
Internal Interface Diversification
with Multiple Fake Interfaces ∗

Sampsa Rauti
University of Turku
sjprau@utu.fi

Ville Leppänen
University of Turku

ville.leppanen@utu.fi

ABSTRACT
Malware uses knowledge of well-known interfaces to achieve
its goals. However, if we uniquely diversify these interfaces
in each system, the malware no longer knows the ”language”
of a specific system and it becomes much more difficult for
malicious programs to operate. This paper extends the idea
of interface diversification by presenting a scheme where a
fake original interface and multiple other fake interfaces are
provided along with the valid interface in order to log the
suspicious activity in the system and possibly deceive mal-
ware by initiating fallacious interaction with it. We also
present a proof-of-concept implementation of this scheme in
Linux environment and conduct experiments with it.

Keywords
Diversification, Moving target defence, Deception

1. INTRODUCTION
Protecting computer systems from attacks requires taking

into account the complex environment with several previ-
ously unknown security holes. On the other hand, a mali-
cious attacker only needs one vulnerability in order to com-
promise a system. However, malware often relies on prior
knowledge on known interfaces – most attacks depend on
the known internal interfaces provided in the target system
[17].

Due to the software monoculture prevailing today, there
are huge number of instances of the same execution plat-
form having identical internal interfaces. A malicious ex-
ploit therefore works on millions of systems. If the inter-
nal interfaces that malware uses for accessing the essential
resources of a system would be unique on each computer,
*The authors gratefully acknowledge the support of The
Scientific Advisory Board for Defence (MATINE). This re-
search is also funded by Tekes – the Finnish Funding Agency
for Innovation, DIMECC Oy and CyberTrust research pro-
gram.
Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
ECSA, November 28-December 02, 2016, Copenhagen, Denmark

© 2017 ACM. ISBN 978-1-4503-4781-5/16/11…$15.00
DOI: http://dx.doi.org/10.1145/2993412.2993417

exploits relying on the knowledge about the identical inter-
faces would become useless (see e.g. [3] and [6]).

We refer to this scheme as interface diversification. In a
diversified system, malware does not possess the knowledge
of the secret “language” used in the system and is not able
to access any important services and resources offered by
the system. The trusted programs, on the other hand, are
diversified accordingly in order to be compatible with the
diversified interfaces they utilize.

The contributions of this paper are as follows. We extend
the idea of internal interface diversification by introducing
the concept of multiple fake interfaces and constantly chang-
ing diversification. The approach we present can be seen
as combining the ideas of internal interface diversification
[9, 12], fake interfaces [11] and moving target defense [8, 14].

The rest of this paper is organized in the following way.
Section 2 explains the general idea of internal interface di-
versification. Section 3 extends this idea to multiple fake in-
terfaces and a dynamically changing valid interface. Section
4 discusses how fake interfaces can be used to monitor and
deceive malware. Section 5 presents our proof-of-concept
implementation in Linux environment and related experi-
ments. Section 6 discusses internal interface diversification
with multiple fake interfaces as a security measure, and de-
scribes the strengths and drawbacks related to multiple fake
interfaces. Benefits and drawbacks of the scheme are also
discussed. Finally, Section 7 concludes the paper.

2. INTERFACE DIVERSIFICATION – THE
GENERAL IDEA

When we apply internal interface diversification, we limit
the number of assumptions an attacker is able to make about
the target system’s internal interfaces. The interfaces are al-
tered to make them unpredictable for malicious adversaries.
In practice, diversification can be implemented by using dif-
ferent obfuscation techniques [4]. In the context of interface
diversification, even simple obfuscation transformations like
renaming functions and altering the order of parameters in
their signatures can be employed.

By interface, we mean anything that can potentially be
used to gain access to essential resources of a computer.
Therefore, not only ordinary interfaces provided by libraries
and software modules but also for instance commands of a
shell language or even memory addresses (of specific ser-
vices or resources) are considered as interfaces that can be
diversified to protect the system from malicious attacks.

An example that illustrates internal interface diversifica-
tion in practice is altering the mapping of system calls of

an operating system. Applications request services from the
operating system’s kernel using system calls in order to ac-
cess the computer’s resources.

