
fair coin.

Clearly this is a polynomial time nondeterministic procedure giving an-
swer “yes” with a probability greater than 1

2 if the input expression is sat-
isfiable, but only with a probability of 1

2 in the opposite case.
Such a procedure can hardly be regarded practical, since the “yes” and

“no” answers are very hard to distinguish. In fact, it will take Ω(2n) at-
tempts on a probabilistic system to tell the difference between the answer
probability 1

2 , and 1
2 + 1

2n . Hence PP cannot be considered as a “practical”
model of polynomial time computing. For the same reason, NP cannot be
seen “practical”, either.

On the other hand, class BPP (or BQP) has the advantage of bounded-
error property. Now, the Chernoff bound (see Papadimitriou [19]) implies
that in order to reduce the error probability smaller than ε, it is sufficient
to repeat the computation a fixed number Nε times and finally decide by
the majority vote. Hence 2

3 is not crucial as the correctness probability, but
any probability strictly greater than 1

2 will do.
Hence it is widely agreed that BPP (or BQP in the quantum case) is

the synonym for practically feasible computation.

There are definition-based easy-to-see inclusions such as P ⊆ NP ⊆
PP and P ⊆ BPP ⊆ BQP, but the complexity theory as known today

12

is unfortunately too weak to provide answers to questions such as P =
BPP?, P = NP?, or BPP = BQP?, these are in fact the most challenging
questions of the complexity theory. Although there is no proof even in the
sight, there are good reasons to believe that the first equality is true but the
second and the third one are not [1].

3 Mathematical model of quantum information

The mathematical representation of quantum mechanics developed by Dirac,
Heisenberg, Pauli, Schrödinger, etc. was already in 1930’s completed into a
Hilbert space formalism mainly by John von Neumann [18]. In this repre-
sentation, we are not going to explore the development or the mathematical
structure of quantum mechanics in details. Instead, we refer to Hirvensalo
[13] or [16] for the general Hilbert space structure of quantum mechanics
and present here a simple version of closed quantum systems. A reader well
aware of the mathematical representation of quantum systems may as well
skip this section.

It should be noticed that the finite-dimensional model we are going to
introduce is for the discrete quantum systems with only finitely many (per-
fectly) distinguishable observable values, but for practical computational
and information processing purposes, this model is sufficient anyway.

For the sake of completeness, some words should be said about the com-
putational models with an unbounded memory, as well. It is definitely true
that limiting the memory will also limit the potentials of the computation,
but for the purposes of this study, we need not to introduce any other than
the trivial restrictions: For computational process lasting of T time steps,
O(T) space is certainly sufficient, and in many cases, we may be satisfied
with even narrower space restrictions.

Hence it is not reasonable to introduce the infinite versions of Hilbert
spaces, as for our computational purposes (computational time polynomial
in the input size), we may be happy with the finite-dimensional picture, as
well.

Description. An n-level quantum system refers to a physical system with
n perfectly distinguishable physically observable values. The mathematical
description of such a system consists of the following parts:

• An n-dimensional Hilbert space Hn. Any n-dimensional Hilbert space
is isomorphic to Cn, wherein the (Hermitian) inner product for vectors

13

x = (x1, . . . , xn) and y = (y1, . . . , yn) is defined as

〈x | y〉 = x∗1y1 + . . .+ x∗nyn,

where x∗ stands for complex conjugation. This inner product is ob-
viously linear with respect to the second argument y, nondegenerate
(meaning that 〈x | x〉 = 0 only if x = 0), and conjugate symmetric,
meaning that 〈x | y〉∗ = 〈y | x〉. The inner product in Hn also induces
the norm by ||x|| =

√
〈x | x〉.

• The (pure) states of an n-level quantum system are identified with the
unit-length vectors in Hn. That is, if {x1, . . ., xn} is an orthonormal
basis of Hn, then any x = c1x1 + . . .+ cnxn with |c1|2 + . . .+ |cn|2 = 1
is a (pure) state.

• Rather typically, there is a preferable basis, which we will call a compu-
tational basis, whose elements may be associated with some numerical
values 0, 1, . . ., n− 1. By convention, we may use the Dirac ket nota-
tion x1 =| 0〉, . . ., xn =|n − 1〉 to stand for the preferred orthogonal
basis.

• A special case of the aforesaid is quantum bit, qubit for short, which is,
by definition, a two-level quantum system depicted in H2. The Hilbert
space associated to such a system may be equipped with orthonormal
basis {| 0〉, | 1〉}, and a general state of such a system is a vector
c0 |0〉+ c1 |1〉, where |c0|2 + |c1|2 = 1.

• A physical observable with a maximal number of different values con-
sists of an orthonormal basis {y1, . . ., yn}, together with the observ-
able values λ1, . . ., λn ∈ R, each λi associated with yi.

• The minimal interpretation of the quantum mechanics is an axiom
connecting the mathematical model to the physically observable real-
ity. In this simple model, the minimal interpretation says that if the
quantum system is in state x, then for a given observable {y1, . . ., yn}
with associated values λ1, . . ., λn, the probability of observing values
λi is given by |ci|2, where αi is the coefficient of yi in representation

x = c1y1 + . . .+ cnyn.

• Closed time evolution. In a closed quantum system, a state x evolves
into Ux, were U is a unitary mapping, meaning that UU∗ = U∗U = I,

14

where U∗ stands for the complex conjugate of the transpose of the
matrix representing U . Mapping U depends on the physical circum-
stances surrounding the studied system, and on the time interval be-
tween the starting and the observation moment. In the context of
quantum computing, it is usually assumed that there is a fixed set of
unitary mappings U1, . . ., Uk that can be applied to quantum states,
and these mappings are called quantum gates.

• Compound quantum systems are described by using the tensor prod-
uct construction. If H1 and H2 are the Hilbert spaces of the partial
systems, then the Hilbert space of the compound system is H1 ⊗H2.
The basis of the compound system can be formed by taking all tensor
product of the subsystems basis elements. In the context of quan-
tum computing, the tensor sign ⊗ is usually omitted, and for instance
| 0〉⊗ | 0〉, | 0〉⊗ | 1〉, | 1〉⊗ | 0〉, and | 1〉⊗ | 1〉 are written more shortly
as | 0〉 | 0〉, | 0〉 | 1〉, | 1〉 | 0〉, and | 1〉 | 1〉 or even more shortly as | 00〉,
| 01〉, | 10〉, and | 11〉. In particular, this means that the system of
two quantum bits is described by using four-dimensional Hilbert space
having B = {|00〉, |01〉, |10〉, |11〉} as an orthonormal basis. A general
(pure) state of two quantum bits is then described as

c00 |00〉+ c01 |01〉+ c10 |10〉+ c11 |11〉,

where cij are complex numbers satisfying |c00|2+|c01|2+|c10|2+|c11|2 =
1.

• The above generalizes to multiple quantum systems. Especially, the
mathematical description of the system n quantum bits is a 2n-dimen-
sional Hilbert space with orthonormal basis {| x〉 | x ∈ {0, 1}n}. A
general (pure) state of n qubit system then looks like

c0...00 |0 . . . 00〉+ c0...01 |0 . . . 01〉+ . . .+ c1...11 |1 . . . 11〉, (1)

where cx are complex numbers satisfying
∑

x∈{0,1}n
|cx|2 = 1.

Recall that according to Feynman [8], the difficulty of simulating quan-
tum systems efficiently is due to the fact that a full quantum mechani-
cal description of an R-particle system requires an exponential amount
of complex numbers. In the description of a n-qubit state (1) this is
explicitly shown: The mathematical description of a (pure) state of a
system of n quantum bits requires 2n complex numbers.

