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Abstract
We study minimizers of the Dirichlet 𝜑-energy integral with generalized Orlicz
growth.We prove the Kellogg property, the set of irregular points has zero capac-
ity, and give characterizations of semiregular boundary points. The results are
new ever for the special cases double phase and Orlicz growth.
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1 INTRODUCTION

We study minimizers of the Dirichlet energy integral in a bounded domain Ω ⊂ ℝ𝑛 with boundary values:

inf ∫
Ω

𝜑(𝑥, |∇𝑢|) 𝑑𝑥,
where the integral is taken over all 𝑢 ∈ 𝑊1,𝜑(⋅)(Ω) with 𝑢 − 𝑓 ∈ 𝑊1,𝜑(⋅)0 (Ω). We assume that strictly convex 𝜑 has the
generalized Orlicz growth and satisfies (A0), (A1), (A1-𝑛), (aInc) and (aDec). These conditions for the generalized Orlicz
function are widely used, see for example [13–16, 27]. Our results include as special cases the constant exponent case
𝜑(𝑥, 𝑡) = 𝑡𝑝, the Orlicz case 𝜑(𝑥, 𝑡) = 𝜑(𝑡), the variable exponent case 𝜑(𝑥, 𝑡) = 𝑡𝑝(𝑥), and the double phase case 𝜑(𝑥, 𝑡) =
𝑡𝑝 + 𝑎(𝑥)𝑡𝑞. Boundary regularity has been recently studied in the variable exponent case for example in [1, 2, 21, 22, 24,
25], in Orlicz case for example in [9, 20, 23], in double phase case in [3], and in the generalized Orlicz case in [11, 17]. Note
the survey [6], that includes more references of variational problems and partial differential equations of this type. We
also mention the books [7], that presents the fundamentals of variable Lebesgue spaces and how they relate to harmonic
analysis, and [26], that surveys the theory of Musielak–Orlicz Hardy spaces.
Let𝑓 ∈ 𝐶(𝜕Ω) be a boundary value function and𝐻𝑓 the corresponding (continuous)minimizer, see Section 3 for defini-

tions. A boundary point 𝑥 ∈ 𝜕Ω is regular if lim𝑦→𝑥,𝑦∈Ω 𝐻𝑓(𝑦) = 𝑓(𝑥) for all 𝑓. Otherwise the boundary point is irregular.
An irregular boundary point is semiregular if the limit exists for all 𝑓. Precise definitions can be found fromDefinitions 3.4
and 6.1. Our main goal is to prove the Kellogg property: the set of irregular boundary points has zero capacity. This is our
Theorem 5.5. In the variable exponent case this was first proved in [21], and later with a different proof in [1]. Then we
prove characterizations of semiregular boundary points, Theorem 6.5, showing for example that the boundary point 𝑥0 is
semiregular if and only if it has a neighbourhood 𝑉 such that capacity of 𝑉 ∩ 𝜕Ω is zero. In the variable exponent case
these have been proved in [1]. In this paper we use ideas from [1]. To best of our knowledge, our results are new in even
the special cases of the double phase growth and the Orlicz growth.
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2 PRELIMINARIES

Throughout this paper, we assume that Ω ⊂ ℝ𝑛 is a bounded domain, i.e. an open and connected set. The following
definitions are as in [12], which we use as a general reference to background theory in generalized Orlicz spaces.

Definition 2.1. We say that 𝜑 ∶ Ω × [0,∞) → [0,∞] is a weak Φ-function, and write 𝜑 ∈ Φ𝑤(Ω), if the following condi-
tions hold

∙ For every 𝑡 ∈ [0,∞) the function 𝑥 ↦ 𝜑(𝑥, 𝑡) is measurable and for every 𝑥 ∈ Ω the function 𝑡 ↦ 𝜑(𝑥, 𝑡) is non-
decreasing.

∙ 𝜑(𝑥, 0) = lim𝑡→0+ 𝜑(𝑥, 𝑡) = 0 and lim𝑡→∞ 𝜑(𝑥, 𝑡) = ∞ for every 𝑥 ∈ Ω.
∙ The function 𝑡 ↦ 𝜑(𝑥,𝑡)

𝑡
is 𝐿-almost increasing for 𝑡 > 0 uniformly inΩ. “Uniformly” means that 𝐿 is independent of 𝑥.

If 𝜑 ∈ Φ𝑤(Ω) is additionally convex and left-continuous, then 𝜑 is a convex Φ-function, and we write 𝜑 ∈ Φ𝑐(Ω).

Two functions 𝜑 and 𝜓 are equivalent, 𝜑 ≃ 𝜓, if there exists 𝐿 ⩾ 1 such that 𝜓
(
𝑥,
𝑡

𝐿

)
⩽ 𝜑(𝑥, 𝑡) ⩽ 𝜓(𝑥, 𝐿𝑡) for every 𝑥 ∈ Ω

and every 𝑡 > 0. Equivalent Φ-functions give rise to the same space with comparable norms.

2.1 Assumptions

Let us write 𝜑+𝐵 (𝑡) ∶= ess sup𝑥∈𝐵𝜑(𝑥, 𝑡) and 𝜑
−
𝐵 (𝑡) ∶= ess inf𝑥∈𝐵𝜑(𝑥, 𝑡); and abbreviate 𝜑

± ∶= 𝜑±
Ω
. We state some assump-

tions for later reference.

(A0) There exists 𝛽 ∈ (0, 1) such that 𝜑(𝑥, 𝛽) ⩽ 1 ⩽ 𝜑(𝑥, 1∕𝛽) for almost every 𝑥.
(A1) There exists 𝛽 ∈ (0, 1) such that, for every ball 𝐵 and a.e. 𝑥, 𝑦 ∈ 𝐵 ∩ Ω,

𝛽𝜑−1(𝑥, 𝑡) ⩽ 𝜑−1(𝑦, 𝑡) when 𝑡 ∈

[
1,
1|𝐵|

]
.

(A1-𝑛) There exists 𝛽 ∈ (0, 1) such that, for every ball 𝐵 ⊂ Ω,

𝜑+𝐵 (𝛽𝑡) ⩽ 𝜑
−
𝐵 (𝑡) when 𝑡 ∈

[
1,

1

diam(𝐵)

]
.

(A2) For every 𝑠 > 0 there exist 𝛽 ∈ (0, 1] and ℎ ∈ 𝐿1(Ω) ∩ 𝐿∞(Ω) such that

𝛽𝜑−1(𝑥, 𝑡) ⩽ 𝜑−1(𝑦, 𝑡)

for almost every 𝑥, 𝑦 ∈ Ω and every 𝑡 ∈ [ℎ(𝑥) + ℎ(𝑦), 𝑠].
(aInc) There exist 𝑝 > 1 and 𝐿 ⩾ 1 such that 𝑡 ↦ 𝜑(𝑥,𝑡)

𝑡𝑝
is 𝐿-almost increasing in (0,∞).

(aDec) There exist 𝑞 > 1 and 𝐿 ⩾ 1 such that 𝑡 ↦ 𝜑(𝑥,𝑡)

𝑡𝑞
is 𝐿-almost decreasing in (0,∞).

We write (Inc) if the ratio is increasing rather than just almost increasing, similarly for (Dec).
We say that 𝜑 is doubling if there exists a constant 𝐿 ⩾ 1 such that 𝜑(𝑥, 2𝑡) ⩽ 𝐿𝜑(𝑥, 𝑡) for every 𝑥 ∈ Ω and every 𝑡 > 0.

By Lemma 2.2.6 of [12] doubling is equivalent to (aDec). If 𝜑 is doubling with constant 𝐿, then by iteration

𝜑(𝑥, 𝑡) ⩽ 𝐿2
( 𝑡
𝑠

)𝑄
𝜑(𝑥, 𝑠) (2.1)

for every 𝑥 ∈ Ω and every 0 < 𝑠 < 𝑡, where𝑄 = log2(𝐿), e.g. [5, Lemma 3.3]. If𝜑 is doubling, then (2.1) yields that≃ implies
≈. On the other hand, ≈ always implies ≃ since the function 𝑡 ↦ 𝜑(𝑥,𝑡)

𝑡
is almost increasing; hence≃ and ≈ are equivalent

in the doubling case. Note that doubling also yields that 𝜑(𝑥, 𝑡 + 𝑠) ≲ 𝜑(𝑥, 𝑡) + 𝜑(𝑥, 𝑠).
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Assumptions (A0) and (aDec) imply that 𝜑(𝑥, 1) ≲ 𝛽−𝑞𝜑(𝑥, 𝛽) ⩽ 𝛽−𝑞 and 𝜑(𝑥, 1) ≳ 𝛽𝑞𝜑(𝑥, 1∕𝛽) ⩾ 𝛽𝑞, and thus
𝜑(𝑥, 1) ≈ 1. If 𝜑 ∈ Φ𝑐(Ω) satisfies (aDec), then 𝜑(𝑥, 𝑡) is finite for every 𝑥 ∈ Ω and 𝑡 ⩾ 0, and convexity implies that 𝜑
is continuous. The conditions (A1) and (A1-𝑛) can be used also in cubes instead of balls, see Lemmas 2.10 and 2.11 in [13].
The next table contains a interpretation of the assumptions for four Φ-functions. The table is a combination of tables

from [12, Table 7.1] and [13].

𝝋(𝒙, 𝒕) (A0) (A1) (A1-𝒏) (aInc) (aDec)
𝑡𝑝(𝑥)𝑎(𝑥) 𝑎 ≈ 1

1

𝑝
∈ 𝐶log

1

𝑝
∈ 𝐶log 𝑝− > 1 𝑝+ < ∞

𝑡𝑝(𝑥) log(𝑒 + 𝑡) true 1

𝑝
∈ 𝐶log

1

𝑝
∈ 𝐶log 𝑝− > 1 𝑝+ < ∞

𝑡𝑝 + 𝑎(𝑥)𝑡𝑞 𝑎 ∈ 𝐿∞ 𝑎 ∈ 𝐶
0,
𝑛

𝑝
(𝑞−𝑝)

𝑎 ∈ 𝐶0,𝑞−𝑝 𝑝 > 1 𝑞 < ∞

𝜑(𝑡) true true true same same

2.2 Generalized Orlicz spaces

We recall some definitions. We denote by 𝐿0(Ω) the set of measurable functions in Ω.

Definition 2.2. Let 𝜑 ∈ Φ𝑤(Ω) and define themodular 𝜚𝜑(⋅) for 𝑓 ∈ 𝐿0(Ω) by

𝜚𝜑(⋅)(𝑓) ∶= ∫
Ω

𝜑(𝑥, |𝑓(𝑥)|) 𝑑𝑥.
The generalized Orlicz space, also called Musielak–Orlicz space, is defined as the set

𝐿𝜑(⋅)(Ω) ∶=
{
𝑓 ∈ 𝐿0(Ω) ∶ lim

𝜆→0+
𝜚𝜑(⋅)(𝜆𝑓) = 0

}
equipped with the (Luxemburg) norm

‖𝑓‖𝐿𝜑(⋅)(Ω) ∶= inf{𝜆 > 0 ∶ 𝜚𝜑(⋅)(𝑓𝜆) ⩽ 1}.
If the set is clear from the context we abbreviate ‖𝑓‖𝐿𝜑(⋅)(Ω) by ‖𝑓‖𝜑(⋅).
Hölder’s inequality holds in generalized Orlicz spaces with a constant 2, without restrictions on the Φ𝑤-function [12,

Lemma 3.2.13]:

∫
Ω

|𝑓| |𝑔|𝑑𝑥 ⩽ 2‖𝑓‖𝜑(⋅)‖𝑔‖𝜑∗(⋅).
Definition 2.3. A function 𝑢 ∈ 𝐿𝜑(⋅)(Ω) belongs to the Orlicz–Sobolev space 𝑊1,𝜑(⋅)(Ω) if its weak partial derivatives
𝜕1𝑢, … , 𝜕𝑛𝑢 exist and belong to the space 𝐿𝜑(⋅)(Ω). For 𝑢 ∈ 𝑊1,𝜑(⋅)(Ω), we define the norm

‖𝑢‖𝑊1,𝜑(⋅)(Ω) ∶= ‖𝑢‖𝜑(⋅) + ‖∇𝑢‖𝜑(⋅).
Here ‖∇𝑢‖𝜑(⋅) is a shortening of ‖‖|∇𝑢|‖‖𝜑(⋅). By [12, Lemma 6.1.5] the definition above is valid. Again, ifΩ is clear from the
context, we abbreviate ‖𝑢‖𝑊1,𝜑(⋅)(Ω) by ‖𝑢‖1,𝜑(⋅).
To study boundary value problems, we need a concept of weak boundary value spaces.

