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The concept of a resolving set was introduced independently by Slater
[11] and Harary and Melter [7]. This concept emerges naturally from many
diverse areas such as coin weighing problem [1], network discovery and ver-
ification [2], and robot navigation [9]. For other recent developments, see
[6, 3, 5]. Resolving sets are also related to identifying codes and locating
dominating sets which are widely studied — see the list in the web-site [10]
for papers on these topics.

Consider a connected, finite, simple, and undirected graph G with vertices
V and edges E. Let S be a subset of V . When we think of S as an ordered
set (s1, s2, . . . , s|S|), we can try to locate an another vertex set X with the
distance array

DS(X) = (d(s1, X), d(s2, X), . . . , d(s|S|, X)),

where d(si, X) = min
x∈X

d(si, x) is the shortest distance from si to some vertex

of X.

Definition 1. The set S is an `-resolving set (on `-set resolving set) of
G = (V,E), where ` ≤ |V |, if for every pair of subsets X and Y , with
|X| ≤ ` and |Y | ≤ `, we have

DS(X) 6= DS(Y ).

In other words, an `-resolving set can locate up to ` vertices at the same
time. Let a surveillance network be modelled by a graph. When we place
sensors to the vertices corresponding to the elements of an `-resolving set S,
the sensors can locate up to ` intruders by sending signals to measure the
distance.

Every graph has an `-resolving set for any ` ≤ |V |, since V is always such
a set. We can simply check which elements of DV (X) are 0 and we have
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located all elements of X. Therefore the existence of resolving sets is not
of interest but the size of them is. We denote with β`(G) the `-set-metric
dimension of G, which is the smallest possible cardinality of an `-resolving
set of G. An `-set-metric basis is an `-resolving set that is of cardinality
β`(G).

There has been a lot of research on what values β`(G) gets with different
graphs for ` = 1. For example Khuller, Raghavachari & Rosenfeld proved in
1996 [9] that β1(G) = 1 if and only if G is a path and that for a d-dimensional
grid graph β1(G) = d. Chartrand et al. proved in 2000 [6] that for an n-
vertex graph β1(G) = n− 1 if and only if G is a complete graph. They also
gave characterisations for all n-vertex graphs with β1(G) = n− 2. Resolving
several objects has been studied recently in [8]. There the two-dimensional
grid graph and the binary hypercube are considered.

Let us denote the path of n vertices by Pn. It was shown in [8] that for
the Cartesian product Pm�Pn of two paths we have

β2(Pm�Pn) = min{m,n}+ 2.

Earlier, it was proven by Khuller et al. [9] that

β1(Pm�Pn) = 2.

If two vertices x and y are adjacent, we denote x ∼ y. Let us denote the
strong product of two graphs G = (V,E) and H = (V ′, E ′) by G �H, that
is, it has as the vertex set the Cartesian product V ×V ′ and there is an edge
between (u1, u2) and (v1, v2) if one of the following three conditions hold: 1)
u1 = v1 and u2 ∼ v2, 2) u1 ∼ v1 and u2 = v2 or 3) u1 ∼ v1 and u2 ∼ v2. In
this paper, we consider the king grid Pm � Pn. This graph has been studied
for related topics, see, for example [4].

The king grid is basically a two-dimensional grid graph with diagonal
edges in addition to vertical and horizontal ones (see Figure 1). As such, it
mimics the movement of the king on a chess board.

The vertices of a king grid can be thought as N×N lattice points. We can
give each vertex two coordinates and write the set of vertices of an m×n king
grid as {(i, j) | i = 1, . . . ,m, j = 1, . . . , n}. Now the distance between the
vertices u = (u1, u2) and v = (v1, v2) is d(u, v) = max{|u1 − v1|, |u2 − v2|}.

To ease notations, we define the ith column for i ∈ [1,m] as Ci =
{(i, j)| j = 1, . . . , n}. A section is the union of consecutive columns:

Cj
i =

j⋃
k=i

Ck.
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Figure 1: The 9×6 king grid P9�P6. The black vertices form a 1-set-metric
basis for the graph.

We denote with Sr(u) = {v ∈ V | d(u, v) = r} the set of vertices that are at
the distance of r from the vertex u. Note that if r 6= r′, then Sr(u)∩Sr′(u) =
∅.

For completeness, we first give the following result from [12].

Theorem 1. Let Pm � Pm be an m×m king grid with 2 ≤ m. Then

β1(Pm � Pm) = 3.

Sketch of proof. The greatest distance between any two vertices is m − 1.
Therefore each element of DS(X) has m possible values. If |S| = k, then
there are mk possible distance arrays. Since ` = 1 no distance array can
have more than one zero. Since there are only m2 − 1 acceptable distance
arrays of length two but m2 vertices, we have β1(Pm � Pm) ≥ 3.

If S is a subset of V that contains any three of the graph’s corner vertices,
it is a 1-resolving set of Pm � Pm. Therefore β1(Pm � Pm) = 3.

The next result considers the 1-set-metric dimension for any king grid.
In [12], Rodŕıquez-Velázquez et al. gave a construction giving β1(Pn�Pm) ≤
dn+m−2

n−1 e. They also presented a conjecture that this upper bound is optimal
for any integers n and m such that 2 ≤ n < m. This was recently proved by
Barragán-Ramı́rez and Rodŕıquez-Velázquez in [13]. They used the diameter
and bipartiteness of graphs. In this paper, we present a direct and simple
proof.