15

Example 4. A quantum bit is described in a two-dimensional Hilbert space

H2 = C2. We may choose coordinate representations | 0〉 =

(
1
0

)
,
(
resp.

|1〉 =

(
0
1

))
and associate logical value 0 (resp. 1) to the basis vector |0〉

(resp. |1〉).
Now any quantum bit can be presented as a linear combination (which

is called superposition in the context of quantum bits)

q = c0 |0〉+ c1 |1〉, (2)

where |c0|2 + |c1|2 = 1.

If we now fix an observable {| 0〉, | 1〉} with values 0 ↔| 0〉, and 1 ↔| 1〉,
then the probablity of observing bit value 0 (resp. 1) is |c0|2 (resp. |c1|2).

Definition 1. Let

W =
1√
2

(
1 1
1 −1

)
.

It is plain to verify that W is unitary. W is called Walsh transform or
Hadamard-Walsh transform, and is an example of a nontrivial unary quan-
tum gate.

A simple calculation also shows that W | 0〉 = 1√
2
(| 0〉+ | 1〉), and that

W | 1〉 = 1√
1
(| 0〉− | 1〉). Hence the probability of observing 0 (in the

computational basis) in state W | 0〉 is
(

1√
2

)2
= 1

2 . Then of course the

probability of observing 1 in state W | 0〉 is 1 − 1
2 = 1

2 , which also could
be derived analogously. For the continuation, it is useful to already now
observe that if x ∈ {0, 1}, then

W |x〉 =
1√
2

(|0〉+ (−1)x |1〉) =
1√
2

((−1)0·x |0〉+ (−1)1·x |1〉)

=
1√
2

(
∑

y∈{0,1}

(−1)y·x |y〉). (3)

4 Interference in Quantum Computing

4.1 General Principles

Interference of computational paths cannot exist unless there are more than
one computational paths to interfere with each other, and the multiple paths

16

can occur only when nondeterminism takes place. Another obvious require-
ment for interference is that at least the final outcomes of the different
computational paths can be somehow combined. That is, we should have
the computational paths labelled with objects from some additive structure.
Due to the mathematical formalism of quantum mechanics, this structure
in quantum computing is naturally selected as C, and the labels are called
amplitudes. When connecting the computing model to the physical reality,
there should evidently be some rule α 7→ P(α) that associates a probabil-
ity to label α. The minimal interpretation of quantum mechanics naturally
suggests the Born probability rule α→ |α|2.

In fact, we have not yet defined what interference exactly means, so
let us give here at least an informal description: Assume that the configu-
ration c can be nondetermistically reached from the initial one via k ≥ 2
computational paths with labels (amplitudes) α1, . . ., αk. Then the total
weight of the configuration c simply becomes α1 + . . . + αk. We say that
interference is constructive, if P(α1 + . . . + αk) ≥ P(α1) + . . . + P(αk), and
destructive, if P(α1+ . . .+α2) < P(α1)+ . . .+P(αk). In the context of quan-
tum computing, constructive interference is characterized with the property
|α1 + . . .+ αk|2 ≥ |α1|2 + . . .+ |αk|2. In the case of destructive interference,
we may say that the computational paths cancel each other (at least par-
tially) and in the case of constructive interference, the paths amplify each
other.

It should be noticed that in the computational models with limited num-
ber of configurations such as finite automata, some configurations are likely
to reappear multiple times in computational paths, but the reoccurrence
may happen even when if number of potential configurations is finite.

Remark 2. In a classical probabilistic model for computing, the “labels”
are simply the probabilities, and the rule for associating the probability to
a label is the identity mapping P : p 7→ p. Moreover, as the probabilities are
all nonnegative, all interference in the classical probabilistic computing is
always constructive, meaning that the computational paths cannot cancel.

The time development of even a single quantum bit may result in a
nontrivial interference pattern, as we will see shortly. Later we will see some
examples on how interesting interference patterns can be found in quantum
computing more generally.

A very simple example of interference is given by the single-qubit state
| 0〉 when Hadamard-Walsh transform W is applied twice on it. Figure 5
contains a scheme of such computation.

17

|0〉

|0〉

|0〉 |1〉

|1〉

|0〉 |1〉

�
�
�
�
�/

S
S
S
S
Sw

�
�
�
�
��

A
A
A
A
AU

�
�
�
�
��

A
A
A
A
AU

|0〉

1√
2
|0〉+ 1√

2
|1〉

1
2 |0〉+ 1

2 |1〉+ 1
2 |0〉 −

1
2 |1〉

1√
2

1√
2

1√
2

1√
2

1√
2

− 1√
2

Figure 5: Hadamard-Walsh-gate twice. The left-hand side depicts how the
application of W operates on states, whereas the corresponding states are
written on the right side.

The top row of the figure contains the initial state | 0〉 with amplitude
1. When applied once, W “splits” the state |0〉 into successors |0〉 and |1〉;
both are produced with the amplitude 1√

2
. This is depicted in the figure’s

middle row. The second application of W “splits” | 0〉 as before, but | 1〉
is split slightly differently; now | 1〉 is produced with amplitude − 1√

2
. The

bottom row of the figure describes the final state. Now, the amplitudes in the
bottom row can be computed by following the path from top to bottom and
multiplying all the amplitudes along the path. For example, the amplitude
of the leftmost |0〉 in the bottom row is 1√

2
· 1√

2
= 1

2 , whereas the amplitude

of the right-most |1〉 is 1√
2
· (− 1√

2
) = −1

2 .

Starting from root |0〉, there are four computational paths, each of length
2, having | 0〉, | 1〉, | 0〉, and | 1〉 as ending configurations, and 1

2 , 1
2 , 1

2 , and
−1

2 as their amplitudes.
Now that there are multiple occurrences of the same final configuration

(|0〉 and |1〉), interference is expected. In fact, the final amplitude of |0〉 will
become 1

2+ 1
2 = 1, and that of |1〉 will be 1

2−
1
2 = 0. The computational paths

with |0〉 as the final configuration hence interfere constructively, and those
with |1〉 destructively. In this example, the 2nd and the 4th computational
paths completely cancel each other.

Experience has shown that it may be rather challenging to design a
strategy for quantum computing (i.e. a quantum algorithm) that would use
the interference in a clever way, producing the desired result more efficiently
than a classical strategy (algorithm).

18

There are (at least) four generally known ways for introducing desirable
interference in quantum computing:

• Quantum Fourier Transform

• Grover search

• Quantum Random Walks

• Adiabatic quantum computing

4.2 Examples

To keep this tutorial in reasonable limits, we must again select one topic,
and as historically Quantum Fourier Transform was the first strategy for
controlling interference in quantum algorithms, we will here focus on that.
A simple one-qubit version of that was used by David Deutsch in 1985 to
demonstrate that quantum computers may be able to resolve some computa-
tional problems more efficiently than the classical ones [5]. Subsequently, in
1992, Deutsch and Josza extended the Deutsch’ original version into a mul-
tiqubit promise problem [6], and Simon gave another generalization of their
algorithm in 1994 [25]. As a simple variant of Quantum Fourier Transform
can be expressed very easily by using Hadamard-Walsh transformation, we
will shortly discuss it in more details.

Year 1994 should be considered as a very important landmark for quan-
tum computing. It was 1994 when Peter Shor introduced his quantum al-
gorithm for factoring integers and computing discrete logarithms. As Shor,
himself pointed out, his procedures are generalization of that of Simon [23],
and it is justified to say that Shor’s algorithms were those that effectively
raised quantum computing from a very marginal phenomenon into a greater
public knowledge.

Fourier analysis, and its generalization harmonic analysis is certainly
a most important mathematical machinery discovered since the birth of
integral and differential calculus. Harmonic analysis and its applications
can be used to decompose signals into linear combinations of monochromatic
signals, a fundamental tool in signal processing. Unfortunately, the Fourier
analysis falls beyond the scope of this tutorial, but we will simply present
some examples most relevant to this tutorial.