Definition 2.4. 𝑊1,𝜑(⋅)0 (Ω) is the closure of 𝐶∞0 (Ω) in𝑊
1,𝜑(⋅)(Ω).
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2.3 Capacity and fine properties of functions

Fine properties of Sobolev functions can be studied by different capacities.Hereweuse the generalizedOrlicz𝜑(⋅)-capacity
defined as follows.

Definition 2.5. Let 𝐸 ⊂ ℝ𝑛. Then the generalized Orlicz 𝜑(⋅)-capacity of 𝐸 is defined by

𝐶𝜑(⋅)(𝐸) ∶= inf
𝑢∈𝑆𝜑(⋅)(𝐸)∫ℝ𝑛 𝜑(𝑥, |𝑢|) + 𝜑(𝑥, |∇𝑢|) 𝑑𝑥,

where the infimum is taken over the set 𝑆𝜑(⋅)(𝐸) of all functions 𝑢 ∈ 𝑊1,𝜑(⋅)(ℝ𝑛) with 𝑢 ⩾ 1 in an open set containing 𝐸.

If 𝜑 ∈ Φ𝑐(ℝ𝑛) satisfies (aDec) and (aInc), then capacity has the following properties, see [4, Section 3].

(C1) 𝐶𝜑(⋅)(∅) = 0.
(C2) If 𝐸1 ⊂ 𝐸2 ⊂ ℝ𝑛, then 𝐶𝜑(⋅)(𝐸1) ⩽ 𝐶𝜑(⋅)(𝐸2).
(C3) If 𝐸 ⊂ ℝ𝑛, then

𝐶𝜑(⋅)(𝐸) = inf
𝐸⊂𝑈
𝑈 open

𝐶𝜑(⋅)(𝑈).

(C4) If 𝐸1, 𝐸2 ⊂ ℝ𝑛, then

𝐶𝜑(⋅)(𝐸1 ∪ 𝐸2) + 𝐶𝜑(⋅)(𝐸1 ∩ 𝐸2) ⩽ 𝐶𝜑(⋅)(𝐸1) + 𝐶𝜑(⋅)(𝐸2).

(C5) If 𝐾1 ⊃ 𝐾2 ⊃ ⋯ are compact sets, then

lim
𝑖→∞
𝐶𝜑(⋅)(𝐾𝑖) = 𝐶𝜑(⋅)

(
∞⋂
𝑖=1

𝐾𝑖

)
.

(C6) For 𝐸1 ⊂ 𝐸2 ⊂ ⋯ ⊂ ℝ𝑛,

lim
𝑖→∞
𝐶𝜑(⋅)(𝐸𝑖) = 𝐶𝜑(⋅)

(
∞⋃
𝑖=1

𝐸𝑖

)
.

(C7) For 𝐸𝑖 ⊂ ℝ𝑛,

𝐶𝜑(⋅)

(
∞⋃
𝑖=1

𝐸𝑖

)
⩽

∞∑
𝑖=1

𝐶𝜑(⋅)(𝐸𝑖).

A function 𝑓 ∶ Ω → [−∞,∞] is 𝜑(⋅)-quasicontinuous if for every 𝜀 > 0 there exists an open set𝑈 such that 𝐶𝜑(⋅)(𝑈) < 𝜀
and 𝑓|Ω⧵𝑈 is continuous. We say that a claim holds 𝜑(⋅)-quasieverywhere if it holds everywhere except in a set of 𝜑(⋅)-
capacity zero.
Suppose that 𝑢 can be approximated by continuous functions in 𝑊1,𝜑(⋅)(Ω). Then a standard argument (e.g. [8,

Theorem 11.1.3]) shows that every 𝑢 ∈ 𝑊1,𝜑(⋅)(Ω) has a representative, which is quasicontinuous in Ω, provided that
𝜑 ∈ Φ𝑐(Ω) satisfies (aInc) and (aDec). By [12, Theorem 6.4.7], smooth functions are dense in 𝑊1,𝜑(⋅)(Ω), if 𝜑 satisfies
(A0), (A1), (A2) and (aDec). By [12, Lemma 4.2.3], (A2) is not needed, if Ω is bounded. Hence we get the following
lemma.

Lemma 2.6. Let 𝜑 ∈ Φ𝑐(Ω) satisfy (A0), (A1) and (aDec). Then for every 𝑢 ∈ 𝑊1,𝜑(⋅)(Ω), there exists a sequence of function
from 𝐶∞(Ω) ∩𝑊1,𝜑(⋅)(Ω) converging to 𝑢 in𝑊1,𝜑(⋅)(Ω).
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If 𝑢 ∈ 𝑊1,𝜑(⋅)0 (𝐷) and𝐷 ⊂ Ω, then the zero extension of 𝑢 belongs to𝑊1,𝜑(⋅)(Ω) since 𝑢 can be approximated by 𝐶∞0 (𝐷)-
functions. The next lemma concerns the opposite implication.

Lemma 2.7 (Theorem 2.10 in [11]). Let 𝜑 ∈ Φ𝑐(Ω) satisfy (A0), (A1), (aInc) and (aDec) and let 𝐷 ⋐ Ω be open.
If 𝑢 ∈ 𝑊1,𝜑(⋅)(Ω) and 𝑢 = 0 in Ω ⧵ 𝐷, then 𝑢 ∈ 𝑊1,𝜑(⋅)0 (𝐷). Moreover, if 𝑢 is nonnegative, then there exist nonnegative
𝑢𝑖 ∈ 𝑊

1,𝜑(⋅)
0 (𝐷) with spt 𝑢𝑖 ⋐ 𝐷, {𝑢𝑖 ≠ 0} ⊂ {𝑢 ≠ 0} and 𝑢𝑖 → 𝑢 in𝑊1,𝜑(⋅)(𝐷).

3 REGULAR BOUNDARY POINTS

Definition 3.1. Let 𝜑 ∈ Φ𝑤(Ω) and 𝑓 ∈ 𝑊1,𝜑(⋅)(Ω). We say that 𝑢 ∈ 𝑊1,𝜑(⋅)(Ω) is a minimizer with boundary values
𝑓 ∈ 𝑊1,𝜑(⋅)(Ω) if 𝑢 − 𝑓 ∈ 𝑊1,𝜑(⋅)0 (Ω) and

∫
Ω

𝜑(𝑥, |∇𝑢|) 𝑑𝑥 ⩽ ∫
Ω

𝜑(𝑥, |∇(𝑢 + 𝑣)|) 𝑑𝑥 (3.1)

for all 𝑣 ∈ 𝑊1,𝜑(⋅)0 (Ω).
If the inequality is assumed only for all non-negative or non-positive 𝑣, then 𝑢 is called a superminimizer or submini-

mizer, respectively.

In the next lemma, we show that in some cases the set𝑊1,𝜑(⋅)0 (Ω) in the definition above can be replaced with 𝐶∞0 (Ω).

Lemma 3.2. Let 𝜑 ∈ Φ𝑐 satisfy (A0), (A1) (aInc) and (aDec). Then 𝑢 is a minimizer, if and only if inequality (3.1) holds
for all 𝑣 ∈ 𝐶∞0 (Ω). The function 𝑢 is a superminimizer (subminimizer), if and only if (3.1) holds for all positive (negative)
𝑣 ∈ 𝐶∞0 (Ω).

Proof. If 𝑢 is a minimizer, then it is trivial that (3.1) holds for all 𝑣 ∈ 𝐶∞0 (Ω).
Suppose then that (3.1) holds for all 𝑣 ∈ 𝐶∞0 (Ω). Let 𝑤 ∈ 𝑊

1,𝜑(⋅)
0 (Ω), and let 𝑤𝑖 ∈ 𝐶∞0 be a sequence of functions con-

verging to 𝑤 in𝑊1,𝜑(⋅)(Ω). Denote 𝑤′ ∶= 𝑢 + 𝑤 and 𝑤′
𝑖
∶= 𝑢 + 𝑤𝑖 . By [12, Lemma 3.2.11]

∫
Ω

𝜑
(
𝑥, |∇𝑤′| − |∇𝑤′

𝑖
|) 𝑑𝑥 ⩽ max{‖‖|∇𝑤′| − |∇𝑤′

𝑖
|‖‖𝜑(⋅), ‖‖|∇𝑤′| − |∇𝑤′

𝑖
|‖‖𝑞𝜑(⋅)},

where 𝑞 is the exponent from (aDec). Since |||∇𝑤′| − |∇𝑤′
𝑖
||| ⩽ ||∇(𝑤′ − 𝑤′𝑖)||, we get

‖‖|∇𝑤′| − |∇𝑤′
𝑖
|‖‖𝜑(⋅) ⩽ ‖‖∇(𝑤′ − 𝑤′𝑖)‖‖𝜑(⋅) = ‖‖∇(𝑤 − 𝑤𝑖)‖‖𝜑(⋅).

Since ‖∇(𝑤 − 𝑤𝑖)‖𝜑(⋅) → 0 as 𝑖 → ∞, it follows that
∫
Ω

𝜑
(
𝑥, |∇𝑤′| − ||∇𝑤′𝑖)|| 𝑑𝑥 → 0 as 𝑖 → ∞.

By [12, Lemma 2.2.6] 𝜑 satisfies (Dec) (not only (aDec)). Since lim𝜆→0+ 𝜚𝜑(⋅)(𝜆∇𝑤′) = 0, (aDec) implies that 𝜚𝜑(⋅)(∇𝑤′) is
bounded. It now follows from [12, Lemma 3.1.6] that ||𝜚𝜑(⋅)(∇𝑤′) − 𝜚𝜑(⋅)(∇𝑤′𝑖 )|| approaches zero as 𝑖 → ∞, andwe therefore
have

lim
𝑖→∞∫

Ω

𝜑
(
𝑥, ||∇𝑤′𝑖 ||) 𝑑𝑥 = ∫

Ω

𝜑(𝑥, |∇𝑤′|) 𝑑𝑥 = ∫
Ω

𝜑(𝑥, |∇(𝑢 + 𝑤)|) 𝑑𝑥.
By our assumption, for every 𝑖 we have

∫
Ω

𝜑(𝑥, |∇𝑢|) 𝑑𝑥 ⩽ ∫
Ω

𝜑
(
𝑥, ||∇𝑤′𝑖 ||) 𝑑𝑥.
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Combining the above estimate and limit gives

∫
Ω

𝜑(𝑥, |∇𝑢|) 𝑑𝑥 ⩽ ∫
Ω

𝜑(𝑥, |∇𝑤′|) 𝑑𝑥 = ∫
Ω

𝜑(𝑥, |∇(𝑢 + 𝑤)|) 𝑑𝑥,
which shows that 𝑢 is a minimizer.
The claim regarding superminimizers is proved similarly. The only difference is that every function in the sequence

{𝑤𝑖} must be nonnegative. Suppose that 𝑤 ∈ 𝑊
1,𝜑(⋅)
0 (Ω) is nonnegative. By definition, there is a sequence of functions

𝑤𝑖 ∈ 𝐶
∞
0 (Ω) converging to 𝑤. But from the definition alone we can’t deduce that the functions 𝑤𝑖 are nonnegative.