In the Linux operating system, for instance, diversifica-
tion can be achieved by replacing the original system call
numbers with new ones. Diversification also has to be prop-
agated to all pieces of code that invoke the system calls.
Respectively, the names of library functions that directly or
indirectly issue system calls have to be changed so that the
malicious programs can not use them. That is, the transi-
tive closure of the system calls is diversified as a part of the
scheme so that harmful programs cannot exploit any system
call entry points to use the resources provided by the sys-
tem. Moreover, since the idea here is to diversify the system
call numbers in each system uniquely, the adversary cannot
use the knowledge gained by compromising one system to
launch a large-scale attack covering other systems.

Note that internal interface diversification does not pre-
vent the malware from entering the system, it just renders
useless malicious programs’ attempts to use the resources of
the system. Another thing worth noting is that the diversi-
fication does not cause extra work for developers. Interface
diversification can be done with an automatic diversifier tool
after an application or a library is ready for deployment. Di-
versification is also invisible to the users of the system. This
is because we do not target external interfaces visible to user
but diversify internal interfaces that are usually used by ad-
versaries.

3. INTERFACE DIVERSIFICATION USING
MULTIPLE FAKE INTERFACES

In this section, we discuss interface diversification with
multiple fake interfaces and several related approaches for
extending and strengthening interface diversification as a
security measure. These include e.g. continuously changing
diversification and finer diversification granularity.

3.1 The Idea of a Fake Original Interface
Applying diversification does not necessarily have to mean

that we want to completely prevent the malware from op-
erating. If we also want to understand the behavior of mal-
ware, we could present it with a fake interface providing the
functionality of a real target environment. However, the
fake interface would limit malware’s ability to cause dam-
age to the infected system and prevent it from spreading to
the other hosts in a network.

In order to achieve this, we can use a fake original in-
terface. For example, using the system call interface as an
example, we have the real diversified interface used by the
trusted programs, but also leave the the original system call
numbers in the system so that malware can use them (with-
out any real adverse effects). This fake original interface
makes it possible to observe and log malware’s activities.
Moreover, it is possible to deceive a malicious program into
believing its operations are successful in the target system.
This paper concentrates on the fake interfaces but does not
deal with building further fake resources or bogus data used
for deception. In order to deceive malware, it is clear that
we would need a honeypot solution that keeps pretending
that the actions of malware really have some effects on the
system. We have addressed this kind of advanced deception
elsewhere [15].

With the diversified interface and fake original interface
in place, each system service will be accessible using the di-
versified secret system call number and the original interface
exists as a kind of a honeypot. All the applications, services
and libraries in the system are made compatible with the di-
versified system call interface. Consequently, trusted code
should never use the original interface. Malware that uses
the well-known system call interface directly can now be eas-
ily detected. A process invoking a well-known system call is
always unexpected and suspicious – in these cases something
unwanted is definitely executing in the system. This way,
diversification can be combined with intrusion detection and
analyzing behavior of malware.

Although the system call interface is used as an example
above, diversifying it is not enough. This is because the
applications often use wrapper functions when they need
to invoke the system’s services. Several wrapper functions
available in the C standard library are examples of such
functions. Therefore, we also have to diversify all the entry
points leading to system calls to effectively prevent malicious
pieces of code from causing harm in the system.

3.2 Multiple Fake Interfaces
The scheme described above can be extended. We can

make it significantly more difficult for malware to break the
diversification scheme by introducing multiple diversified in-
terfaces. One of these interfaces at a time is the valid inter-
face that can be utilized by applications to use the services
provided by the system. Other interfaces are fakes, possibly
logging the suspicious activity in the system.

The basic idea of multiple fake interfaces is shown in Fig-
ure 1. There is the fake original interface which always re-
mains a fake and a set of other interfaces, only one of which
is the valid interface at a time. Each trusted program knows
how to use this valid interface, but a malicious program ei-
ther uses the fake original (malware 1 in the figure) or maybe
if its more sophisticated and has an ability to perform dy-
namic analysis, finds a way to use some of the fake interfaces
(malware 2 in the figure).

Figure 1: The idea of multiple fake interfaces.

Multiple fake interfaces can be used to strengthen the di-
versification considerably. When this method is applied to
the system call interface, for example, it is not enough for a
malicious program to guess only one group of system calls,
because one set of these calls only remains valid for a very
short time as the mapping is continuously changed.