Example 5. Let Z2 = {0, 1} be the additive group of two elements. Clearly
all functions Z2 → C can be represented as f(x) = α0x + α1(1 − x) =
α1 + (α0 − α1)x, and noticing that x = 1

2(1− (−1)x) for x ∈ {0, 1}, we see

19

that in fact, each function f : Z2 → C can be expressed in terms of two
basis functions B0(x) = 1√

2
(−1)0·x and B1(x) = 1√

2
(−1)1·x (the reason for

the coefficient 1√
2

becomes evident soon). For any given

f = f0B0 + f1B1 (4)

we then define f̂(0) = f0 and f̂(1) = f1, and substituting x = 0 and x = 1
in equation (4) gives us a matrix equality(

f(0)
f(1)

)
=

1√
2

(
1 1
1 −1

)
︸ ︷︷ ︸

W

(
f̂(0)

f̂(1)

)
. (5)

A direct computation shows that the Walsh matrix W is an involution
(i.e. W 2 = I)2, and hence the equation (5) implies(

f̂(0)

f̂(1)

)
=

1√
2

(
1 1
1 −1

)(
f(0)
f(1)

)
. (6)

The above two matrix equations (5) and (6) demonstrate a beautiful symme-
try between the coefficients (f̂(0), f̂(1)) and (f(0), f(1)), and the symmetry
is just one reason for using representation (4). This transformation f 7→ f̂ is
the simplest nontrivial example of a Fourier Transform and will be extended
shortly.

4.3 Characters of Finite Abelian Groups Briefly

We will now focus on the generalizations of the basis functions B0 and B1 for
groups larger than Z2. Ignoring the factor 1√

2
, functions like χ0(x) = (−1)0·x

and χ1(x) = (−1)1·x are a special case of functions f : G → C known as
characters.

Definition 2. For a finite abelian group G, function χ : G → C \ {0} is a
character, if χ(x+ y) = χ(x)χ(y) for all x, y ∈ G.

The characters are very useful objects in the group theory, and their
properties are well understood. Many basic properties are easy to derive,
for instance χ(0) = χ(0 + 0) = χ(0)χ(0), so χ(0) = 1 is the only option.
Moreover, 1 = χ(0) = χ(x−x) = χ(x)χ(−x), showing that χ(−x) = χ(x)−1.

2In fact, the computation tree in Figure 5 shows that W 2 | 0〉 =| 0〉, and it is equally
easy to see that W 2 |1〉 =|1〉

20

More importantly, as G is a finite group, |G|x = 0 for each group element,
which implies that χ(x)|G| = χ(|G|x) = χ(0) = 1. Hence the character
values lie in the unit circle and consequently χ(−x) = χ(x)−1 = χ(x)∗.

We are not going to represent here the character theory in details, some
most important features related to quantum computing can be found in [13].
There is however one structural property certainly worth mentioning, and
towards it we give the following definition:

Definition 3. The Hermitian inner product for functions f : G 7→ C is
defined as

〈f1 | f2〉 =
∑
g∈G

f∗1 (g)f2(g).

One of the most important property of the characters is introduced in the
following lemma.

Lemma 1 (The orthogonality of the characters). Let χ1 and χ2 be charac-
ters of a finite abelian group G. Then

〈χ1 | χ2〉 =

{
|G| , if χ1 = χ2

0, if χ1 6= χ2
.

We are not going the present the proof here, it can be found in [13]. Nev-
ertheless, it is worth emphasizing that as the characters are orthogonal, they
must also be linearly independent. As the dimension of the vector space of
functions G→ C is clearly |G|,3 then the characters form an (orthonormal)
basis of that space, if there are |G| distinct characters. It turns out that for
each abelian group, this is indeed the case [13].

For any finite abelian group G, it is rather customary to label its char-
acters by the group elements: {χg | g ∈ G} is the set of characters, and
especially χ0 stands for the trivial character. In fact, if we define the product
of the characters as (χ1χ2)(g) = χ1(g)χ2(g), it turns out that the characters
form a group isomorphic to the original one!

Now that the characters χg form an orthogonal basis for function space
G → C, we can introduce a renormalization factor 1√

G
to obtain even an

orthonormal set of basis functions Bg = 1√
|G|
χg.

Then any function G→ C can be expressed in the form

f =
∑
g∈G

f̂gBg. (7)

3Characteristic functions fg defined as fg(g′) = 1 if g = g′ and 0 otherwise clearly form
a basis (called the natural basis) for the function space G→ C.

21

The following definition clearly extends the representation of Example 5,
which was the prelude for the simplest nontrivial Fourier transform.

Definition 4. The (discrete) Fourier transform of a function f in equation
(7) is a function G→ C defined as

f̂(g) = f̂g.

Using the orthonormality of functionsBg, it is not too difficult to discover

the coefficient f̂ in equation (7). In fact, it follows directly that

〈Bh | f〉 =
∑
g∈G

f̂g〈Bh | Bg〉 = f̂h,

so

f̂(g) = f̂g = 〈Bg | f〉 =
∑
h∈G

B∗g(h)f(h) =
1√
|G|

∑
h∈G

f(h)χ∗g(h).

In general, the above Fourier Transform is referred as to Discrete Fourier
Transform, but here we will omit the attribute “discrete”.

4.4 Special cases

The group
Zn2 = Z2 × . . .× Z2

is an n-fold direct product of Z2. Hence it is not surprising that the char-
acters of Zn2 are not difficult to express. In fact, it turns out that the n-fold
product of characters of Z2 are indeed the characters of Zn2 . More precisely:

Lemma 2. Let y ∈ Zn2 . Then the function

χy(x) = (−1)x·y = (−1)x1y1+...+xnyn

is a character of Zn2 .

All the aforesaid imply the following:

Corollary 1. The Fourier transform f̂ of a function f : Zn2 → C can be
expressed as

f̂(x) =
1√
2n

∑
y∈Zn

2

(−1)y·xf(y) (8)

22

Notice that the equation (6) can be understood in the following way: for
any function satisfying |f(0)|2 + |f(1)|2 = 1,

f(0) |0〉+ f(1) |1〉 (9)

is an eligible qubit state, and

W (f(0) |0〉+ f(1) |1〉) = f̂(0) |0〉+ f̂(1) |1〉, (10)

which is to say that W performs the Fourier transform on the coefficients.
The generalization of the above formula (10) is straightforward: Instead

of the group Z2, we study its n-fold Cartesian product Zn2 , representable
with n qubits, and observe that

(W ⊗ . . .⊗W) |x1 . . . xn〉
= ((−1)0·x1 |0〉+ (−1)1·x1 |1〉) . . . ((−1)0·xn |0〉+ (−1)1·xn |1〉)

=
1√
2n

∑
(y1,...,yn)∈{0,1}n

(−1)x1·y1+...+xn·yn |y1 . . . yn〉 (11)

Denoting W⊗n = W ⊗ . . .⊗W , (11) can be written more compactly as

W⊗n |x〉 =
1√
2n

∑
y∈Zn

2

(−1)x·y |y〉. (12)

In order to get a better picture on how the Walsh transform W⊗n, which
is a special case of Fourier transform, is related to quantum computing, let
us study any function f : Zn2 → C satisfying∑

x∈Zn
2

|f(x)|2 = 1.