Instead, we use Lemma 2.7: let 𝑤̃𝑖 ∈ 𝑊
1,𝜑(⋅)
0 (Ω) be a sequence of nonnegative functions such that spt 𝑤̃𝑖 ⋐ Ω and 𝑤̃𝑖 → 𝑤

in 𝑊1,𝜑(⋅)(Ω). The proof of [12, Theorem 6.4.7] shows that for every 𝑖, there is a sequence of functions 𝜂𝑖𝑗 ∈ 𝐶∞(Ω) ∩
𝑊1,𝜑(⋅)(Ω) converging to 𝑤̃𝑖 . Moreover, since the functions 𝜂𝑖𝑗 are obtained using standardmollifiers on 𝑤̃𝑖 , and spt 𝑤̃𝑖 ⋐ Ω,
it follows that 𝜂𝑖𝑗 ∈ 𝐶∞0 (Ω) and every 𝜂𝑖𝑗 is non-negative. For every 𝑖, we choose an index 𝑗𝑖 with

‖‖𝑤̃𝑖 − 𝜂𝑖𝑗𝑖‖‖1,𝜑(⋅) < 𝑖−1.
Then 𝜂𝑖𝑗𝑖 → 𝑤 in𝑊

1,𝜑(⋅)(Ω). This completes the proof in the case of superminimizers. The claim for subminimizers follows
from the fact that −𝑢 is a superminimizer. □

We denote by 𝐻(𝑓) the minimizer with boundary values 𝑓 ∈ 𝑊1,𝜑(⋅)(Ω). If 𝑓 ∶ 𝜕Ω → ℝ is Lipschitz on the boundary
of Ω, then it can be, by McShane extension, extended to ℝ𝑛 as a bounded Lipschitz function. The extension of 𝑓 can be
used in the above definition as weak boundary value, 𝑢 − 𝑓 ∈ 𝑊1,𝜑(⋅)0 (Ω). For 𝑔 ∈ 𝐶(𝜕Ω) we define

𝐻𝑔(𝑥) ∶= sup
Lip(𝜕Ω)∋𝑓⩽𝑔

𝐻(𝑓)(𝑥).

This definition is based on the fact that continuous functions can be approximated by Lipschitz functions.
The following theorem gives sufficient conditions for existence, uniqueness and continuity of minimizer with bounded

boundary values.

Theorem 3.3 (Theorem 6.2 in [11]). Let 𝜑 ∈ Φ𝑐(Ω) satisfy (aInc) and (aDec). Then for every function 𝑓 ∈ 𝑊1,𝜑(⋅)(Ω) ∩
𝐿∞(Ω), there exists a minimizer𝐻(𝑓).
If 𝜑 is strictly convex and satisfies (A0), the minimizer is unique, and if (A1-𝑛) holds, then it is continuous.

Definition 3.4. Let Ω ⊂ ℝ𝑛. We say that 𝑥 ∈ 𝜕Ω is regular if

lim
𝑦→𝑥,𝑦∈Ω

𝐻𝑓(𝑦) = 𝑓(𝑥)

for all 𝑓 ∈ 𝐶(𝜕Ω). A boundary point is irregular if it is not regular.

This means that the minimizer attains the boundary values not only in a Sobolev sense but pointwise.
We finish this section with the definition of quasiminimizers.

Definition 3.5. A function 𝑢 ∈ 𝑊1,𝜑(⋅)
loc

is a local quasiminimizer of the 𝜑(⋅)-energy if there is a constant 𝐾 ⩾ 1 such that

∫
{𝑣≠0}

𝜑(𝑥, |∇𝑢|) 𝑑𝑥 ⩽ 𝐾 ∫
{𝑣≠0}

𝜑(𝑥, |∇(𝑢 + 𝑣)|) 𝑑𝑥
for all 𝑣 ∈ 𝑊1,𝜑(⋅)(Ω) with spt 𝑣 ⊂ Ω.
If the inequality is assumed only for all non-negative or non-positive 𝑣, then 𝑢 is called a local quasisuperminimizer or

local quasisubminimizer, respectively.
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By [13, Lemma 3.4], if 𝜑 satisfies (A0), (A1) and (aDec), then every 𝑣 ∈ 𝑊1,𝜑(⋅)(Ω)with spt 𝑣 ⊂ Ω belongs to𝑊1,𝜑(⋅)0 (Ω).
It then follows that every minimizer is also a local quasiminimizer.

4 QUASISUPERMINIMIZER EQUALS LSC-REGURALIZATION QUASIEVERYWHERE

Lemma 4.1 (Theorem 4.4 in [11]). Let 𝜑 ∈ Φ𝑐(Ω) satisfy (A0), (A1-𝑛), (aInc) and (aDec). Let 𝑢 be a local quasisupermini-
mizer which is bounded from below and set

𝑢∗(𝑥) ∶= ess lim
𝑦→𝑥
inf 𝑢(𝑦).

Then 𝑢∗ is lower semicontinuous and 𝑢 = 𝑢∗ almost everywhere.
If 𝑢 is additionally locally bounded, then every point is a Lebesgue point of 𝑢∗.

In the lemma above, the function 𝑢∗ is called the lsc-regularization of 𝑢. We say that 𝑢 is lsc-regularized, if 𝑢 = 𝑢∗. In
this section we prove that if 𝑢 is a quasicontinuous quasisuperminimizer, then 𝑢 = 𝑢∗ quasieverywhere. To accomplish
this, we need the following lemma and its corollary.

Lemma 4.2. Let 𝜑 ∈ Φ𝑐(ℝ𝑛) satisfy (A0), (A1), (aInc) and (aDec). Let 𝐵 be a ball and suppose that 𝑢 ∈ 𝑊1,𝜑(⋅)(ℝ𝑛) is such
that spt 𝑢 ⋐ 𝐵. Then there exists a set 𝐸 ⊂ 𝐵 of zero capacity, such that

𝑢̂(𝑥) ∶= lim
𝑟→0⨏𝐵(𝑥,𝑟) 𝑢(𝑦) 𝑑𝑦

exists for every 𝑥 ∈ 𝐵 ⧵ 𝐸. The function 𝑢̂ is the quasicontinuous representative of 𝑢.

Proof. To prove this claim, we follow the proofs of Propositions 4.4 and 4.5 and Theorem 4.6 of [10], where a similar claim
was proven for the variable exponent case.
First we show that𝑀𝑢 ∈ 𝑊1,𝜑(⋅)(3𝐵) and

‖𝑀𝑢‖𝑊1,𝜑(⋅)(3𝐵) ⩽ 𝑐‖𝑢‖𝑊1,𝜑(⋅)(3𝐵). (4.1)

Here𝑀𝑢 denotes the Hardy–Littlewood maximal function. Since 𝑢, |∇𝑢| ∈ 𝐿𝜑(⋅)(3𝐵), it follows by [12, Lemma 4.2.3] and
[12, Theorem 4.3.6] that𝑀𝑢,𝑀|∇𝑢| ∈ 𝐿𝜑(⋅)(3𝐵), and further

‖𝑀𝑢‖𝐿𝜑(⋅)(3𝐵) ⩽ 𝑐‖𝑢‖𝐿𝜑(⋅)(3𝐵) and ‖𝑀|∇𝑢|‖𝐿𝜑(⋅)(3𝐵) ⩽ 𝑐‖∇𝑢‖𝐿𝜑(⋅)(3𝐵).
Note that [12, Lemma4.2.3] is needed here, because [12, Theorem4.3.6] requires the assumption (A2). By [12, Lemma6.1.6],
we have 𝑢 ∈ 𝑊1,𝑝(𝐵), where 𝑝 > 1 is such that 𝜑 satisfies (aInc)𝑝. Since spt 𝑢 ⋐ 𝐵, it follows that 𝑢 in𝑊1,𝑝(ℝ𝑛). From
[19] it follows that |∇𝑀𝑢| ⩽ 𝑀|∇𝑢| almost everywhere in ℝ𝑛. Hence

‖∇𝑀𝑢‖𝐿𝜑(⋅)(3𝐵) ⩽ ‖𝑀|∇𝑢|‖𝐿𝜑(⋅)(3𝐵) ⩽ 𝑐‖∇𝑢‖𝐿𝜑(⋅)(3𝐵),
and (4.1) now follows.
Then we show that for 𝜆 > 0 we have

𝐶𝜑(⋅)({𝑀𝑢 > 𝜆} ∩ 𝐵) ⩽ 𝑐max
{‖𝑢∕𝜆‖𝑊1,𝜑(⋅)(3𝐵), ‖𝑢∕𝜆‖𝑞𝑊1,𝜑(⋅)(3𝐵)}, (4.2)

where 𝑞 is such that 𝜑 satisfies (aDec)𝑞. Because𝑀𝑢 is lower semi-continuous, the set {𝑀𝑢 > 𝜆} and its intersection with
𝐵 are open. Let 𝜂 ∈ 𝐶∞0 (3𝐵) be such that 𝜂 = 1 in 2𝐵 and 0 ⩽ 𝜂 ⩽ 1 in 3𝐵. Then we may use 𝜂𝑀𝑢∕𝜆 ∈ 𝑊

1,𝜑(⋅)(3𝐵) as a
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test function for capacity of {𝑀𝑢 > 𝜆} ∩ 𝐵. Since 𝜂𝑀𝑢∕𝜆 = 0 outside 3𝐵, we get

𝐶𝜑(⋅)({𝑀𝑢 > 𝜆} ∩ 𝐵) ⩽ ∫
ℝ𝑛
𝜑

(
𝑥,

||||𝜂𝑀𝑢𝜆 ||||
)
+ 𝜑

(
𝑥,

||||∇
(
𝜂𝑀
𝑢

𝜆

)||||
)
𝑑𝑥

= ∫
3𝐵

𝜑

(
𝑥,

||||𝜂𝑀𝑢𝜆 ||||
)
+ 𝜑

(
𝑥,

||||∇
(
𝜂𝑀
𝑢

𝜆

)||||
)
𝑑𝑥

⩽ 𝑐max

{‖‖‖‖𝜂𝑀𝑢𝜆 ‖‖‖‖𝑊1,𝜑(⋅)(3𝐵), ‖‖‖‖𝜂𝑀𝑢𝜆 ‖‖‖‖
𝑞

𝑊1,𝜑(⋅)(3𝐵)

}
,

where the last inequality follows by [12, Lemma 3.2.11]. Now

‖‖‖‖𝜂𝑀𝑢𝜆 ‖‖‖‖𝑊1,𝜑(⋅)(3𝐵) = ‖‖‖‖𝜂𝑀𝑢𝜆 ‖‖‖‖𝐿𝜑(⋅)(3𝐵) + ‖‖‖‖𝜂∇𝑀𝑢𝜆 + (∇𝜂)𝑀𝑢𝜆 ‖‖‖‖𝐿𝜑(⋅)(3𝐵)
⩽
‖‖‖‖𝜂𝑀𝑢𝜆 ‖‖‖‖𝐿𝜑(⋅)(3𝐵) + ‖‖‖‖𝜂∇𝑀𝑢𝜆 ‖‖‖‖𝐿𝜑(⋅)(3𝐵) + ‖‖‖‖(∇𝜂)𝑀𝑢𝜆 ‖‖‖‖𝐿𝜑(⋅)(3𝐵)

⩽ (1 + ‖∇𝜂‖∞)‖‖‖‖𝑀𝑢𝜆 ‖‖‖‖𝑊1,𝜑(⋅)(3𝐵).
The first inequality follows from triangle inequality ([12, Lemma 3.2.2]), and the second from the fact that 𝜂 ⩽ 1. Since‖∇𝜂‖∞ does not depend on 𝑢, it can be treated as constant depending only on |𝐵|. Inequality (4.2) then follows from (4.1).
Next we construct the set 𝐸. By [13, Lemma 3.4], 𝑢 ∈ 𝑊1,𝜑(⋅)0 (𝐵) ⊂ 𝑊

1,𝜑(⋅)
0 (ℝ𝑛). Let {𝑢𝑖} be a sequence of continuous

functions converging to 𝑢 in𝑊1,𝜑(⋅)(ℝ𝑛) such that ‖𝑢 − 𝑢𝑖‖𝜑(⋅) ⩽ 2−2𝑖 . Define the sets
𝑈𝑖 ∶=

{
𝑀(𝑢 − 𝑢𝑖) > 2

−𝑖
}
∩ 𝐵, 𝑉𝑖 ∶=

∞⋃
𝑗=𝑖

𝑈𝑗 and 𝐸 ∶=

∞⋂
𝑗=1

𝑉𝑗.