If we only have one secret diversified interface that does
not change and a malicious program somehow manages to
dynamically analyze the calls issued by a trusted program,
malware may succeed in deducing the meanings of diversi-
fied calls and cause harm in the system (this should not be
easily possible, though, because such analysis would usually
require using system calls, which is exactly the thing mal-
ware is prevented from doing here). This scenario can be
made much more unlikely and more difficult for the mal-
ware by continuously changing the valid internal interface
used by an application (e.g. changing it after each call). In
other words, our scheme considerably complicates the dy-
namic analysis that would be necessary to figure out the
secret mapping.

3.3 Dynamic Diversification
As became apparent above, the correct interface with the

genuine access to the resources of the computer should be
continuously changed to make it harder for the malware to
utilize resources successfully. This idea bears a resemblance
to continuously changing obfuscation introduced by Hohl
[7] and Collberg [5]. However, unlike in these schemes, we
propose switching the valid interface, not replacing chunks
of program code on the fly.

An important question is how often the valid interface
should be changed. There are several options:

• Boot time re-diversification. Change the valid diver-
sified interface on each reboot of the system. This is
the least secure option but incurs practically no perfor-
mance penalty related to changing the valid interface.

• Load time re-diversification. Switch the valid diversi-
fication at load time. This option is only applicable
when a separate diversified interface is being used for
each application or library.

• Run-time re-diversification. Change the valid interface
on the fly all the time (either in the whole system or for
applications separately). This means the valid diversi-
fied interface keeps changing at runtime while several
processes are being executed in the system. This ap-
proach is effective even when the malware performs
dynamic analysis at runtime.

• Re-diversification after every call. Change the valid
interface after some of its entry points is invoked. This
alternative prevents a replay attack where the malware
would somehow be able to immediately mimic a call
made by a trusted application. Re-diversification after
every call could also be be combined with the previous
option, continuous runtime re-diversification.

3.4 Diversification Granularity
In any diversification scheme, granularity is an important

factor. Diversification granularity determines how large part
of the system uses one diversified interface at time. It is
possible to have one valid interface in the whole system at

a time, one separate valid interface for each application or
library, or even several valid interfaces for parts of one exe-
cuting process. More specifically, the alternatives include:

1. Use coarse – and potentially less secure – diversifica-
tion granularity. For example, one system-wide diver-
sification for all the applications and libraries in the
system. That is, all applications have the same valid
interface at each moment.

2. Modify the system so that each application has a sepa-
rate valid interface among the set of interfaces. Imple-
mentation and operation costs become higher. How-
ever, the diversification of each application is now iso-
lated and some critical parts of the system can be re-
diversified more often than some other parts.

3. Make diversification depend on location of invocation
in the program code or memory [13, 16]. This means
the same entry point is diversified differently in differ-
ent positions in the same application or library. Dif-
ferent parts of the same program would have to call
a different valid interface at a specific point in time.
This option provides the finest granularity but is also
quite complex.

Making use of fine-grained granularity along with multiple
fake interfaces provides good security, but the performance
and space overheads are higher. However, even the system-
wide diversification should be quite a safe solution if the
correct diversified interface is changed regularly.

4. MONITORING MALICIOUS BEHAVIOR
AND DECEIVING MALWARE

When we monitor the suspicious calls made by malware,
our fake interface scheme can be viewed as an anomaly-based
intrusion detection system. The idea of anomaly detection
systems is to separate abnormal behaviors by using a set of
rules to classify observed actions [2]. The observed behavior
is classified either as normal or abnormal behavior for a sys-
tem. In our scheme, for example, a system call made using
the well-known system call interface – or any other interface
that is not currently the valid interface – is seen as a signal
that uninvited code is present in the system. The problem of
false positives has usually plagued anomaly-based detection
schemes [19]. An important advantage of our dynamic fake
interface approach is that it does not produce false alarms.
At the same time, there is a risk that our system lets some
malicious activity go undetected.

Of course, the interesting question is what kind of action
should be taken after we detect anomaly in the system. In
their simplest form, honeypot systems can simply raise an
alarm on any unwanted attempt to access the system’s re-
sources. The suspicious activity is logged and the system’s
administrator is notified about the incident. Also, the sys-
tem can automatically stop the execution of the targeted
process and do something about the malicious program.