In fact, if f is not identically zero, this condition can always be forced by
multiplying f with a constant. Because of this condition, vector∑

x∈Zn
2

f(x) |x〉 (13)

in H2n has unit norm and is hence perfectly eligible n-qubit pure state.
Now, the effect of W⊗n on state (13) can be discovered by straightforward

23

computation:

W⊗n
∑
x∈Zn

2

f(x) |x〉 =
∑
x∈Zn

2

f(x)W⊗n |x〉

=
∑
x∈Zn

2

f(x)
1√
2n

∑
y∈Zn

2

(−1)x·y |y〉

=
∑
y∈Zn

2

1√
2n

∑
x∈Zn

2

f(x)(−1)x·y |y〉

=
∑
y∈Zn

2

f̂(y) |y〉 =
∑
x∈Zn

2

f̂(x) |x〉,

meaning that the n-fold Walsh transformation W⊗n actually performs the
Fourier transform on the coefficients of superposition (13).

One notable feature here is that the complex coefficients (function f
values) form a vector of length 2n, but the Fourier transform on these co-
efficients can be performed by using only n quantum operations (operation
W on each qubit).

On the other hand, the classical complexity of computing the Fourier
transform of a sequence (f(x))x∈Zn

2
of N = 2n complex numbers can be

estimated as follows: A direct computation of a single value using formula
(8) requires roughly N = 2n additions and multiplications. As there are
N = 2n values to be calculated, we can conclude that the Fourier transform
computed in this straightforward way needs O(N2) operations.

However, there is a known significant improvement: A subgroup G =
{x ∈ Zn2 | x1 = 0} clearly has cardinality 2n−1, and its coset (1, 0, . . . , 0) +
Zn2 together with the subgroup cover the whole group. It turns out that
using this covering, it is possible to compute the Fourier transform on Zn2
by computing two Fourier transforms in Zn−12 and then combining them
in a proper way, see [13] for this special case. This is an example of the
well-known method of “divide and conquer” in computer science, in this
case leading into the computational complexity of O(nN) = O(N log2N).
The aforesaid algorithm for Fourier transform is known as the Fast Fourier
Transform (FFT), and is the cornerstone of all modern signal processing:
Fourier transforms are used in (almost) all contexts in signal transmission,
data compression and analysis, etc.

Aforesaid classical complexity O(N log2N) of FFT is clearly outper-
formed by that of QFT having complexity O(log2N), but on the other
hand, it is also true that QFT and FFT are incomparable in the sense that
the former is performed on the amplitudes of the physical qubits, whereas

24

in the latter, the bits themselves present the numbers on which FFT is
performed on. However, using the quantum version, we can see how the
following problem can be resolved by using only a few quantum operations.

Deutsch-Jozsa problem: Given a function f : Zn2 → Z2 which is promised
to be either constant (meaning that either f(Zn2) = {0} or f(Zn2) = {1}) or
balanced (meaning that f(x) = 0 for exactly half of x ∈ Zn). Determine if
f is constant or balanced.

In connection to the Deutsch-Jozsa problem it is assumed that the func-
tion f is so-called black box function, given not explicitly. This means that
there is no given algorithm to compute f , but the value of f is obtained as
an oracle call in a single computational step.

From the classical point of view, it is then obvious that the problem
cannot be solved with certainty calling function f fewer than 2n−1 +1 times:
By evaluating the function on half of the elements of Zn2 , and always seeing
e.g. 0 as the value, we still cannot be sure that the function f is constant,
but there is still room for the possibility that on the other half of Zn2 function
f gets value 1.

It should be carefully noticed that the above argumentation relies strongly
on the black box nature of f : If an algorithm for computing f is available,
then it is possible, at least in principle, that the solution for Deutch-Jozsa
problem can be derived from the algorithm with essentially less effort than
evaluating f on 2n−1 elements of Zn2 .

Another notable point is that this argumentation is about only zero-error
computing. A probabilistic classical solution is also easy: Just randomly pick
two elements x1, x2 ∈ Zn2 and evaluate f on them. If f(x1) = f(x2), then
decide that f is constant, otherwise that f is balanced.

However, whereas the classical zero-error solution appears to require at
least 2n−1 + 1 evaluations of f , there is a quantum solution with only one
single evaluation of f . It is, quite naturally, assumed that the evaluation of
a black box function obeys linearity as any other quantum gate does. It is
assumed that f is implemented via a quantum operator Qf acting on n+ 1
qubits as Qf |x〉 |b〉 =|x〉 |f(x)⊗ b〉.

Quantum algorithm for the Deutsch-Jozsa problem

1. Start with n+ 1 qubit state |0 . . . 0〉 |1〉

2. Apply Hadamard-Walsh transform W to all qubits to obtain state

1√
2n

∑
x∈Zn

2

|x〉 1√
2

(|0〉− |1〉)

25

3. Call function f (i.e., apply Qf) on the above superposition to obtain

1√
2n

∑
x∈Zn

2

|x〉 1√
2

(|f(x)〉− |f(x)⊕ 1〉

=
1√
2n

∑
x∈Zn

2

|x〉(−1)f(x) 1√
2

(|0〉− |1〉)

4. Apply W to each qubit to obtain

1

2n

∑
x∈Zn

2

(−1)f(x)
∑
y∈Zn

2

(−1)x·y |y〉 |1〉

=
1

2n

∑
y∈Zn

2

∑
x∈Zn

2

(−1)f(x)(−1)x·y |y〉 |1〉

5. Observe the first n qubits. The probability that y = 0 will be observed
is given by

P(0) =
∣∣∣ 1

2n

∑
x∈Zn

2

(−1)f(x)
∣∣∣2 =

{
0, if f is balanced
1, if f is constant

In terms of interference, the above quantum algorithm can be analyzed
as follows: Step 1 begins at a deterministic state |0 . . . 01〉, which is in step 2
divided into 2n+1 different computational paths, each having a configuration
of form |x〉 |0〉 or |x〉 |1〉. All paths have amplitude 1√

2n+1
.

Step 3 then does not split the computational paths further, but only
affects on the amplitudes so that the value of f(x) is encoded to the signs
of the amplitudes.

Step 4 again splits each existing computational path into 2n+1 paths. As
shown in step 5, the interference can be calculated exactly and the result is
that in the case of constant function, the computational paths ending up to
|0〉 interfere constructively and the other ones destructively, so that in the
constant case, it is only possible to observe 0 as the first n qubit values. On
the other hand, in the balanced case, the situation is exactly the opposite,
all paths ending to |0〉 cancel each other perfectly and something different
from 0 will be observed.

In [5] Deutsch considered a special case of the Deutsch-Jozsa problem
with n = 1. In that case, each function f : Z2 → {0, 1} is indeed either
constant or balanced, and that was most likely the first sound evidence that

26

quantum computing can provide some advantage over the classical comput-
ing.

As mentioned before, The Deutsch-Jozsa problem has an efficient classi-
cal solution, if a probabilistic solution is allowed. On the other hand, Daniel
Simon [25] demonstrated in 1994 that there are problems (with promise
and black-box) that allow significantly more efficient solutions on quantum
computers, even if the stochastic nature of the output is allowed.

Simon’s problem: Given a black box function f : Zn2 → Zn2 with the
promised property that there is some s ∈ Zn2 so that f(x) = f(y) if and
only if x = y or y = s + x. The problem is to find out this particular
element s ∈ Zn2 .

The quantum solution of Simon’s problem uses the quantum interference
mostly in the same way as Deutsch-Jozsa solution does. Here we assume
that function f is evaluated via a black-box quantum operator Qf operating
of 2n qubits: Qf |x〉 |0〉 =|x〉 |f(x)〉. Also, we denote |0〉 =|00 . . . 0〉.

Simon’s algorithm

1. Start with 2n qubit state |0〉 |0〉.

2. Apply W⊗n on the first n qubits to obtain

1√
2n

∑
x∈Zn

2

|x〉 |0〉.