By (4.2) we have 𝐶𝜑(⋅)
(
𝑈𝑖

)
⩽ 𝑐2−𝑖 , and therefore 𝐶𝜑(⋅)

(
𝑉𝑖
)
⩽ 𝑐21−𝑖 by subadditivity. Since 𝐸 is contained in every 𝑉𝑖 , it

follows that 𝐶𝜑(⋅)(𝐸) = 0.
To complete the proof, we show that 𝑢̂ exist on 𝐵 ⧵ 𝐸 and is quasicontinuous. Continuity of 𝑢𝑖 implies that

lim sup
𝑟→0

|||||𝑢𝑖(𝑥) − ⨏
𝐵(𝑥,𝑟)

𝑢(𝑦) 𝑑𝑦
||||| ⩽ lim sup𝑟→0

(
⨏
𝐵(𝑥,𝑟)

|𝑢𝑖(𝑥) − 𝑢𝑖(𝑦)|𝑑𝑦 + ⨏
𝐵(𝑥,𝑟)

|𝑢𝑖(𝑦) − 𝑢(𝑦)|𝑑𝑦
)

⩽ lim sup
𝑟→0 ⨏

𝐵(𝑥,𝑟)

|𝑢𝑖(𝑦) − 𝑢(𝑦)|𝑑𝑦 ⩽ 𝑀(𝑢𝑖 − 𝑢)(𝑥).
If 𝑥 ∈ 𝐵 ⧵ 𝑉𝑘, then for any 𝑖, 𝑗 ⩾ 𝑘 we have

||𝑢𝑖(𝑥) − 𝑢𝑗(𝑥)|| ⩽ lim sup
𝑟→0

(|||||𝑢𝑖(𝑥) − ⨏
𝐵(𝑥,𝑟)

𝑢(𝑦) 𝑑𝑦
||||| +

|||||𝑢𝑗(𝑥) − ⨏
𝐵(𝑥,𝑟)

𝑢(𝑦) 𝑑𝑦
|||||
)

⩽ 𝑀(𝑢𝑖 − 𝑢)(𝑥) + 𝑀
(
𝑢𝑗 − 𝑢

)
(𝑥) ⩽ 2−𝑖 + 2−𝑗.

It follows that the pointwise limit function 𝑣(𝑥) ∶= lim𝑖→∞ 𝑢𝑖(𝑥) exists for 𝑥 ∈ 𝐵 ⧵ 𝑉𝑘 for every 𝑘, hence 𝑣 exists on 𝐵 ⧵ 𝐸.
Since the convergence is uniform on 𝐵 ⧵ 𝑉𝑘, it follows that 𝑣|𝐵⧵𝑉𝑘 is continuous, which shows that 𝑣 is quasicontinuous.
Then we show that 𝑣 = 𝑢̂ on 𝐵 ⧵ 𝐸. Fix a point 𝑥 in 𝐵 ⧵ 𝐸. Then

lim sup
𝑟→0

|||||𝑣(𝑥) − ⨏
𝐵(𝑥,𝑟)

𝑢(𝑦) 𝑑𝑦
||||| ⩽ |𝑣(𝑥) − 𝑢𝑖(𝑥)| + lim sup

𝑟→0

|||||𝑢𝑖(𝑥) − ⨏
𝐵(𝑥,𝑟)

𝑢(𝑦) 𝑑𝑦
|||||.
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Since the right-hand side approaches 0 as 𝑖 → ∞, and the left-hand side does not depend on 𝑖, it follows that the left-hand
side equals 0, and thus 𝑣(𝑥) = 𝑢̂(𝑥). To finish the proof, we note that almost every point is Lebesgue point of 𝑢, and it
follows that 𝑢 = 𝑢̂ almost everywhere. □

In the following corollary, we show that assumption 𝑢 ∈ 𝑊1,𝜑(⋅)(ℝ𝑛) can be replaced by 𝑢 ∈ 𝑊1,𝜑(⋅)(Ω).

Corollary 4.3. Let 𝜑 ∈ Φ𝑐(ℝ𝑛) satisfy (A0), (A1), (aInc) and (aDec). Let 𝑢 ∈ 𝑊1,𝜑(⋅)(Ω). Then there exists a set 𝐸 ⊂ Ω of zero
capacity, such that 𝑢̂(𝑥) exists for every 𝑥 ∈ Ω ⧵ 𝐸. Moreover 𝑢̂ is quasicontinuous inΩ.

Proof. Let 𝐵 be a ball such thatΩ ⊂ 𝐵. Let𝑈 and 𝑉 be open sets such that𝑈 ⋐ 𝑉 ⋐ Ω. Let 𝜂 ∈ 𝐶∞0 (Ω) be such that 𝜂 = 1
on 𝑉 and 0 ⩽ 𝜂 ⩽ 1 on Ω. Then 𝑢𝜂 ∈ 𝑊1,𝜑(⋅)(Ω). Since spt 𝑢𝜂 ⊂ Ω, by [13, Lemma 3.4], 𝑢𝜂 ∈ 𝑊1,𝜑(⋅)0 (Ω) ⊂ 𝑊

1,𝜑(⋅)
0 (ℝ𝑛).

Lemma 4.2 shows that there is a set 𝐸 ⊂ ℝ𝑛 of zero capacity such that the limit

lim
𝑟→0⨏𝐵(𝑥,𝑟) 𝑢(𝑦)𝜂(𝑦) 𝑑𝑦

exist everywhere on 𝐵 ⧵ 𝐸. Since 𝑈 ⋐ 𝑉, 𝑉 is open, and 𝜂 = 1 on 𝑉, we have

𝑢̂(𝑥) = lim
𝑟→0⨏𝐵(𝑥,𝑟) 𝑢(𝑦) 𝑑𝑦 = lim𝑟→0⨏𝐵(𝑥,𝑟) 𝑢(𝑦)𝜂(𝑦) 𝑑𝑦

for every 𝑥 ∈ 𝑈 ⧵ 𝐸.
Let then

(
𝑈𝑖

)
be a sequence of open sets such that𝑈𝑖 ⋐ 𝑈𝑖+1 ⋐ Ω and

⋃∞
𝑖=1
𝑈𝑖 = Ω. Then for every 𝑖 there exist a set 𝐸𝑖

of zero capacity, such that 𝑢̂ exist in 𝑈𝑖 ⧵ 𝐸𝑖 . It follows that 𝑢̂ exists in Ω ⧵
⋃∞
𝑖=1
𝐸𝑖 . By subadditivity, 𝐶𝜑(⋅)

(⋃∞
𝑖=1
𝐸𝑖

)
= 0.

It remains to show quasicontinuity. By Lemma 4.2 𝑢̂ is quasicontinuous on every𝑈𝑖 . Hence wemay choose open sets 𝐹𝑖
such that𝐶𝜑(⋅)

(
𝐹𝑖
)
< 2−𝑖𝜀 and 𝑢̂|𝑈𝑖⧵𝐹𝑖 is continuous. Hence⋃∞𝑖=1 𝐹𝑖 is open, 𝑢̂|Ω⧵⋃∞𝑖=1 𝐹𝑖 is continuous, and by subadditivity

𝐶𝜑(⋅)

(⋃∞
𝑖=1
𝐹𝑖

)
< 𝜀. □

Now we can prove that 𝑢 = 𝑢∗ in Lemma 4.1.

Lemma 4.4. Let 𝜑 ∈ Φ𝑐(ℝ𝑛) satisfy (A0), (A1), (A1-𝑛), (aInc) and (aDec). Let 𝑢 and 𝑢∗ be as in Lemma 4.1. If 𝑢 is quasicon-
tinuous, then 𝑢 = 𝑢∗ quasieverywhere.

Proof. Suppose that 𝑢 is quasicontinuous. For any positive integer 𝑘, we let 𝑢𝑘 = min{𝑢, 𝑘}. It is easy to see that 𝑢𝑘 is
quasicontinuous. By Corollary 4.3 there exists a set 𝐸𝑘 of zero capcacity such that

𝑢̂𝑘(𝑥) ∶= lim
𝑟→0⨏𝐵(𝑥,𝑟) 𝑢𝑘(𝑦) 𝑑𝑦

exist for all 𝑥 ∈ Ω ⧵ 𝐸𝑘, and 𝑢̂𝑘 is quasicontinuous. Since both 𝑢𝑘 and 𝑢̂𝑘 are quasicontinous and 𝑢𝑘 = 𝑢̂𝑘 almost every-
where in Ω, it follows by [18] that 𝑢𝑘 = 𝑢̂𝑘 quasieverywhere in Ω. Let 𝐹𝑘 = 𝐸𝑘 ∪ {𝑢𝑘 ≠ 𝑢̂𝑘}. Then 𝐶𝜑(⋅)(𝐹𝑘) = 0 and we
have

𝑢𝑘(𝑥) = lim
𝑟→0⨏𝐵(𝑥,𝑟) 𝑢𝑘(𝑦) 𝑑𝑦

for every 𝑥 ∈ Ω ⧵ 𝐹𝑘.
By [11, Lemma 4.6], 𝑢𝑘 is a quasisuperminimizer. By our assumption, 𝑢 is bounded from below, hence 𝑢𝑘 is bounded.

Let 𝑢∗
𝑘
be defined by

𝑢∗
𝑘
(𝑥) ∶= ess lim

𝑦→𝑥
inf 𝑢𝑘(𝑦).
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By Lemma 4.1, every point of Ω is a Lebesgue point of 𝑢∗
𝑘
, and 𝑢𝑘 = 𝑢∗𝑘 almost everywhere. Hence, for every 𝑥 ∈ Ω ⧵ 𝐹𝑘,

we have

𝑢𝑘(𝑥) = lim
𝑟→0⨏𝐵(𝑥,𝑟) 𝑢𝑘(𝑦) 𝑑𝑦 = lim𝑟→0⨏𝐵(𝑥,𝑟) 𝑢

∗
𝑘
(𝑦) 𝑑𝑦 = 𝑢∗

𝑘
(𝑥).

Therefore
{
𝑢𝑘 ≠ 𝑢∗𝑘

}
⊂ 𝐹𝑘, and it follows that 𝐶𝜑(⋅)

({
𝑢𝑘 ≠ 𝑢∗𝑘

})
= 0.

Let

𝐴1
𝑘
∶= {𝑥 ∈ Ω ∶ 𝑢∗(𝑥) < 𝑢(𝑥) ⩽ 𝑘} and 𝐴2

𝑘
∶= {𝑥 ∈ Ω ∶ 𝑢(𝑥) < 𝑢∗(𝑥) and 𝑢(𝑥) ⩽ 𝑘}.