However, if we want to build a honeypot system to study
behavior of malware, instead of immediately raising an alarm
we can try to interact with malware in order to learn about
its activities. That is, when the malicious program invokes
some of our fake interfaces, we can give it fake response and
fallacious data to deceive it into thinking its actions have

a real effect in the system while in reality this is not the
case. For this purpose, we could have different kinds of fake
entities planted in the system [15].

The goal here would be to attempt to simulate a normal
conversation between malware and the system as well as we
can, deceiving malware and collecting information about its
behavior at the same time. A framework with this kind of
deception and behavioral monitoring could even form a basis
for learning whether the malware somehow tries to combat
or circumvent internal interface diversification and multiple
fake interfaces.

5. A PROOF-OF-CONCEPT IMPLEMENTA-
TION AND EXPERIMENTS

To demonstrate the feasibility of the idea of multiple fake
interfaces and a dynamically changing valid interface, we
built a proof-of-concept implementation for Linux environ-
ment. This section presents our experimental implemen-
tation and offers some observations on the experiments we
performed.

5.1 Implementation
Our experimental proof-of-concept implementation was

built in C++. The objective was to test the idea of mul-
tiple interfaces and a changing valid interface by using a
part of GNU C library (glibc), an implementation of C stan-
dard library, as an original interface. More specifically, for
simplicity we chose 20 system call wrapper functions as an
interface for which we built a fake original interface and a
set of fake interfaces. Replacing the rest of glibc would be
an identical task.

C standard library is an obvious choice to apply our ap-
proach to, because the use of any critical resources of the
system (creating processes, managing memory, deleting files
etc.) happens through this library. Malware can also be ex-
pected to take advantage of this library if it is not using the
system call interface directly.

The attack scenarios our proof-of-concept implementation
addresses cover the threats where the malicious program
tries the invoke functions of a library using their well-known
names and also the cases where the adversary finds out the
secret valid interface by dynamically analyzing the behavior
of a trusted program and then tries to invoke a function
in this interface (which no longer belongs to the currently
valid interface by that time). The first scenario is prevented
because the original functions no longer work and the second
scenario is made considerably more unlikely to work because
of the very limited time window the attacker has.

Our implementation also acts as a simple monitor of mali-
cious activity. Whenever the fake original interface or some
of the current fakes is used, the behavior (the called func-
tion, given parameters and time) is logged, but the excepted
original operation is not performed.

The implementation can be divided in three parts. First,
there is the modified application that issues calls to the in-
terfaces. Second, embedded in application there is diver-
sifying functionality that constantly changes the function
pointers in the application so that they refer to the valid
interface. For example, function pointers are changed so
that all the calls to exit() system call wrapper are redi-
rected to a specific function implementing this functionality
in the valid interface. Third, we have the modified glicb li-

brary containing the set of interfaces (one valid and multiple
fakes) and the fake original interface. The implementation
is depicted in Figure 2.

The function pointers in the application are constantly
changed (by a function that maps the current time stamp
to the function names in the valid interface). To avoid the
problematic cases where a function call might fail because it
is made just before the valid interface changes, the periods of
validity for the previous and the new valid interface have to
overlap for some time (at least few dozens of milliseconds).
This takes care of potential synchronization problems be-
tween web application and interfaces.

5.2 Experiments
...

5.3 Limitations
There are a couple of limitations in our approach. First,

there is always a possibility a malicious program is able to
transfer its execution to a point in our program that allows
it to call the current valid interface. Alternatively, the ma-
licious program can try to analyze the engine responsible
for changing the function pointers that is embedded in the
program. However, both of these threats can be mitigated
with the encryption approach we mentioned in Section 3.2
above.

Also, we naturally also need a diversifier tool that will
automatically add the diversification engine to trusted pro-
grams and identify and modify the points in the program
that call the diversified interface. This was not implemented
as a part of this study since our purpose here was only to
provide a proof that multiple interface diversification can
be made to work smoothly without any problems in the
execution of the program or large performance penalties.
However, adding the diversifying engine to the program and
identifying function calls is doable as a part of the compiling
process or by employing binary rewriting as demonstrated
in our earlier study [10].