3. Call function f (apply operation Qf) to obtain

1√
2n

∑
x∈Zn

2

|x〉 |f(x)〉

4. Apply W⊗n on the first n qubits to get

1

2n

∑
x∈Zn

2

∑
y∈Zn

2

(−1)x·y |y〉 |f(x)〉

5. Observe all 2n qubits simultaneously. By the assumption, there will
be two identical values f(x) = f(x + s) and hence an interference

27

pattern

(−1)x·y |y〉 |f(x)〉+ (−1)(x+s)·y |y〉 |f(x + s)〉
= ((−1)x·y + (−1)(x+s)·y) |y〉 |f(x)〉
= (−1)x·y(1 + (−1)s·y) |y〉 |f(x)〉

=

{
0, if s · y = 1

2(−1)x·y |y〉 |f(x)〉, if s · y = 0

takes place. This means that in the first n qubits, we can observe only
elements y ∈ Zn2 satisfying y · s = 0.

6. Repeating the procedure over again, we will eventually obtain n −
1 linearly independent elements y1, . . ., yn−1 all satisfying yi · s =
0. Using those elements, s can be recovered by using Gauss-Jordan
procedure.

A more careful analysis of the above procedure shows that O(n) applications
of Qf (queries) are enough to discover element s with a high probability.
On the other hand, it can be shown that Ω(

√
2n) queries are needed for any

classical black-box algorithm to solve the Simon’s problem with a bounded
error probability [24].

Whereas the Deutch-Jozsa problem separates zero-error classical and
quantum computing, the Simon’s problem introduces analogous separation
for bounded error computing. Simon’s problem actually shows that there is
a (promise) problem efficiently solvable with quantum computers, whereas
a classical efficient solution is impossible.

However, it should be noticed that we are again talking about the promise
problems over black-box functions. As discussed before, the proofs using a
black box model however do not imply results in unrelativized setting.

The question whether the QFT can be computed efficiently in large
groups has at least two aspects: Can the group elements be efficiently rep-
resented in some quantum system as | g1〉, . . ., | gn〉. Typically, we assume
that this can be done (even though not yet technologically), but the second
question about the Fourier transform is more important:

Assume that for a finite Abelian group G, there is an orthonormal basis
{|g〉 | g ∈ G} and a function f : G→ C satisfying∑

g∈G
|f(g)|2 = 1.

28

Then ∑
g∈G

f(g) |g〉 (14)

is an eligible quantum state in an |G|-dimensional vector space. Is it possible
to have a sequence of simple quantum operations transforming (14) into∑

g∈G
f̂(g) |g〉 (15)

so, that the number of operations would be polynomial in the group descrip-
tions size?

The answer is known in some cases. As we saw before, Zn2 = Z2×. . .×Z2,
and QFT on Zn2 can be performed by performing it on each two-element
subgroup Z2, and this can be generalized to any product representation: If
G = G1 × G2, the Quantum Fourier transform on G can be obtained by
computing it on G1 and G2 separately.

Moreover, the case when a cyclic group Cn has cardinality n = n1n2,
where gcd(n1, n2) = 1 can be handled: It is known how to implement the
QFT in Cn if it can be implemented in Cn1 and Cn2 [13].

Group Z2n plays an important role in Shor’s factoring algorithm. In fact,
the “quantum part” of Shor’s factoring algorithm consists of finding out the
smallest period of function n 7→ an (mod N), and this problem could be
actually most naturally be described as a Hidden subgroup problem in Z.
On the other hand, Z is an infinite group, so a computationally feasible
solution must be searched from elsewhere, and it turns out that Z2n as a
finite approximation of Z will do.

Any element of Z2n can be presented as a string of n (qu)bits, but notice
the difference: Z2n is a cyclic group, whereas Zn2 is not if n > 1. Moreover,
Z2n has no cyclic subgroups with coprime cardinalities, so something else
different from the aforesaid recursive procedures must, and has been discov-
ered. It is known how to implement the QFT in Z2n with O(n2) quantum
operations [13].

5 Simulating quantum interference classically

Recall again that Richard Feynman proposed that it may be computation-
ally expensive to simulate quantum mechanical system classically, the reason
being that a system of n particles has a mathematical description size ex-
ponential in n.

29

In this section, we will study the simulation problem of quantum me-
chanics in terms of the classical complexity theory. In principle, Quantum
Turing machine will be the underlying model, but in the case of polynomial
time computing, we can in practice restrict to N = nk qubits (N = nk is
the absolute upper bound on the qubits needed for the computation). In
the continuation, we will use these notations and restrictions.

We can hence view the quantum computing as a process where the pre-
vious configuration (vector in H2N) is multiplied with the unitary computa-
tional operator U until the final configuration is reached at step t.

Theorem 1. BQP ⊆ EXPSPACE

Proof sketch. Let us assume that a Quantum Turing machine Q takes a
binary input word w ∈ {0, 1}n and the BQP computation of Q lasts for
T = nk steps. Clearly Q uses no more than N = nk qubits. It follows that
the mathematical representation of the computation can be accommodated
in a 2n

k
-dimensional Hilbert space, which means that each configuration |x〉

can be presented as a sequence of 2n
k

complex numbers.
Simulation of a computational step uses the current state vector, and

for each nonzero amplitude α corresponding to configuration C, finds out
which are the (finitely many) successors of C. If, say C

αi−→ Ci, then the
new amplitude for Ci is ααi, but it should be noted that there may be more
than one configuration yielding Ci as a successor. If so, all equal Cis are
combined and their amplitudes are summed (this is interference!).

Another point of view of the aforesaid is that each configuration of Q
can be represented as an infinite-dimensional row vector | x〉 (having only

at most 2n
k

nonzero coordinates), which is multiplied from the left by the
transition matrix of U of Q (see [2] for more details), which has only finitely
many nonzero entries on each row and column.

Independent from the viewpoint, it is straightforward to verify that the
(classical) simulation can be performed using O(2n

k
) space.

Remark 3. In the above proof sketch, the bounded error property of BQP
was not used at all, but the polynomial time length was essential. An anal-
ogous conclusion hence holds for any polynomial time quantum computing.

Remark 4. In the above sketch, the space needed to store the complex
numbers representing the amplitudes was not considered at all. Neither was
the space or time needed to compute the algebraic operations. If fact, it was
not even specified which kind of amplitudes are permissible for a Quantum
Turing machine Q. All these questions are studied in details in [2], hence

30

we will not pay very much attention to those questions here, but will rather
present also the forthcoming proof sketches ignoring the technical details
surrounding the complex numbers.

Theorem 2. BQP ⊆ PSPACE

Proof sketch. We will here use the same notations as in the previous proof.
Keeping the whole state of nk qubits in the classical computer memory
requires by definition 2n

k
complex numbers to remember. On the other

hand, the simulation of a single computational path (of length at most nk)
can be performed easily, just by multiplying the amplitudes along the path,
starting from the root (representing the initial configuration) and ending
at a leaf (corresponding to a final configuration). Thus, it is possible to
compute any leaf amplitude in polynomial space, and even in polynomial
time.

Even though computing the final amplitude takes only a polynomial
time (and hence space) for any final configuration, it is nevertheless true
that there may be exponentially many computational paths, some leading
to accepting and some to rejecting final configuration. For the acceptance
probability, we should add the amplitudes with equal final configurations
(this is interference!) and eventually discover the sum of squared absolute
values of the accepting configurations.

Now the standard strategy for computing the total acceptance proba-
bility is to reuse space for computing each final amplitude for each com-
putational path. A more elaborate analysis will demonstrate that this is
indeed enough: computing the total acceptance probability is possible to do
in PSPACE by always reusing the space.

A somewhat more precise result can be obtained by using the strategy
of [2] or [1].

Theorem 3. BQP ⊆ PP

Proof sketch. Without loss of generality, we may assume that there is only
one accepting final configuration, which can be achieved via paths P1, . . .,
Pr with amplitudes α1, . . ., αr. In fact, the proof would be essentially the
same for multiple final accepting configurations, only the technical details
would be more complicated.