We will show that 𝐴1
𝑘
⊂
{
𝑢𝑘 ≠ 𝑢∗𝑘

}
and 𝐴2

𝑘
⊂
{
𝑢2𝑘 ≠ 𝑢∗2𝑘

}
, which shows that both 𝐴1

𝑘
and 𝐴2

𝑘
are of capacity zero.

Let 𝑥0 ∈ Ω be such that 𝑢(𝑥0) ⩽ 𝑘. Suppose first that 𝑢∗(𝑥0) < 𝑢(𝑥0). Let 𝑟 > 0 be so small that 𝐵(𝑥0, 𝑟) ⊂ Ω. Then
ess inf 𝑦∈𝐵(𝑥0,𝑟) 𝑢(𝑦) ⩽ 𝑢

∗(𝑥0) < 𝑘, from which it follows that

ess inf
𝑦∈𝐵(𝑥0,𝑟)

min{𝑢(𝑦), 𝑘} = min
{
ess inf
𝑦∈𝐵(𝑥0,𝑟)

𝑢(𝑦), 𝑘
}
⩽ 𝑢∗(𝑥0).

Hence

𝑢∗
𝑘
(𝑥0) = ess lim

𝑦→𝑥0
inf 𝑢𝑘(𝑦) ⩽ 𝑢∗(𝑥0) < 𝑢(𝑥0) = 𝑢𝑘(𝑥0),

and 𝑥0 ∈
{
𝑢𝑘 ≠ 𝑢∗𝑘

}
. Suppose then that 𝑢∗(𝑥0) > 𝑢(𝑥0). Then there exists 𝑟0 > 0 such that 𝐵(𝑥0, 𝑟0) ⊂ Ω and

ess inf 𝑦∈𝐵(𝑥0,𝑟0) 𝑢(𝑦) > 𝑢(𝑥0). Hence

𝑢∗
2𝑘
(𝑥0) ⩾ ess inf

𝑦∈𝐵(𝑥0,𝑟0)
min{𝑢(𝑦), 2𝑘} = min

{
ess inf
𝑦∈𝐵(𝑥0,𝑟0)

𝑢(𝑦), 2𝑘
}
> 𝑢(𝑥0) = 𝑢2𝑘(𝑥0),

and 𝑥0 ∈
{
𝑢2𝑘 ≠ 𝑢∗2𝑘

}
.

Since 𝐴 ∶= {𝑥 ∈ Ω ∶ 𝑢(𝑥) ≠ 𝑢∗(𝑥) and 𝑢(𝑥) < ∞} =⋃∞
𝑘=1

(
𝐴1
𝑘
∪ 𝐴2

𝑘

)
, we get by subadditivity that 𝐶𝜑(⋅)(𝐴) = 0. Since

𝑢 is quasicontinuous 𝐶𝜑(⋅)({𝑢 = ∞}) = 0, and therefore 𝐴′ ∶= {𝑥 ∈ Ω ∶ 𝑢(𝑥) ≠ 𝑢∗(𝑥) and 𝑢(𝑥) = ∞} is of capacity zero.
And finally, since {𝑢 ≠ 𝑢∗} = 𝐴 ∪ 𝐴′, we get 𝐶𝜑(⋅)({𝑢 ≠ 𝑢∗}) = 0. □

5 THE KELLOGG PROPERTY

In this section we prove our main result. But first, we have to we prove some auxiliary results. The next lemma gives a
characterization of𝑊1,𝜑(⋅)(Ω) using quasicontinuous functions (cf. [1, Proposition 2.5]).

Lemma 5.1. Let 𝜑 ∈ Φ𝑐(ℝ𝑛) satisfy (A0), (A1), (aInc) and (aDec). Assume that 𝑢 is quasicontinuous in Ω. Then
𝑢 ∈ 𝑊

1,𝜑(⋅)
0 (Ω) if and only if

𝑢̃ ∶=

{
𝑢 inΩ,
0 otherwise,

is quasicontinous and belongs to𝑊1,𝜑(⋅)(ℝ𝑛).

Proof. Suppose first that 𝑢 ∈ 𝑊1,𝜑(⋅)0 (Ω). By definition of 𝑊1,𝜑(⋅)0 (Ω), there are functions 𝑣𝑖 ∈ 𝐶∞0 (Ω) such that 𝑣𝑖 → 𝑢
in𝑊1,𝜑(⋅)(Ω). Then 𝑣𝑖 → 𝑢 in𝑊1,𝜑(⋅)(ℝ𝑛) also. By [4, Lemma 5.1], we may assume that 𝑣𝑖 converges pointwise quasiev-
erywhere, and that the convergence is uniform outside a set of arbitrarily small capacity. Denote the pointwise limit of
{𝑣𝑖} by 𝑣. Then 𝑣 is quasicontinuous and 𝑣 = 0 quasieverywhere in ℝ𝑛 ⧵ Ω. Since 𝑢 = 𝑣 almost everywhere in Ω, and
both functions are quasicontinuous inΩ, it follows from [18] that 𝑢 = 𝑣 quasieverywhere in Ω. It then follows that 𝑢̃ = 𝑣
quasieverywhere in ℝ𝑛, hence 𝑢̃ is quasicontinuous and belongs to𝑊1,𝜑(⋅)(ℝ𝑛).
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F IGURE 1 Definition of 𝑢 in Lemma 5.4

Suppose then that 𝑢̃ is quasicontinuous and belongs to 𝑊1,𝜑(⋅)(ℝ𝑛). Let 𝐵 be an open ball such that Ω ⋐ 𝐵. Then
𝑢̃ ∈ 𝑊1,𝜑(⋅)(𝐵). Since 𝑢̃ = 0 in 𝐵 ⧵ Ω, it follows by Lemma 2.7 that 𝑢̃ ∈ 𝑊1,𝜑(⋅)0 (Ω), hence 𝑢 ∈ 𝑊1,𝜑(⋅)0 (Ω) also. □

Then we need the comparison principle given by the corollary following the next lemma.

Lemma 5.2 (Proposition 4.9 in [17]). Let 𝜑 ∈ Φ𝑐(Ω) be strictly convex and satisfy (A0), (A1) and (aDec). If 𝑓, 𝑔 ∈ 𝑊1,𝜑(Ω)
and (𝑓 − 𝑔)+ ∈ 𝑊

1,𝜑
0 (Ω), then𝐻(𝑓) ⩽ 𝐻(𝑔) inΩ.

Corollary 5.3. Let 𝜑 ∈ Φ𝑐(Ω) be strictly convex and satisfy (A0), (A1), (aInc) and (aDec). If 𝑓, 𝑔 ∈ 𝐶(𝜕Ω) and 𝑓 ⩽ 𝑔 quasiev-
erywhere on 𝜕Ω, then𝐻𝑓 ⩽ 𝐻𝑔 inΩ.

Proof. Suppose first that 𝑓, 𝑔 ∈ Lip(𝜕Ω). Extend them to Lipschitz functions defined on the whole ℝ𝑛. If we show that
(𝑓 − 𝑔)+ ∈ 𝑊

1,𝜑(⋅)
0 (Ω), then the claim follows from Lemma 5.2. Let 𝜀 > 0. Since 𝐶𝜑(⋅)({𝑓 > 𝑔} ∩ 𝜕Ω) = 0, there is an open

set 𝑈 ⊃ {𝑓 > 𝑔} ∩ 𝜕Ω and a function 𝑢𝜀 ∈ 𝑊1,𝜑(⋅)(ℝ𝑛), such that 𝑢𝜀 = 1 in 𝑈, 0 ⩽ 𝑢𝜀 ⩽ 1, and

∫
ℝ𝑛
𝜑
(
𝑥, |𝑢𝜀|) + 𝜑(𝑥, |∇𝑢𝜀|) 𝑑𝑥 < 𝜀.

Since 𝑓 and 𝑔 are continuous, the set 𝑉 ∶= {𝑓 < 𝑔 + 𝜀} is open. It is true that 𝜕Ω ⊂ 𝑈 ∪ 𝑉. Let 𝑣𝜀 ∶=
𝜒Ω(1 − 𝑢𝜀)

(
(𝑓 − 𝑔)+ − 𝜀

)
+
. Then spt 𝑣𝜀 ⊂ Ω ⧵ (𝑈 ∪ 𝑉) ⋐ Ω, hence we may choose an open set 𝐷, such that

spt 𝑣𝜀 ⋐ 𝐷 ⋐ Ω. It follows from Lemma 2.7 that 𝑣𝜀 ∈ 𝑊
1,𝜑(⋅)
0 (Ω). A straightforward calculation shows that 𝑣𝜀 → (𝑓 − 𝑔)+

in𝑊1,𝜑(⋅)(Ω), hence (𝑓 − 𝑔)+ ∈ 𝑊
1,𝜑(⋅)
0 (Ω).

Suppose then 𝑓, 𝑔 ∈ 𝐶(𝜕Ω). Fix 𝑥 ∈ Ω and let 𝜀 > 0. Let 𝜂 ∈ Lip(𝜕Ω) be such that 𝜂 ⩽ 𝑓 on 𝜕Ω and 𝐻(𝜂)(𝑥) >
𝐻𝑓(𝑥) − 𝜀. Let 𝜉 ∈ Lip(𝜕Ω) be such that 𝑔 ⩾ 𝜉 ⩾ 𝑔 − 𝜀 on 𝜕Ω. If 𝑦 ∈ 𝜕Ω is such that 𝑓(𝑦) ⩽ 𝑔(𝑦), then 𝜂(𝑦) − 𝜀 ⩽ 𝜉(𝑦).
Hence 𝜂 − 𝜀 ⩽ 𝜉 quasieverywhere in 𝜕Ω. By the first part of the proof, it follows that𝐻(𝜂 − 𝜀) ⩽ 𝐻(𝜉) on Ω. Now

𝐻𝑓(𝑥) − 𝜀 < 𝐻(𝜂)(𝑥) = 𝐻(𝜂 − 𝜀)(𝑥) + 𝜀 ⩽ 𝐻(𝜉)(𝑥) + 𝜀 ⩽ 𝐻𝑔(𝑥) + 𝜀.

Since 𝜀 was arbitrary𝐻𝑓(𝑥) ⩽ 𝐻𝑔(𝑥), and the claim now follows, since 𝑥 was arbitrary. □

We need one more lemma in order to prove our main result. This lemma corresponds to [1, Lemma 5.5], and the proof
is also similar, but we include it here for completeness.

Lemma 5.4. Suppose 𝜑 ∈ Φ𝑐(ℝ𝑛) is strictly convex and satisfies (A0), (A1), (A1-𝑛), (aInc) and (aDec). Let 𝑥 ∈ 𝜕Ω and
𝐵 ∶= 𝐵(𝑥, 𝑟). Let 𝑓 be Lipschitz on 𝜕Ω and suppose that 𝑓 = 𝑚 on 𝐵 ∩ 𝜕Ω, where𝑚 ∶= sup𝜕Ω 𝑓. Let (see Figure 1)

𝑢 ∶=

{
𝐻(𝑓) inΩ,
𝑚 in 𝐵 ⧵ Ω.

Then 𝑢 is a quasicontinuous superminimizer in 𝐵.
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Proof. Extend 𝑓 to a Lipschitz function defined on Ω in such a way that 𝑓 ⩽ 𝑚. Extend 𝑓 further by setting 𝑓 ∶= 𝑚 on
𝐵 ⧵ Ω. Then 𝑓 ∈ 𝑊1,𝜑(⋅)(𝐵). Let

𝑣 ∶=

{
𝑢 − 𝑓 in 𝐵 ∪ Ω,
0 otherwise.