While our experiments show that diversification with mul-
tiple fake interfaces is possible and a promosing approach,
experiments in a larger scale are still necessary to further
validate the practicality of the scheme.

6. DISCUSSION
Currently, information technology systems are designed

to function with fixed configurations. Several kinds of iden-
tifiers like names, addresses and configuration parameters
remain unchanged over long periods of time. Internal in-
terface diversification with multiple fake interfaces can be
seen as a breed of Moving Target Defense that alleviates the
problems caused by this traditional static approach.

By continuously changing the valid internal interface, we
increase the complexity and uncertainty for the adversary,
reduce his or her window of opportunity and increase the
costs caused by their efforts. When the exposure of software
vulnerabilities and attack opportunities is limited and the
resiliency of the system system increased.

Internal interface diversification is a general approach in
the sense that it can be applied to any interface in the sys-
tem. Examples include system call interface [13], operat-
ing system libraries [10], command shell languages [9, 20],
database query languages [1] and memory layout [18]. The
approach is also orthogonal: other traditional security mea-

Figure 2: A rough diagram depicting the idea of our JavaScript implementation.

sures can still be used along with it. This is important as
internal interface diversification does is not meant prevent
the malware from infiltrating the system. Instead, it pre-
vents the malware from working and allows the collection
of data to analyze its behavior. Proactiveness is also an
important feature: it does not need to know the nature or
objectives malware beforehand, so the analysis and preven-
tion of previously unknown is also possible.

Internal interface diversification with multiple interfaces
also causes some challenges that have to solved. For exam-
ple, storing entry point mappings for several different inter-
faces takes some extra space. Still, keeping track on simple
mappings like system call numbers or function names does
not usually consume that much space. Having several differ-
ent interfaces for each program obviously requires more disk
and memory space. We can alleviate the space consumption
by generating more interface replicas for critical programs
and libraries and less for other ones. In case of relatively siz-
able libraries, we can also use more lightweight versions of
them. For example, uClibc is a minimal version of glibc, the
C standard library. glibc is so large because it is intended
to support all popular C standards across a wide spectrum
of different hardware and kernel platforms. uClibc is mainly
meant for embedded Linux and the included features can be
chosen based on space requirements. Moreover, if we assume
the system includes an automatic diversifier, new interfaces
can also be created on the fly and old ones can be replaced
by them, which saves lots of space. In this case, however,
special care must be taken not to expose the diversification
engine to malware.

Performance is another issue. While we have seen in
our experiments that overhead is not unreasonable by any
means, constantly changing the valid interface and the pro-
cesses using it does consume processor time. In the end, this
is a typical trade-off between performance and security. As
we saw in Section 3.3, in many cases we may settle for sig-
nificantly less performance-intensive models like load time

diversification.
Taking into account these space and performance consid-

erations, interface diversification with multiple fake inter-
faces should also prove to be a good fit for IoT operating
systems if disk space is used economically and diversifica-
tion is not changed so often that it becomes a burden to
good performance.

7. CONCLUSIONS
This paper has extended internal interface diversification

by introducing an approach where a fake original interface
and multiple other fake interfaces are used in addition to a
constantly changing valid interface. The proposed approach
reduces the window of opportunity for adversaries and also
enables us to log malicious activities in the target system.

As a future work, it would be interesting to build proof-of-
concept implementations for environments other than web
as well. Reducing disk space usage and optimizing perfor-
mance of the approach are also topics worthy of further
study. We believe using multiple fake interfaces is a worth-
while approach for strengthening diversification and improv-
ing software security while at the same time enabling intru-
sion detection and malware analysis.

References
[1] S. Boyd and A. Keromytis. SQLrand: Preventing SQL

Injection Attacks. In Applied Cryptography and Net-
work Security, Lecture Notes in Computer Science Vol-
ume 3089, pages 292–302, 2004.

[2] V. Chandola, A. Banerjee, and V. Kumar. Anomaly
detection: A survey. ACM Comput. Surv., 41(3):15:1–
15:58, July 2009.

[3] F. Cohen. Operating System Protection through Pro-
gram Evolution. Comput. Secur., 12(6):565–584, Oct.
1993.

[4] C. Collberg, C. Thomborson, and D. Low. A Taxonomy
of Obfuscation Transformations. Technical Report 148,
The University of Auckland, 1997.