31

Now the acceptance probability is given by∣∣∣ r∑
i=1

αi

∣∣∣2 =
(r∑
i=1

αi

)(r∑
j=1

α∗j

)
=

r∑
i=1

r∑
j=1

αiα
∗
j

=
r∑
i=1

|αi|2 +
∑
i>j

2 Re(αiα
∗
j),

a sum where each αi can be computed in polynomial time. In order to
convert the evaluation of that sum into an PP algorithm M , we just need to
let M guess, instead of a single guess in BQP machine, two computational
paths, one leading to amplitude αi and the other one to αj in the above
formula.

After guessing the paths, compute αi and αj (can be done in polynomial
time). Then compute |αi|2, if i = j, and 2 Re(αiα

∗
j) if i 6= j, and proceed as

follows: if i = j, create roughly C · α2
i accepting successor paths. If i 6= j

but 2 Re(αiα
∗
j) > 0, create roughly C · 2 Re(αiα

∗
j) accepting paths, but if

2 Re(αiα
∗
j) < 0, create about C · 2 Re(αiα

∗
j) rejecting paths.

Here C is a constant depending on the precision of the numbers occurring
in the definition of a PP machine, the number of the paths must be certainly
an integer. For a detailed proof, see [2].

Remark 5. The latest theorem shows that the polynomial time quantum
computing in BQP can be simulated in polynomial time classical model
PP, but as noted previously, PP cannot be regarded as “practical comput-
ing”. Especially, the bounded error -property of BQP is usually lost in the
simulation.

Remark 6. Scott Aaronson has pointed out [1] that the PP simulation
of BQP following the computational paths is analogous to the Feynman
path integrals. The analogue is certainly evident, but the details are not so
straightforward.

6 Finite automata

Finite automata, especially their probabilistic versions are the main subject
of this final chapter. As a general information source on regular languages
and finite automata, we refer to Eilenberg [7] and Yu [28]. For probabilistic
generalization of the finite automata, Rabin [22], Turakainen [26] and Paz
[20] are recommended, and their quantum versions can be studied from
Hirvensalo [14], [15], or Ambainis and Yakaryılmaz [3].

32

Finite automata are very natural mathematical tools for presenting space-
bounded computation. However, in my opinion, the beauty of the automata
theory lies in its elegant mathematical properties: closure under Boolean
operations and Kleene star, multiple alternative viewpoints such as ratio-
nal formal power series, finite syntactic monoids (recognizability), etc., see
Yu[28].

As a natural generalization (and a variant) of deterministic (and non-
deterministic) finite automata, Rabin introduced in 1963 probabilistic finite
automata and stochastic languages Rabin [22]. Because we are anyway go-
ing to extend the notion of stochastic automata, it is useful here to start
from the general case and then introduce the special one.

Definition 5. A Generalized finite automaton over R, also known as R-
weighted finite automaton with n states over an alphabet Σ is a triplet
(x, {Ma | a ∈ Σ},y), where x ∈ Rn is the initial (column) vector, each
Ma ∈ Rn×n is an n× n transition matrix, and y is the final (row) vector in
Rn.

To shorten the notations in the following definitions, we introduce some
technical notions meanwhile.

Definition 6. The reverse (or mirror image) of a word w = a1a2 . . . an is
defined as wR = an . . . a2a1.

Definition 7. If matrices Ai are indexed by letters ai, then for any word
w = a1a2 . . . an, matrix Aw is defined as Aw = Aa1Aa2 . . . Aan . In other
words, mapping w → Aw is a morphism from the semigroup of the words
into the semigroup of matrices. This morphism is extended to the monoid
of words by assigning the identity matrix to the empty word.

Definition 8. The value fA(w) computed by a generalized automaton A
on input word w = w1 . . . wn is given by

fA(w) = yTMwRx. (16)

On our way to stochastic automata, we need to introduce some more
definitions and brief lemmata.

Definition 9. A stochastic vector is a column vector with nonnegative co-
ordinates which sum up to 1.

Definition 10. A matrix A is a stochastic, if all its columns are stochastic
vectors.

33

The following lemma is straightforward, but essential in depicting the
mathematical form of stochastic computing.

Lemma 3. If x is a stochastic vector and A and B stochastic matrices,
then Ax is a stochastic vector and AB is a stochastic matrix.

Definition 11. A stochastic (also called probabilistic) finite automaton P =
(y, {Ma | a ∈ Σ},x) with n states over an alphabet Σ is a generalized finite
automaton where each transition matrix, the initial vector x is stochastic,
and the final vector y is in {0, 1}n.

The following lemma is an obvious consequence of the definitions:

Lemma 4. Let P be a stochastic finite automaton as above. Then its value
function satisfies

fP (w) = yTMwRx ∈ [0, 1] (17)

for each w ∈ Σ∗.

Remark 7. According to the previous lemma, a stochastic (probabilistic)
automaton assigns to each input word w a number fP (w) ∈ [0, 1]. This
number can be interpreted as a probability to accept the input word, and
this interpretation gives raise to the following definition.

Definition 12. Let P be a stochastic automaton and λ ∈ [0, 1]. We will
call λ as the cut-point, and the stochastic cut-point language is defined as

L>λ(P) = {w ∈ Σ∗ | fP (w) > λ}. (18)

The set of stochastic cut-point languages will be denoted as S> hereafter
and called stochastic languages.

Definition 13 (Stochastic and generalized languages). If symbol “>” in
Equation (18) of Definition 12 is replaced with <, =, ≥, etc., we then de-
note the corresponding language classes by S<, S=, S≥, etc. If the au-
tomaton model is relaxed to allow a generalized automaton, we denote the
corresponding language classes as G<, G=, G≥, etc.

When restricting to rational entries (matrices, initial and final vectors,
and the cut-point), we will use subindex Q and write S>Q, G>

Q, etc.

As mentioned before, the study of stochastic languages started roughly
1963, when Rabin published his article [22]. Using a cardinality argument,
Rabin demonstrated that there must be stochastic languages which are not
rational. Rabin also noticed an important property of the bounded error
automata formally defined below:

34

Definition 14. Let P and L>λ(P) be as in Definition 12. The cut-point
λ is called isolated, if there exists an ε > 0 so that for each w ∈ Σ∗ either
fP (w) ≥ λ+ ε or fP (w) ≤ λ− ε. Such an automaton P is called a bounded
error stochastic automaton, and languages defined by such automata are
called bounded-error stochastic languages.

Remark 8. The bounded error property for automata is analogous to BPP
property of the Turing Machines: If the acceptance probability can be ar-
bitrarily close to λ, then it may require exponentially many attempts to
practically separate cases w ∈ L and w /∈ L. But whereas we do not know
whether the inclusion P ⊆ BPP is strict (it is supposed not to be, though),
we know that the bounded-error probabilistic automata do not bring any
additional computing power: Quite remarkably, Rabin demonstrated that
any bounded-error stochastic language is regular [22].

Since Rabin’s seminal article, it seems that the next few years brought
quite little progress in the theory of stochastic languages, but this may be un-
derstood via the Rabin’s aforesaid result forcing all bounded-error stochas-
tic languages regular. Even though Rabin demonstrated that nonregular
stochastic languages exists, no explicit example was given.

After Rabin’s result, there were some progress on probabilistic automata,
but the next steps relevant to this study were achieved only in the end of
1960’s when Paavo Turakainen presented his works [26] and [27], where an
explicit construction of a nonregular stochastic language was presented.

Theorem 4 (Turakainen [27]). Language {anbn | n ∈ N} is stochastic.

Notice that the pumping lemma [28] implies that the language {anbn |
n ∈ N} cannot be regular, and by Rabin’s result, it is clear that this language
cannot be a bounded-error stochastic, either.