As 𝑣 = 𝐻(𝑓) − 𝑓 in Ω, we have 𝑣 ∈ 𝑊1,𝜑(⋅)0 (Ω). It follows from Theorem 3.3, that 𝑣 is continuous in Ω. Since 𝑣 = 0 in
ℝ𝑛 ⧵ Ω, it follows from Lemma 5.1 that 𝑣 is quasicontinuous in 𝐵 and and belongs to𝑊1,𝜑(⋅)(𝐵). It now follows that 𝑢 is
quasicontinuous and belongs to𝑊1,𝜑(⋅)(𝐵). By Corollary 5.3, 𝑢 ⩽ 𝑚 in 𝐵.
Now we show that 𝑢 is a superminimizer. Let 𝜂 ∈ 𝐶∞0 (𝐵) be nonnegative and let 𝜂

′ ∶= min{𝜂,𝑚 − 𝑢}. It is easy to see
that 𝜂′ is quasicontinuous and nonnegative in 𝐵. By [11, Lemma 2.11], 𝜂′ ∈ 𝑊1,𝜑(⋅)0 (𝐵). Since 𝜂′ = 0 in 𝐵 ⧵ Ω, it follows
from Lemma 5.1 that 𝜂′ ∈ 𝑊1,𝜑(⋅)0 (𝐵 ∩ Ω). Now we have

∫
{𝜂≠0}

𝜑(𝑥, |∇𝑢|) 𝑑𝑥 = ∫
{𝜂′≠0}

𝜑(𝑥, |∇𝑢|) 𝑑𝑥 ⩽ ∫
{𝜂′≠0}

𝜑(𝑥, |∇(𝑢 + 𝜂′)|) 𝑑𝑥.
The equality above follows from the facts that

{
𝜂′ = 0 ≠ 𝜂} ⊂ {𝑢 = 𝑚} and ∇𝑢 = 0 almost everywhere in {𝑢 = 𝑚}. The

inequality follows from the facts that
{
𝜂′ ≠ 0} ⊂ Ω and 𝑢 is a minimizer in Ω. Since 𝑢 + 𝜂′ = min{𝑢 + 𝜂,𝑚}, we have|∇(𝑢 + 𝜂′)| ⩽ |∇(𝑢 + 𝜂)|. And since 𝜂′ ≠ 0 implies 𝜂 ≠ 0, we get

∫
{𝜂′≠0}

𝜑(𝑥, |∇(𝑢 + 𝜂′)|) 𝑑𝑥 ⩽ ∫
{𝜂≠0}

𝜑(𝑥, |∇(𝑢 + 𝜂)|) 𝑑𝑥.
Combining the estimates above and using Lemma 3.2, we see that 𝑢 is a superminimizer in 𝐵. □

We are now ready to prove our main result. The proof is again similar to the proof of [1, Theorem 1.1], but is included
here for completeness.

Theorem 5.5. Let 𝜑 ∈ Φ𝑐(ℝ𝑛) be strictly convex and satisfy (A0), (A1), (A1-n), (aDec) and (aInc). Then the set of irregular
boundary points has zero capacity.

Proof. Denote the set of irregular points by 𝐼. To prove that 𝐼 is of capacity zero, we construct a countable number of sets
𝐼𝑗,𝑘,𝑞 ⊂ 𝐼, such that 𝐶𝜑(⋅)

(
𝐼𝑗,𝑘,𝑞

)
= 0, and the union of sets 𝐼𝑗,𝑘,𝑞 is equal to 𝐼.

For any positive integer 𝑗 we can cover 𝜕Ω with a finitely many balls 𝐵𝑗,𝑘 ∶= 𝐵
(
𝑥𝑗,𝑘, 1∕𝑗

)
, 1 ⩽ 𝑘 ⩽ 𝑁𝑗 . Let 𝑣𝑗,𝑘 be a

Lipschitz function such that supp 𝑣𝑗,𝑘 ⊂ 3𝐵𝑗,𝑘, 0 ⩽ 𝑣𝑗,𝑘 ⩽ 1, and 𝑣𝑗,𝑘 = 1 on 2𝐵𝑗,𝑘. For any positive 𝑞 ∈ ℚ, let 𝑣𝑗,𝑘,𝑞 = 𝑞𝑣𝑗,𝑘.
Consider the sets

𝐼𝑗,𝑘,𝑞 ∶=
{
𝑥 ∈ 𝐵𝑗,𝑘 ∩ 𝜕Ω ∶ lim inf

Ω∋𝑦→𝑥
𝐻
(
𝑣𝑗,𝑘,𝑞

)
(𝑦) < 𝑣𝑗,𝑘,𝑞(𝑥) = 𝑞

}
.

Then 𝐼𝑗,𝑘,𝑞 ⊂ 𝐼. To show that 𝐼𝑗,𝑘,𝑞 is of capacity zero, let

𝑢𝑗,𝑘,𝑞 ∶=

{
𝐻
(
𝑣𝑗,𝑘,𝑞

)
in Ω,

𝑞 in 2𝐵𝑗,𝑘 ⧵ Ω.

By Lemma 5.4, 𝑢𝑗,𝑘,𝑞 is a quasicontinuous superminimizer in 2𝐵𝑗,𝑘, and by Corollary 5.3, 𝑢𝑗,𝑘,𝑞 ⩽ 𝑞 in Ω. Since 𝑢𝑗,𝑘,𝑞 is
continuous in Ω, for every 𝑥 ∈ Ωwe have

𝑢∗
𝑗,𝑘,𝑞
(𝑥) ∶= ess lim

𝑦→𝑥
inf 𝑢𝑗,𝑘,𝑞(𝑦) = 𝑢𝑗,𝑘,𝑞(𝑥) = 𝐻

(
𝑣𝑗,𝑘,𝑞

)
(𝑥).
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ByLemma4.1,𝑢∗
𝑗,𝑘,𝑞

is lower semicontinuous, and, by Lemma4.4,𝑢∗
𝑗,𝑘,𝑞
= 𝑢𝑗,𝑘,𝑞 quasieverywhere in 2𝐵𝑗,𝑘. Since𝑢∗𝑗,𝑘,𝑞 ⩽ 𝑞,

we have

𝑞 = 𝑢𝑗,𝑘,𝑞(𝑥) = 𝑢
∗
𝑗,𝑘,𝑞
(𝑥) = lim inf

Ω∋𝑦→𝑥
𝑢∗
𝑗,𝑘,𝑞
(𝑦) = lim inf

Ω∋𝑦→𝑥
𝐻
(
𝑣𝑗,𝑘,𝑞

)
(𝑦)

for quasievery 𝑥 ∈ 𝐵𝑗,𝑘 ∩ 𝜕Ω. Hence 𝐼𝑗,𝑘,𝑞 is of capacity zero.
Then we show that every point of 𝐼 belongs to some 𝐼𝑗,𝑘,𝑞. Let therefore 𝑥 ∈ 𝐼. Then there exists a function 𝑣 ∈ 𝐶(𝜕Ω)

such that

lim
Ω∋𝑦→𝑥

𝐻𝑣(𝑦) ≠ 𝑣(𝑥).

By considering−𝑣 if necessary, wemay assume that lim infΩ∋𝑦→𝑥 𝐻𝑣(𝑦) < 𝑣(𝑥), and by adding a constant, wemay assume
that 𝑣 ⩾ 0. Since 𝑣 is continuous, we can find a ball 𝐵𝑗,𝑘 ∋ 𝑥 such that

𝑚 ∶= inf
3𝐵𝑗,𝑘∩𝜕Ω

𝑣 > lim inf
Ω∋𝑦→𝑥

𝐻𝑣(𝑦).

We can then choose 𝑞 ∈ ℚ such that𝑚 > 𝑞 > lim infΩ∋𝑦→𝑥 𝐻𝑣(𝑦). Then 𝑣𝑗,𝑘,𝑞 ⩽ 𝑣 on 𝜕Ω, and it follows by Corollary 5.3,
that

lim inf
Ω∋𝑦→𝑥

𝐻
(
𝑣𝑗,𝑘,𝑞

)
(𝑦) ⩽ lim inf

Ω∋𝑦→𝑥
𝐻𝑣(𝑦) < 𝑞 = 𝑣𝑗,𝑘,𝑞(𝑥).

But then 𝑥 ∈ 𝐼𝑗,𝑘,𝑞.
We have now shown that

𝐼 =

∞⋃
𝑗=1

𝑁𝑗⋃
𝑘=1

⋃
𝑞∈ℚ
𝑞>0

𝐼𝑗,𝑘,𝑞.

It now follows by subadditivity that 𝐼 is of zero capacity. □

6 SEMIREGULAR BOUNDARY POINTS

In this section we give some characterizations of semiregular boundary points. We follow the ideas in [1, Section 8], where
characterizations of semiregular boundary points are given in the variable exponent case.

Definition 6.1. A point 𝑥 ∈ 𝜕Ω is semiregular, if it is irregular, and the limit

lim
Ω∋𝑦→𝑥

𝐻𝑓(𝑦)

exists for every 𝑓 ∈ 𝐶(𝜕Ω).

First we prove some lemmas.

Lemma 6.2. Let 𝜑 ∈ Φ𝑐(ℝ𝑛) satisfy (A0), (A1), (aInc) and (aDec), and let𝐾 ⊂ ℝ𝑛 be compact with 𝐶𝜑(⋅)(𝐾) = 0. Then there
exists a sequence of functions 𝜉𝑖 ∈ 𝐶∞(ℝ𝑛), with the following properties:

(i) 0 ⩽ 𝜉𝑖 ⩽ 1 inℝ𝑛 and 𝜉𝑖 = 0 in a neighbourhood of 𝐾,
(ii) lim𝑖→∞ ‖‖1 − 𝜉𝑖‖‖𝜑(⋅) = 0 = lim𝑖→∞ ‖‖∇𝜉𝑖‖‖𝜑(⋅),
(iii) lim𝑖→∞ 𝜉𝑖(𝑥) = 1 and lim𝑖→∞ ∇𝜉𝑖(𝑥) = 0 for almost every 𝑥 ∈ ℝ𝑛.
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Proof. Let 𝑖 be a positive integer and let 𝑢 be a test function for capacity of 𝐾 with

∫
ℝ𝑛
𝜑(𝑥, |𝑢|) + 𝜑(𝑥, |∇𝑢|) 𝑑𝑥 < 1

𝑖
.