Theorem 2. Let Pm � Pn be an m× n king grid with 2 ≤ n < m. Then

β1(Pm � Pn) =

⌈
n+m− 2

n− 1

⌉
.
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Sketch of proof. Assume that S is a 1-resolving set.
Let first n be even. Each (n− 1)×n-section Ci+n−2

i contains at least one
element of S. Indeed, otherwise we would have D(a) = D(b) for a = (i +
n−2
2
, n
2
) and b = (i+ n−2

2
, n
2

+ 1) — for illustration see Figure 2(i). Moreover,
in the both ends of the king grid, the n× n-sections have |Cn

1 ∩ S| ≥ 2 and
|Cm

m−(n−1) ∩ S| ≥ 2 (it is easy to see that one element of S is not enough).

Let first m ≥ 2n. Now let us partition the m × n king grid as follows (see
Figure 3). Take first the two n× n-sections at the both ends of the grid and
then divide the middle section into as many disjoint (n− 1)× n-sections as
possible (there are at most n−2 leftover columns outside the sections, in the
figure there is one column marked by gray vertices). Now the observations
above give |S| ≥ 2 + 2 + bm−2n

n−1 c, which equals the conjectured lower bound.
In the case n < m < 2n, it is easy to show that |S| ≥ 3.

Figure 2: (i) The section Ci+n−2
i illustrated for n = 6 and the vertices a and

b, (ii) The section Ci+n−2
i for n = 7 and the vertex (i − 1, 1) is the black

vertex.

Figure 3: The partition for n = 4 and m = 12.

The case for n odd goes similarly. Just notice that now the (n− 1)× n-
section Ci+n−2

i can be empty of the elements of S, but in that case the

4



neighbouring columns Ci−1 on the left and Ci+n−1 on the right contain both
at least two elements of S (see Figure 2(ii)). Indeed, suppose that the section
Ci+n−2

i is empty. This implies that (i − 1, 1) belongs to S, since otherwise
D(x) = D(y) for x = (i + n−3

2
, n+1

2
) and y = (i + n−3

2
, n+1

2
+ 1). In the

same way, the vertex (i − 1, n) belongs to S. Similarly we can show that
(i+n−1, 1) and (i+m−1, n) belong to S. Therefore, it is easy to show that
in average there is at least one element of S in each of the (n−1)×n-section.
For more details, see [14].

When ` = 2, the vertices at the frame of the king grid can ”hide” behind
its neighbour closer to the center. Therefore all vertices at the frame of the
grid must be in any 2-resolving set, and it turns out that this condition is
sufficient.

Theorem 3. Let Pm � Pn be an m× n king grid with 2 ≤ n ≤ m. Then

β2(Pm � Pn) = 2m+ 2n− 4.

Sketch of proof. Let u = (u1, u2) be a vertex at the frame of the graph i.e.
u1 ∈ {1,m} or u2 ∈ {1, n}.

Assume that u2 = 1. Let v = (v1, v2) 6= u and u′ = (u1, 2). Now
d(u, v) = max{|u1 − v1|, |1− v2|} and d(u′, v) = max{|u1 − v1|, |2− v2|}. If
v2 = 1, then |u1 − v1| ≥ 1, since v 6= u. Now d(u, v) = d(u′, v). If v2 ≥ 2,
then |2− v2| < |1− v2| and therefore d(u, v) ≥ d(u′, v).

Let S be a 2-resolving set of Pm � Pn and assume that u /∈ S. Consider
two vertex sets A = {u′} and B = {u, u′}. Now DS(A) = DS(B) since no
vertex of S can be closer to u than u′ as we saw above. Therefore u ∈ S.

The other cases are handled similarly, namely u1 = 1, u1 = m, and
u2 = n.

This shows that all vertices at the frame of the graph must be included in
the resolving set. With some effort one can show that these vertices indeed
form a 2-resolving set [14].

When ` ≥ 3, we cannot leave any vertex out of the `-resolving set. If we
do, we can always find two sets of vertices that have the same distance array.

Theorem 4. Let Pm � Pn be an m× n king grid with 2 ≤ n ≤ m. Then

β≥3(Pm � Pn) = mn.

5



Proof. In Theorem 3 we saw that the vertices at the frame of the graph must
be included in any 2-resolving set. Therefore they must also be in any 3-
resolving set. If n = 2 or m = 2, all vertices are at the frame of the graph
and the claim holds.

Let S be a 3-resolving set of Pm � Pn where 2 < n ≤ m. Assume that
u = (u1, u2) /∈ S where u1 ∈ [2,m−1] and u2 ∈ [2, n−1]. Let v = (u1−1, u2)
and w = (u1 + 1, u2).

Assume that there is a vertex s = (s1, s2) ∈ S such that d(s, u) < d(s, v)
and d(s, u) < d(s, w).

• If s1 = u1, then d(s, u) < d(s, v) implies that |s2 − u2| ≤ |s1 − u1| = 0
and therefore s2 = u2. Now s = u but this is a contradiction, since
u /∈ S.

• If s1 < u1, then s1 − u1 < 0 and therefore |s1 − u1 + 1| < |s1 − u1|. In
fact |s1 − u1 + 1| = |s1 − u1| − 1. Since d(s, u) < d(s, v),

max{|s1 − u1|, |s2 − u2|} < max{|s1 − u1 + 1|, |s2 − u2|}.

Now |s2−u2| < |s1−u1|, because otherwise d(s, u) = |s2−u2| = d(s, v).
But now |s2−u2| ≤ |s1−u1|−1 = |s1−u1 +1|, and therefore d(s, u) =
|s1 − u1| > |s1 − u1 + 1| = d(s, v), which is a contradiction.

• If s1 > u1, we can just replace v and |s1−u1+1| with w and |s1−u1−1|
in the previous case.

Therefore, every s ∈ S is as close or closer to either v or w than u. But
now DS(A) = DS(B), where A = {v, w} and B = {u, v, w}. Therefore S
cannot be a 3-resolving set if it does not include all vertices of the graph.
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