The rest of this section is dedicated to Turakainen’s method to prove
the above claim. It will be argued that in the final step, Turakainen used
the interference of computational paths, but also that prior to that, he
presented a general method for simulating interference in general automata
using stochastic automata. As we shall see, the price of such simulation is
analogous to PP simulation of BQP: The bounded-error property of the
cutpoint will be lost.

Remark 9. In 1981, Rūsiņš Freivalds demonstrated that the language
{anbn | n ∈ N} can be recognized by a probabilistic two-way finite au-
tomaton with a bounded-error probability [10]. Freivald’s construction was

35

completely different from that of Turakainen, and requires exponential run-
ning time. Even though Freivald’s construction is very interesting, it does
not make use of interference, and hence is not included in this tutorial.

Hereafter I will argue that this construction by Turakainen, showing that
{anbn | n ∈ N} is stochastic, was the earliest example of using interference in
computational processes. To be honest, I will only argue that Turakainen’s
proof uses interference, and if a reader recognizes any earlier usage of inter-
ference in algorithm construction, I warmly invite him/her to let me know
of such occasion.

As the interference requires both positive and negative “amplitudes”
which don’t occur in probabilistic automata, the model must be first ex-
tended to allow also negative numbers, this is what we called generalized
automata in the beginning of this section, likewise Turakainen did in [26].

The first steps towards a general result are very simple.

Lemma 5. If fA and fB are functions Σ∗ → R computed by generalized
automata A and B, then so are fAfB and fA + fB.

Proof sketch. The tensor product construction ensures that function fAfB
can be computed by a generalized automaton. Similarly, the direct sum con-
struction ensures that fA+fB can be computed by a generalized automaton,
Paz [20], Hirvensalo [15].

Lemma 6. Let G be a generalized automaton and λ ∈ R. Then it is possible
to construct a generalized automaton G′ so that L>λ(G) = L>0(G

′).

Proof. As the constant function Σ∗ → R, w 7→ −λ can be easily computed
by a one-state generalized automaton, the claim follows directly from the
previous lemma.

Lemma 7. For any generalized automaton G, it is possible to construct an-
other generalized automaton G′ which has its initial vector of form (1, 0, . . . , 0),
its final vector of form (0, 0, . . . , 1) and fG(w) = fG′(w).

Proof sketch. If x and y are the initial and final vectors of G, then replacing
each matrix A of G with  0 0 0

Ax A 0
yTAx yTA 0


will do.

36

Since each probabilistic automaton is a special case of R-weighted au-
tomaton, it is clear that S> ⊆ G>. Turakainen’s great contribution was to
show that also the contrary is true.

Theorem 5 (Turakainen [26]).

G> = S>.

Proof. Let L be a cut-point language of an n-state generalized automaton
G = (x, {Ai | i ∈ Σ},y). Due to the previous lemmata, we can assume that
the cut-point equals to 0, and that the initial and final vectors are chosen
as x = (1, 0, . . . , 0), and y = (0, . . . , 1). It remains to be shown that there
is a stochastic automaton S and λ ∈ [0, 1] so that L = L>λ(S).

Step 1. Annihilating row and column sums. Let Bi be an (n+ 2)× (n+ 2)-
matrix defined by augmenting Ai at each size by one row or column:

Bi =

 0 0 0
bi Ai 0
ai ci 0

 ,

where ci ∈ Rn, bTi ∈ Rn, and ai ∈ R are chosen so that the row and column
sums of Bi are zero. Clearly bi, ci, ai are determined uniquely. It is also
straightforward to see that for any w ∈ Σ+,

Bw =

 0 0 0
bw Aw 0
aw cw 0

 ,

where bw, cw, and aw make the row and column sums of Bw zero. Intro-
ducing two extra rows and columns here correspond2 to adding two states
to the automaton.

More importantly, letting x1 = (0,x, 0) ∈ Rn+2 and y1 = (0,y, 0) ∈
Rn+2 we can see that

yT1Bwx1 = yTAwx.

By the assumption, both x1 and y1 are of special type: Exactly one coor-
dinate equals to 1, the other ones are 0.

Step 2. Forcing entries positive. Let E be an (n+2)×(n+2) matrix having
all elements equal to 1, Choose c > 0 large enough so that each element of
each

Ci = Bi + cE,

37

is nonnegative. Now that the columns and rows of each Bi sum up to 0, it
follows that BiE = EBi = 0, where 0 stands for the zero matrix. As also
Ek = (n+ 2)k−1E, it follows that

Cw = Bw + c|w|(n+ 2)|w|−1E.

As the row and the column sums of each Bi is zero, and those of cE is
c(n+ 2), it follows that the row and column sums of each Ci is c(n+ 2).

Step 3. Renormalization. Let

Di =
1

c(n+ 2)
Ci.

It follows immediately that each entry of Di is nonnegative, and that the
row and column sums of each Di equals to 1, which is another way to say
that each Di is doubly stochastic.

An easy calculation then shows that

Dw =
1

(c(n+ 2))|w|
Bw +

1

n+ 2
E,

and it follows that

yT1Dwx1 =
1

(c(n+ 2))|w|
yT1Bwx1 +

1

n+ 2
yT1 Ex1

=
1

(c(n+ 2))|w|
yTAwx +

1

n+ 2
, (19)

so yT1Dwx1 > 1
n+2 ⇔ yTAwx > 0. The claim follows now by choosing

S = (x1, {Di | i ∈ Σ},y1) and λ = 1
n+2 .

Remark 10. The above construction by Turakainen maps a set {Ai | i ∈
Σ} of arbitrary matrices into a set {Di | i ∈ Σ} of stochastic matrices.
Without any constraints, such a mapping would be straightforward to find,
but Turakainen’s construction ingeniously preserves multiplicative structure
of the original set well enough. On the other hand, as the first term of
Equation (19) tends to zero when |w| → ∞, it is clear that the boundedness
property of the threshold (if originally existed) is not preserved.

Nevertheless, this construction simulates interference (if such exists in
the original generalized automaton) by using a stochastic automaton and is
analogous to proving that BQP ⊆ PP.

In order to prove Theorem 4, it will be useful to present another auxiliary
result.

38

Lemma 8 (Turakainen [27]). G=
Q ⊆ G>

Q ⊆ G> = S>.

Proof sketch. The last equality is that of Theorem 5, and the second last
inclusion is trivial. For the first inclusion, let L ∈ G=

Q and let also A =
(x, {Ai | i ∈ Σ},y) a generalized automaton with rational matrix entries so
that

L = {w ∈ Σ∗ | yTAwx = λ}.

Using the construction of Lemma 5, it is possible to obtain a generalized
rational-entry automaton B so that

L = {w ∈ Σ∗ | yTBwx = 0}.

Now choose M as the least common multiple of all denominators of the
numbers in the description of automaton B to obtain a generalized integer-
entry automaton C so that

L = {w ∈ Σ∗ | yTCwx = 0}.

As now yTCwx ∈ Z, we can also write

L = {w ∈ Σ∗ | (yTCwx)2 < 1},

and by Lemma 5 there is a generalized automaton D = (x1, {Di ∈ Σ},y1)
so that (yTCwx)2 = yT1Dwx1. It follows that

L = {w ∈ Σ∗ | yT1Dw(−x1) > −1},

which proves that L ∈ G>
Q.

The above lemmata show that in order to prove Turakainen’s theorem
(Theorem 4), it is sufficient to show that the language L = {anbn | n ∈ N}
(or a closely enough related language) is in G=

Q.
For that purpose, Turakainen presented the automaton in Figure 6. The

automaton in Figure 6 consists of weighted versions of two copies of a three-
state automaton recognizing regular language a+b+ plus one sink state s.
Each copy contains one initial state (p1 and q1, both with weight 1

2) and one
final state (p3 and q3, with weights 2 and −2, respectively).