Sincemin{𝑢, 1} is also a test function, we may assume that 0 ⩽ 𝑢 ⩽ 1. Let𝑈 be an open set containing 𝐾, such that 𝑢 = 1
in 𝑈. Let 𝜂 ∈ 𝐶∞0 (ℝ

𝑛) be such that 𝜂 = 1 on 𝑈, 0 ⩽ 𝜂 ⩽ 1 in ℝ𝑛 and |∇𝜂| ⩽ 1. Then 𝑢𝜂 ∈ 𝑊1,𝜑(⋅)(ℝ𝑛), and using triangle
inequality we get

‖𝑢𝜂‖1,𝜑(⋅) ⩽ ‖𝑢𝜂‖𝜑(⋅) + ‖𝑢∇𝜂‖𝜑(⋅) + ‖𝜂∇𝑢‖𝜑(⋅) ⩽ 2‖𝑢‖𝜑(⋅) + ‖∇𝑢‖𝜑(⋅).
By [12, Lemma 3.2.11] there is a constant 𝑐 such that

‖𝑢‖𝜑(⋅) ⩽ 𝑐max{𝜚𝜑(⋅)(𝑢), 𝜚𝜑(⋅)(𝑢) 1𝑞},
where 𝑞 is the exponent from (aDec). Since 𝜚𝜑(⋅)(𝑢) < 1∕𝑖 ⩽ 1, the maximum above equals 𝜚𝜑(⋅)(𝑢)

1

𝑞 , hence ‖𝑢‖𝜑(⋅) ⩽
𝑐(1∕𝑖)

1

𝑞 . Similarly we get ‖∇𝑢‖𝜑(⋅) ⩽ 𝑐(1∕𝑖) 1𝑞 . Combining all the estimates gives ‖𝑢𝜂‖1,𝜑(⋅) < 3𝑐(1∕𝑖) 1𝑞 =∶ 𝜀𝑖 .
Let now 𝐵 be an open ball such that spt 𝜂 ⋐ 𝐵. By [12, Theorem 6.4.7] and [12, Lemma 4.2.3] there exists a sequence of

functions 𝜇𝑗 ∈ 𝐶∞(𝐵) ∩𝑊1,𝜑(⋅)(𝐵) converging to 𝑢 in𝑊1,𝜑(⋅)(𝐵). Since 𝑢 = 1 on 𝑈, and the proof of [12, Theorem 6.4.7]
uses standard mollifiers, we have 0 ⩽ 𝜇𝑗 ⩽ 1 on 𝐵. Moreover, we may assume that 𝜇𝑗 = 1 on an open set 𝑉, with
𝐾 ⊂ 𝑉 ⊂ 𝑈. Now 𝜇𝑗𝜂 ∈ 𝐶∞0 (ℝ

𝑛) and 𝜇𝑗𝜂 → 𝑢𝜂 in 𝑊1,𝜑(⋅)(ℝ𝑛). Let 𝑗𝑖 be an index such that ‖‖𝜇𝑗𝑖𝜂‖‖1,𝜑(⋅) < 2𝜀𝑖 , and let
𝜈𝑖 ∶= 𝜇𝑗𝑖𝜂.
Now ‖𝜈𝑖‖𝜑(⋅) ⩽ ‖𝜈𝑖‖1,𝜑(⋅) < 2𝜀𝑖 → 0 as 𝑖 → ∞. Similarly ‖∇𝜈𝑖‖𝜑(⋅) → 0. It now follows from [12, Lemma 3.3.6] that we

may choose a subsequence 𝜈𝑖𝑘 such that 𝜈𝑖𝑘 and∇𝜈𝑖𝑘 converge to 0 pointwise almost everywhere. Choosing 𝜉𝑘 ∶= 1 − 𝜈𝑖𝑘
we get a sequence satisfying properties (i), (ii) and (iii). □

Next we prove a lemma concerning extension of lsc-regularized superminimizers.

Lemma 6.3. Let 𝜑 ∈ Φ𝑐(ℝ𝑛) be strictly convex and satisfy (A0), (A1), (aInc) and (aDec). Let 𝐹 ⊂ Ω be relatively closed with
𝐶𝜑(⋅)(𝐹) = 0, and let𝑢 ∈ 𝑊1,𝜑(⋅)(Ω ⧵ 𝐹) be a bounded lsc-regularized superminimizer inΩ ⧵ 𝐹. Then𝑢 has a unique bounded
lsc-regularized extension 𝑣 ∈ 𝑊1,𝜑(⋅)(Ω), given by

𝑣(𝑥) ∶= ess lim
Ω⧵𝐹∋𝑦→𝑥

inf 𝑢(𝑥).

Moreover, 𝑣 is a superminimizer inΩ.

Proof. By [4, Lemma 4.1], we have |𝐹| = 0. Existence of 𝑣 is therefore trivial, and boundedness of 𝑣 follows easily from
boundedness of 𝑢. Since

ess lim
Ω∋𝑦→𝑥

inf 𝑣(𝑥) = ess lim
Ω⧵𝐹∋𝑦→𝑥

inf 𝑢(𝑥) = 𝑣(𝑥)

for all 𝑥 ∈ Ω, 𝑣 is lsc-regularized. The equality above also implies that 𝑣 is unique. That 𝑣 ∈ 𝐿𝜑(⋅)(Ω) follows directly from
the facts that 𝑢 ∈ 𝐿𝜑(⋅)(Ω ⧵ 𝐹) and |𝐹| = 0.
Now we show that 𝜕𝑗𝑣 = 𝜕𝑗𝑢 for 𝑗 = 1, 2, … , 𝑛. Let 𝜂 ∈ 𝐶∞0 (Ω), and let 𝐾 ∶= 𝐹 ∩ spt 𝜂. Then 𝐾 is compact and

𝐶𝜑(⋅)(𝐾) = 0, and we can find a sequence
{
𝜉𝑖
}
as in Lemma 6.2. Now 𝜂𝜉𝑖 ∈ 𝐶∞0 (Ω ⧵ 𝐹). The definition of weak deriva-

tive gives

0 = ∫
Ω⧵𝐹

𝑢𝜕𝑗
(
𝜂𝜉𝑖

)
+ 𝜂𝜉𝑖𝜕𝑗𝑢 𝑑𝑥 = ∫

Ω

𝑣𝜂𝜕𝑗𝜉𝑖 + 𝜉𝑖
(
𝑣𝜕𝑗𝜂 + 𝜂𝜕𝑗𝑢

)
𝑑𝑥,

where we have also used the fact that 𝑣 = 𝑢 almost everywhere in Ω. Hölder’s inequality gives

|||||∫Ω 𝑣𝜂𝜕𝑗𝜉𝑖 𝑑𝑥
||||| ⩽ ∫

Ω

||𝑣𝜂𝜕𝑗𝜉𝑖|| 𝑑𝑥 ⩽ 2‖‖𝜕𝑗𝜉𝑖‖‖𝜑(⋅)‖𝑣𝜂‖𝜑∗(⋅).
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By [12, Proposition 2.4.13] and [12, Lemma 3.7.6] 𝜑∗ satisfies (aDec) and (A0), which implies that 𝜑∗(𝑥, 1) ≲ 1. Since 𝑣𝜂
is bounded, it follows that 𝑣𝜂 ∈ 𝐿𝜑∗(⋅)(Ω). It now follows from property (ii) in Lemma 6.2, that the right-hand side in the
inequality above approaches 0 as 𝑖 → ∞. By [12, Corollary 3.7.9], 𝐿𝜑(⋅)(Ω) ⊂ 𝐿𝑝(Ω), where 𝑝 is the exponent from (aInc).
Since 𝜂 ∈ 𝐶∞0 (Ω) and 𝑣 = 𝑢 ∈ 𝑊

1,𝜑(⋅)(Ω), it follows that
(
𝑣𝜕𝑗𝜂 + 𝜂𝜕𝑗𝑢

)
∈ 𝐿1(Ω). Since 𝜉𝑖 ⩽ 1 and 𝜉𝑖(𝑥) → 1 for almost

every 𝑥 ∈ Ω, dominated convergence implies that

lim
𝑖→∞∫

Ω

𝜉𝑖
(
𝑣𝜕𝑗𝜂 + 𝜂𝜕𝑗𝑢

)
𝑑𝑥 = ∫

Ω

(
𝑣𝜕𝑗𝜂 + 𝜂𝜕𝑗𝑢

)
𝑑𝑥.

Combining the results above shows that 𝜕𝑗𝑣 = 𝜕𝑗𝑢.
To complete the proof, we need to show that 𝑣 is a superminimizer inΩ. Let 0 ⩽ 𝜇 ∈ 𝐶∞0 and let 𝜉𝑖 be as above. Denote

𝑤𝑖 ∶= 𝑣 + 𝜂𝜉𝑖 and 𝑤 ∶= 𝑣 + 𝜂. Since 𝑢 is a superminimizer in Ω ⧵ 𝐹 and 𝜂𝜉𝑖 ∈ 𝐶∞0 (Ω ⧵ 𝐹), we have

∫
Ω

𝜑(𝑥, |∇𝑤𝑖|) 𝑑𝑥 = ∫
Ω⧵𝐹

𝜑
(
𝑥, ||∇(𝑢 + 𝜂𝜉𝑖)||)𝑑𝑥 ⩾ ∫

Ω⧵𝐹

𝜑(𝑥, |∇𝑢|) 𝑑𝑥 = ∫
Ω

𝜑(𝑥, |∇𝑣|) 𝑑𝑥.
The claim follows, if we can show that lim𝑖→∞ 𝜚𝜑(⋅)(∇𝑤𝑖) = 𝜚𝜑(⋅)(∇𝑤). Since|||∇𝑤𝑖| − |∇𝑤||| ⩽ |∇(𝑤𝑖 − 𝑤)| = ||∇(𝜂𝜉𝑖 − 𝜂)||,
we have

𝜚𝜑(⋅)(|∇𝑤𝑖| − |∇𝑤|) ⩽ 𝜚𝜑(⋅)(∇(𝜂𝜉𝑖 − 𝜂)) = 𝜚𝜑(⋅)(∇𝜂(𝜉𝑖 − 1) + 𝜂∇𝜉𝑖)
⩽ 𝜚𝜑(⋅)

(||∇𝜂(𝜉𝑖 − 1)|| + ||𝜂∇𝜉𝑖||) ≲ 𝜚𝜑(⋅)(∇𝜂(𝜉𝑖 − 1)) + 𝜚𝜑(⋅)(𝜂∇𝜉𝑖),
where the last inequality follows from (aDec). Property (ii) of Lemma 6.2 implies that ‖‖𝜂∇𝜉𝑖‖‖𝜑(⋅) tends to 0 as 𝑖 → ∞, and
[12, Lemma 3.2.11] then implies that lim𝑖→∞ 𝜚𝜑(⋅)

(
𝜂∇𝜉𝑖

)
= 0. Similarly lim𝑖→∞ 𝜚𝜑(⋅)

(
∇𝜂

(
𝜉𝑖 − 1

))
= 0. It now follows from

[12, Lemma 3.1.6] that lim𝑖→∞ 𝜚𝜑(⋅)(|∇𝑤𝑖|) = 𝜚𝜑(⋅)(|∇𝑤|), which completes the proof. □

Now we prove the following lemma, which is our main tool in characterizing semiregular boundary points (cf. [1,
Theorem 8.1]).

Lemma 6.4. Let𝜑 ∈ Φ𝑐(Ω) be strictly convex and satisfy (A0), (A1), (A1-n), (aInc) and (aDec). Let𝑉 ⊂ 𝜕Ω be relatively open.
Then the following are equivalent:

(a) Every point of 𝑉 is semiregular.
(b) Every point of 𝑉 is irregular.
(c) 𝐶𝜑(⋅)(𝑉) = 0.
(d) If 𝑓, 𝑔 ∈ 𝐶(𝜕Ω) and 𝑓 = 𝑔 on 𝜕Ω ⧵ 𝑉, then𝐻𝑓 = 𝐻𝑔.

Proof. (a)⇒ (b) Follows directly from definition of semiregularity.
(b)⇒ (c) Follows from the Kellogg property (Theorem 5.5).
(c)⇒ (d) Suppose that 𝑓, 𝑔 ∈ 𝐶(𝜕Ω) and 𝑓 = 𝑔 on 𝜕Ω ⧵ 𝑉. Since 𝐶𝜑(⋅)(𝑉) = 0, it follows that both 𝑓 ⩽ 𝑔 and 𝑔 ⩽ 𝑓 hold

quasieverywhere on 𝜕Ω. It then follows from Corollary 5.3 that both𝐻𝑓 ⩽ 𝐻𝑔 and𝐻𝑔 ⩽ 𝐻𝑓 on Ω, hence𝐻𝑓 = 𝐻𝑔.
(d) ⇒ (b) Let 𝑥0 ∈ 𝑉. Since 𝑉 is relatively open, there exists 𝑟 > 0 with 𝐵(𝑥0, 𝑟) ∩ 𝜕Ω ⊂ 𝑉. Define 𝑓 ∈ Lip(ℝ𝑛) by

𝑓(𝑦) ∶=
(
1 −

𝑑(𝑥0,𝑦)

𝑟

)
+
. Then 𝑓 = 0 on 𝜕Ω ⧵ 𝑉, and it follows by our assumption that 𝐻(𝑓) = 𝐻(0) = 0. Since 𝑓(𝑥) = 1,

it follows that 𝑥 is irregular.
(c) ⇒ (a) Let 𝑥0 ∈ 𝑉 and let 𝐺 be an open neighbourhood of 𝑥0 such that 𝐺 ∩ 𝜕Ω ⊂ 𝑉. By [4, Proposition 4.2]

𝐶𝑝(𝐺 ∩ 𝜕Ω) = 0, where 𝑝 > 1 is the exponent from (aInc). Now [1, Lemma 6.5] (with 𝑝(𝑥) = 𝑝) implies that 𝐺 ⧵ 𝜕Ω is
connected. Since 𝐺 ⧵ 𝜕Ω ⊂ (𝐺 ∩ Ω) ∪

(
𝐺 ⧵ Ω

)
and 𝐺 ∩ Ω ≠ ∅, connectedness implies that 𝐺 ⧵ Ω = ∅. Now

𝐺 = (𝐺 ⧵ 𝜕Ω) ∪ (𝐺 ∩ 𝜕Ω) ⊂ (𝐺 ∩ Ω) ∪ 𝑉 ⊂ Ω ∪ 𝑉.