[5] C. Collberg, S. Martin, J. Myers, and J. Nagra. Dis-
tributed application tamper detection via continuous
software updates. In Proceedings of the 28th Annual
Computer Security Applications Conference, ACSAC
’12, pages 319–328. ACM, 2012.

[6] S. Forrest, A. Somayaji, and D. Ackley. Building Di-
verse Computer Systems. In Proceedings of the 6th
Workshop on Hot Topics in Operating Systems (HotOS-
VI), HOTOS ’97, 1997.

[7] F. Hohl. Time limited blackbox security: Protecting
mobile agents from malicious hosts. In Mobile Agents
and Security, pages 92–113. Springer-Verlag, 1998.

[8] S. Jajodia, A. K. Ghosh, V. Swarup, C. Wang, and X. S.
Wang. Moving target defense: creating asymmetric un-
certainty for cyber threats, volume 54. Springer Science
& Business Media, 2011.

[9] G. Kc, A. Keromytis, and V. Prevelakis. Countering
Code-injection Attacks with Instruction-set Random-
ization. In Proceedings of the 10th ACM Conference
on Computer and Communications Security, CCS ’03,
pages 272–280, 2003.

[10] S. Lauren, P. Mäki, S. Rauti, S. Hosseinzadeh,
S. Hyrynsalmi, and V. Leppänen. Symbol diversifica-
tion of Linux binaries. In 2014 World Congress on In-
ternet Security (WorldCIS), pages 74–79. IEEE, 2014.

[11] S. Laurén, S. Rauti, and V. Leppänen. An interface di-
versified honeypot for malware analysis. In Proccedings
of the 10th European Conference on Software Architec-
ture Workshops, Copenhagen, Denmark, November 28
- December 2, 2016, pages 29:1–29:6, 2016.

[12] S. Laurén, P. Mäki, S. Rauti, S. Hosseinzadeh,
S. Hyrynsalmi, and V. Leppänen. Symbol diversifica-
tion of linux binaries. In World Congress on Internet
Security (WorldCIS-2014), pages 74–79. IEEE, 2014.

[13] Z. Liang, B. Liang, and L. Li. A System Call Ran-
domization Based Method for Countering Code Injec-
tion Attacks. In International Conference on Networks
Security, Wireless Communications and Trusted Com-
puting, NSWCTC 2009, pages 584–587, 2009.

[14] V. Pappas, M. Polychronakis, and A. Keromytis. Prac-
tical software diversification using in-place code ran-
domization. In S. Jajodia, A. K. Ghosh, V. Subrahma-
nian, V. Swarup, C. Wang, and X. S. Wang, editors,
Moving Target Defense II, volume 100 of Advances in
Information Security, pages 175–202. Springer, 2013.

[15] S. Rauti and V. Leppänen. A survey on fake entities as
a method to detect and monitor malicious activity. In
2017 25th Euromicro International Conference on Par-
allel, Distributed and Network-based Processing (PDP),
pages 386–390, 2017.

[16] S. Rauti, J. Teuhola, and V. Leppänen. Diversifying
SQL to Prevent Injection Attacks. In Proceedings of
Trustcom/BigDataSE/ISPA, pages 344–351, 2015.

[17] S. Rauti, S. Lauren, J. Uitto, S. Hosseinzadeh, J. Ruo-
honen, S. Hyrynsalmi, and V. Leppänen. A Survey on
Internal Interfaces Used by Exploits and Implications
on Interface Diversification, pages 152–168. Springer
International Publishing, 2016.

[18] D. Stanley, D. X., and E. Spafford. Improved kernel se-
curity through memory layout randomization. In Per-
formance Computing and Communications Conference
(IPCCC), 2013 IEEE 32nd International, pages 1–10,
2013.

[19] G. Tandon and P. Chan. Learning rules from system
call arguments and sequences for anomaly detection. In
ICDM Workshop on Data Mining for Computer Secu-
rity (DMSEC), pages 20–29, 2003.

[20] J. Uitto, S. Rauti, J.-M. Mäkelä, and V. Leppänen.
Preventing Malicious Attacks by Diversifying Linux
Shell Commands. In Proceedings of the 14th Sympo-
sium on Programming Languages and Software Tools
(SPLST’15), CEUR Workshop Proceedings 1525, 2015.