Because of the automaton structure, it is clear that only words of form
a+b+ can survive from an initial state to a final state, so let’s consider an
input word w = an+1bk+1. The weight contribution of the upper copy is
then 1

2(12)n+1(14)k(34) · 2, and the contribution of the lower copy is 1
2(14)n · 34 ·

(12)k+1(−2).

39

p1

q1

p2

q2

p3

q3

s

1
2

1
2

a(12)

a(14)

b(14)

b(12)

a(12)

a(34)

b(34)

b(12)

b(1)

b(1)

a(1)

a(1)

a, b(1)

a, b(1)

a, b(1)

2

−2

Figure 6: Turakainen’s G=
Q automaton for L = {anbn | n ≥ 1} ∪ ({a, b}∗ \

a+b+) consists of two weighted versions of automaton recognizing language
a+b+. The weights of the transitions are in the brackets, the initial (resp.
final) states are indicated by incoming (resp. outcoming arrows). Their
weights are directly associated with the arrows.

As the final weights are of different signs, the weights of different com-
putational paths can cancel each other: This is exactly where destructive
interference occurs in automaton 6. Quite likely a reader used to quantum
computing models and seeking the best analogy would probably had used
initial weights 1

2 and −1
2 , and final weights both equal to 1, but the effect is

the same anyway. Now, adding up the contributions of the upper and lower
rows, we can conclude that the total weight associated to the word an+1bk+1

40

is

1

2

(1

2

)n+1(1

4

)k(3

4

)
· 2 +

1

2

(1

4

)n
· 3

4
·
(1

2

)k+1
(−2)

=
3

4

(1

2

)n+k+1((1

2

)k
−
(1

2

)n)
.

It is hence clear that the language of the G=
Q-automaton of Figure 6 with

λ = 0 is exactly {anbn | n ≥ 1}∪
(
{a, b}∗\a+b+

)
, meaning that the accepted

words are those of form anbn with n ≥ 1, and those that are not of form
a+b+ (they fall into the sink state, hence their total weight will be 0 as
well). The crucial point here is that inside the language a+b+, only words
of form anbn have the property that their computational paths cancel each
other. To put it in another way: A finite automaton has limited memory for
computing, but in the generalized automaton of Figure 6, the interference
“handles” the counting.

As mentioned above, the language L of the automaton in Figure 6 is
not exactly the desired {anbn | n ∈ N}, but {anbn | n ∈ N} ∪ L1, where
L1 = {a, b}∗ \ a+b+ consists of words not of form a+b+. However, clearly

{anbn | n ∈ N} = L ∩ L1,

and because of the aforesaid constructions, we know that L ∈ G=
Q ⊆ S>Q.

The proof of Theorem 4 is now almost complete, and the very last simple
lemma will conclude it:

Lemma 9. The intersection of stochastic language L1 ∈ S> and regular
language L2 is stochastic.

Proof. Let A be a stochastic automaton so that L1 = L>λ(A) = {w |
fA(w) > λ} and B a deterministic automaton (a subcase of stochastic
automaton). Now the function computed by B satisfies fB(w) ∈ {0, 1},
and by Lemma 5, there is a generalized automaton C so that fC(w) =
fA(w)fB(w).

References

[1] Scott Aaronson: Quantum Computing Since Democritus. Cambridge
University Press (2013).

[2] Leonard M. Adleman, Jonathan Demarrais, and Ming-Deh A. Huang:
Quantum Computability. SIAM Journal on Computing 26:5, pp. 1524–
1540 (1997).

41

[3] Andris Ambainis and Abuzer Yakaryılmaz: Automata and Quantum
Computing, a manuscript. https://arxiv.org/abs/1507.01988, read
03 Jul 2017.

[4] Paul Benioff: The computer as a physical system: A microscopic quan-
tum mechanical Hamiltonian model of computers as represented by Tur-
ing machines. Journal of Statistical Physics 22:5, pp. 563–591 (1980).

[5] David Deutsch: Quantum Theory, the Church-Turing Principle and
the Universal Quantum Computer. Proceedings of the Royal Society of
London A. 400: 97–117 (1985).

[6] David Deutsch and Richard Jozsa: Rapid solutions of problems by quan-
tum computation. Proceedings of the Royal Society of London A. 439:
553–558 (1992).

[7] Samuel Eilenberg: Automata, Languages, and Machines. Academic
Press (1974).

[8] Richard P. Feynman: Simulating physics with computers. International
Journal of Theoretical Physics 21, 467–488 (1982).

[9] Richard P. Feynman: Negative probability. In Basil J. Hiley and D. Peat
(eds.): Quantum Implications: Essays in Honour of David Bohm, pp.
235–248 (1987).

[10] Rūsiņš Freivalds: Probabilistic Two-Way Machines. Proceedings on
Mathematical Foundations of Computer Science, LNCS 188, pp. 33–
45 (1981).

[11] John Gill Computational complexity of probabilistic Turing machines.
SIAM Journal on Computing 6 (4), pp. 675695 (1977).

[12] Godfrey H. Hardy, Edward M. Wright: An introduction to the theory
of numbers, 5th ed. (1979).

[13] Mika Hirvensalo: Quantum Computing, 2nd edition. Springer (2004).

[14] Mika Hirvensalo: Various Aspects of Finite Quantum Automata. LNCS
5257 (Proceedings of DLT 2008), pp. 21–33 (2008).

[15] Mika Hirvensalo: Quantum Automata with Open Time Evolution. In-
ternational Journal of Natural Computing Research 1, 70–85 (2010).

42

[16] Mika Hirvensalo: Mathematics for Quantum Information Processing. In
G. Rozenberg, T. Bck, J. Kok (eds.): Handbook of Natural Computing.
Springer (2012).

[17] Yuri Manin: Computable and Uncomputable (in Russian). Sovetskoye
Radio, Moscow (1980).

[18] John von Neumann: Mathematische Grundlagen der Quanten-
mechanik. Springer (1932).

[19] Christos H. Papadimitriou: Computational Complexity. Pearson (1994).

[20] Azaria Paz: Introduction to Probabilistic Automata. Academic Press
(1971).

[21] Max Planck: Annalen der Physik 1, 69, 1900; Verhandlg. dtsch. phys.
Ges., 2, 202; Verhandlg. dtsch. phys. Ges. 2, 237; Annalen der Physik
4, 553, 1901.

[22] Michael O. Rabin: Probabilistic automata. Information and Control 6,
pp. 230–245 (1963).

[23] Peter W. Shor: Algorithms for Quantum Computation: Discrete Log-
arithms and Factoring. Proceedings of the 35th Annual Symposium
on Foundations of Computer Science 20–22, IEEE Computer Society
Press, pp. 124-134 (1994).

[24] Victor Shoup: Lower Bounds for Discrete Logarithms and Related Prob-
lems. Lecture Notes in Computer Science 1233, pp. 256–266 (1997).

[25] Daniel Simon: On the Power of Quantum Computation. Proceedings of
the 35th IEEE Symposium on Foundations of Computer Science, pp.
116–123 (1994).

[26] Paavo Turakainen: On Probabilistic Automata and their Generaliza-
tions. Annales Academiae Scientiarum Fennicae. Series A 429 (1969).

[27] Paavo Turakainen: On languages representable in rational probabilis-
tic automata. Annales Academiae Scientiarum Fennicae. Series A 439
(1969).

[28] Sheng Yu: Regular Languages. In: G. Rozenberg and A. Salomaa:
Handbook of Formal Languages, vol 1, Springer (1997).

43

[29] Thomas Young: The Bakerian Lecture: On the Theory of Light and
Colours. Philosophical Transactions of the Royal Society of London.
92: 12-48 (1802).

44