Since 𝑥0 was arbitrary, this implies that Ω∪ 𝑉 is open. Moreover, since 𝑉 ⊂ 𝜕Ω, 𝑉 is relatively closed in Ω∪ 𝑉.
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Let𝑓 ∈ Lip(𝜕Ω). By Theorem 3.3,𝐻(𝑓) is continuous, hence𝐻(𝑓) is lsc-regularized. By Lemma 6.3,𝐻(𝑓)has a bounded
lsc-regularized extension 𝑢𝑓 toΩ∪ 𝑉, such that 𝑢𝑓 is a superminimizer inΩ∪ 𝑉. Lemma 6.3 applied to −𝐻(𝑓) = 𝐻(−𝑓)
gives an extension 𝑢−𝑓 , and then −𝑢−𝑓 is an extension of𝐻(𝑓) that is a subminimizerΩ∪ 𝑉. By [4, Lemma 4.1], |𝑉| = 0,
and it follows that 𝑢𝑓 = −𝑢−𝑓 almost everywhere in Ω∪ 𝑉. Hence 𝑢𝑓 is an lsc-regularized minimizer in Ω∪ 𝑉. By [17,
Theorem 5.8] 𝑢𝑓 is continuous in the open set Ω∪ 𝑉, and it follows that the limit

lim
Ω∋𝑦→𝑥0

𝐻(𝑓)(𝑦) = lim
Ω∪𝑉∋𝑦→𝑥0

𝑢𝑓(𝑦) = 𝑢𝑓(𝑥0)

exists for every 𝑥0 ∈ 𝑉.
Let then 𝑔 ∈ 𝐶(𝜕Ω). Let 𝑓𝑖 ∈ Lip(Ω) be sequence such that 𝑔 −

1

𝑖
⩽ 𝑓𝑖 ⩽ 𝑔 and 𝑓𝑖 ⩽ 𝑓𝑖+1 on 𝜕Ω. For any 𝑥 ∈ Ω and

𝑗 > 𝑖, comparison principle (Lemma 5.2) implies that

𝐻
(
𝑓𝑖
)
(𝑥) ⩽ 𝐻

(
𝑓𝑗
)
(𝑥) ⩽ 𝐻𝑔(𝑥) ⩽ 𝐻

(
𝑓𝑖
)
(𝑥) +

1

𝑖
.

Hence 𝐻
(
𝑓𝑖
)
converges uniformly to 𝐻𝑔 in Ω, and this implies that 𝐻𝑔 is continuous in Ω. Let 𝑢𝑓𝑖 be the extension of

𝐻
(
𝑓𝑖
)
to Ω∪ 𝑉 given by Lemma 6.3. We have already shown that for any 𝑥 ∈ Ω and 𝑗 > 𝑖

𝑢𝑓𝑖 (𝑥) ⩽ 𝑢𝑓𝑗 (𝑥) ⩽ 𝑢𝑓𝑖 (𝑥) +
1

𝑖
.

Since 𝑢𝑓𝑖 are continuous inΩ∪ 𝑉 and𝑉 ⊂ 𝜕Ω, these inequalities hold also for every 𝑥 ∈ 𝑉. This implies that the functions
𝑢𝑓𝑖 converge uniformly to a continuous function 𝑢. Since 𝑢 = 𝐻𝑔 in Ω, for any 𝑥0 ∈ 𝑉 we have

lim
Ω∋𝑦→𝑥0

𝐻𝑔(𝑦) = lim
Ω∪𝑉∋𝑦→𝑥0

𝑢(𝑦) = 𝑢(𝑥0).

The only thing left is to show that every point of 𝑉 is irregular. But this follows from the already proven implication
(c)⇒ (b). □

Using the previous lemma we now give some characterizations of semiregular boundary points (cf. [1, Theorem 8.4]).

Theorem 6.5. Let 𝜑 ∈ Φ𝑐(ℝ𝑛) be strictly convex and satisfy (A0), (A1), (A1-n), (aDec) and (aInc). Let 𝑥0 ∈ 𝜕Ω, 𝛿 > 0 and
𝑑(𝑦) ∶= 𝑑(𝑥0, 𝑦). Then the following are equivalent:

(A) The point 𝑥0 is semiregular.
(B) For some positive integer 𝑘

lim
Ω∋𝑦→𝑥0

𝐻(𝑘𝑑)(𝑦) > 0.

(C) For some positive integer 𝑘,

lim inf
Ω∋𝑦→𝑥0

𝐻(𝑘𝑑)(𝑦) > 0.

(D) There is no sequence {𝑦𝑖}, such thatΩ ∋ 𝑦𝑖 → 𝑥0, and

lim
𝑖→∞
𝐻𝑓(𝑦𝑖) = 𝑓(𝑥0) for all 𝑓 ∈ 𝐶(𝜕Ω).

(E) It is true that 𝑥0 ∉ {𝑥 ∈ 𝜕Ω ∶ 𝑥 is regular}.
(F) There is a neighbourhood 𝑉 of 𝑥0, such that 𝐶𝜑(⋅)(𝑉 ∩ 𝜕Ω) = 0.
(G) There is a neighbourhood 𝑉 of 𝑥0 such that, for every 𝑓, 𝑔 ∈ 𝐶(𝜕Ω), if 𝑓 = 𝑔 on 𝜕Ω ⧵ 𝑉, then𝐻𝑓 = 𝐻𝑔.
(H) The point 𝑥0 is semiregular with respect to 𝐺 ∶= Ω ∩ 𝐵(𝑥0, 𝛿).
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Proof. (A)⇒ (B) We prove this by contraposition. Suppose therefore that

lim
Ω∋𝑦→𝑥0

𝐻(𝑘𝑑)(𝑦) = 0

for all positive integers 𝑘. Let 𝑓 ∈ 𝐶∞0 (ℝ
𝑛) ⊂ Lip(𝜕Ω), 𝑎 > 𝑓(𝑥0), and 𝑟 > 0 be such that 𝑓 < 𝑎 on 𝐵(𝑥0, 𝑟). Denote

𝑚 ∶= sup𝜕Ω(𝑓 − 𝑎)+, and let 𝑗 > 𝑚∕𝑟 be a positive integer. Then

𝑓 ⩽ 𝑎 +
𝑚𝑑

𝑟
⩽ 𝑎 + 𝑗𝑑

on 𝜕Ω. It follows from Corollary 5.3 that

lim sup
Ω∋𝑦→𝑥0

𝐻(𝑓)(𝑦) ⩽ lim sup
Ω∋𝑦→𝑥0

𝐻
(
𝑎 + 𝑗𝑑

)
(𝑦) = lim sup

Ω∋𝑦→𝑥0

(
𝑎 + 𝐻

(
𝑗𝑑

)
(𝑦)

)
= 𝑎.

Letting 𝑎 → 𝑓(𝑥0) shows that lim supΩ∋𝑦→𝑥0 𝐻(𝑓)(𝑦) ⩽ 𝑓(𝑥0). Replacing 𝑓 with −𝑓 in the calculations above gives us

− lim sup
Ω∋𝑦→𝑥0

𝐻(−𝑓)(𝑦) ⩾ −(−𝑓(𝑥0)) = 𝑓(𝑥0).

Hence we have limΩ∋𝑦→𝑥0 𝐻(𝑓)(𝑦) = 𝑓(𝑥0). Since 𝑓 ∈ 𝐶
∞
0 (ℝ

𝑛) was arbitrary, it follows from [11, Proposition 6.5] that 𝑥0
is regular, thus 𝑥0 is not semiregular, and (A) does not hold.
(B)⇒ (C)⇒ (D) These implications are trivial.
(D) ⇒ (E) We prove this by contraposition. Suppose therefore that 𝑥0 belongs to the closure of regular bound-

ary points. For each positive integer 𝑘, the intersection 𝐵
(
𝑥0, 𝑘

−2
)
∩ 𝜕Ω contains a regular boundary point 𝑥𝑘. Let

𝑓𝑘 ∶= 𝑘𝑑 ∈ Lip(𝜕Ω). Then we can find 𝑦𝑘 ∈ 𝐵
(
𝑥0, 𝑘

−1
)
∩ Ωwith ||𝑓𝑘(𝑥𝑘) −𝐻(𝑓𝑘)(𝑦𝑘)|| < 𝑘−1. Then 𝑦𝑘 → 𝑥0 and, since

0 ⩽ 𝑓(𝑥𝑘) ⩽ 𝑘
−1, we have 𝐻

(
𝑓𝑘

)(
𝑦𝑘
)
⩽ 2𝑘−1.

Let then 𝑓 ∈ 𝐶(𝜕Ω), and assume without loss of generality that 𝑓(𝑥0) = 0. Choose 𝑚 such that |𝑓| ⩽ 𝑚 < ∞ and let
𝜀 > 0. We can find 𝑟 > 0 such that |𝑓| < 𝜀 on 𝐵(𝑥0, 𝑟−1) ∩ 𝜕Ω. For 𝑘 ⩾ 𝑚𝑟 we have 𝑓𝑘 ⩾ 𝑚 on 𝜕Ω ⧵ 𝐵

(
𝑥0, 𝑟

−1
)
, hence|𝑓| ⩽ 𝑓𝑘 + 𝜀 on 𝜕Ω. It follows from Corollary 5.3 that for 𝑘 ⩾ 𝑚𝑟 we have

𝐻𝑓
(
𝑦𝑘
)
⩽ 𝐻

(
𝑓𝑘

)
(𝑦) + 𝜀 ⩽ 2𝑘−1 + 𝜀

and

𝐻𝑓
(
𝑦𝑘
)
⩾ −𝐻

(
𝑓𝑘

)
(𝑦) + (−𝜀) ⩾ −2𝑘−1 − 𝜀.

Hence −𝜀 ⩽ lim𝑘→∞𝐻𝑓
(
𝑦𝑘
)
⩽ 𝜀. Since 𝜀 was arbitrary, the limit must be equal to 0, and it follows that (D) does not hold

(E)⇔ (F) Note that (E) is equivalent to the existence of a neighbourhood𝑉 of 𝑥0, such that every point of𝑉 is irregular.
The equivalence of (E) and (F) thus follows from the equivalence (b)⇔ (c) in Lemma 6.4, when we replace 𝑉 in 6.4 with
𝑉 ∩ 𝜕Ω here.
(F)⇔ (G)⇒ (A) These implications follow from Lemma 6.4 when we replace 𝑉 in 6.4 with 𝑉 ∩ 𝜕Ω here.
(F)⇔ (H) The assumption (F) is equivalent to the existence of a neighbourhood𝑊 of 𝑥0 with 𝐶𝜑(⋅)(𝑊 ∩ 𝜕𝐺) = 0. This

is equivalent to (H), which can bee seen by applying the equivalence (F)⇔ (A) to the set 𝐺. □
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