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Abstract

Through computer simulations, we research several different measures of de-
pendence, including Pearson’s and Spearman’s correlation coefficients, the
maximal correlation, the distance correlation, a function of the mutual in-
formation called the information coefficient of correlation, and the maximal
information coefficient (MIC). We compare how well these coefficients fulfill
the criteria of generality, power, and equitability. Furthermore, we consider
how the exact type of dependence, the amount of noise and the number of
observations affect their performance. According to our results, the maximal
correlation is often the best choice of these measures of dependence because it
can recognize both functional and non-functional types of dependence, fulfills
a certain definition of equitability relatively well, and has very high statis-
tical power when the noise grows if there are enough observations. While
Pearson’s correlation does not find symmetric non-monotonic dependence,
it has the highest statistical power for recognizing linear and non-linear but
monotonic dependence. The MIC is very sensitive to the noise and therefore
has the weakest statistical power.

AMS (2000) subject classification. Primary 62H20; Secondary 62B10.
Keywords and phrases. Correlation, distance correlation, information coef-
ficient of correlation, maximal correlation, maximal information coefficient,
mutual information.

1 Introduction

In the study of statistics, one very often needs to somehow measure the
dependence between two variables to understand their behavior. It is useful
to know if there is some relationship, how strong it is and if we can use it, for
instance, to predict the future observations. Consequently, it is important
to have a suitable coefficient that works as a measure of dependence.

Several different options have been introduced for this exact purpose
over the history. Already in the 19th century, Pearson’s correlation co-
efficient was first defined to identify linear dependence between variables.
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Later, its definition was extended to create Spearman’s correlation coeffi-
cient in 1904 by C. Spearman (Spearman, 1904), the maximal correlation
in 1941 by H. Gebelein (Gebelein, 1941), and the distance correlation in
2007 by G.J. Székely et al. (Székely et al., 2007) so that also non-linear
and non-monotonic dependence could be detected. The birth of C. Shan-
non’s information theory (Shannon, 1948) in the 1940s enabled measuring
non-functional dependence by using the mutual information, as formulated
in 1957 by E.H. Linfoot (Linfoot, 1957), and yet another quantity named
the maximal information coefficient (MIC) was proposed in 2011 by D.N.
Reshef et al. (Reshef et al., 2011). Furthermore, there exist local measures
of dependence, such as the correlation curve (Bjerve and Doksum, 1993)
and the local Gaussian correlation (Tjøstheim and Hufthammer, 2013), and
dependence between random variables can be also described with a type of
multivariate cumulative distribution function called a copula (Sklar, 1959).

It is important to note that the coefficients of a single number or index
cannot fully reveal the real nature of the underlying dependence (Balakrish-

nan and Lai, 2009) but, given their simple expression, different correlation

coefficients, mutual information, and the MIC are very useful and therefore

interesting topics of study. However, the number of these coefficients brings

forth the question about which one of them should be used in a given situa-

tion. In (Rényi, 1959), A. Rényi introduced seven fundamental properties for

a measure of dependence, including symmetry, values ranging the interval

[0, 1], and the value 0 meaning independence. Since most of the require-

ments by Rényi are trivially fulfilled by the aforementioned coefficients or
their slightly modified versions, we do not consider these properties here but
instead use the three following criteria, out of which the first and the third
one were introduced in (Reshef et al., 2011) and the second one is notably

studied in (Kinney and Atwal, 2014).

Firstly, we need to consider the generality of the measures of dependence
because it is important that a chosen coefficient can be applied into different

situations. Does our quantity only detect linear, monotonic, or functional

dependence, or can it also recognize more complicated relationships between

the variables? It must be taken into account whether the coefficient is de-

signed for continuous or discrete variables, and how many observations it

needs to work properly.

The other significant requirement is the power of the coefficient. How
effective the measure is when used in a statistical test to decide whether
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there is some association between the variables or not? Namely, we can use
any of our measures to test a null hypothesis of no dependence between two
variables by first choosing a suitable threshold value from data of indepen-
dent variables so that the probability of rejecting a true null hypothesis is
fixed and then computing the probability of rejecting a false null hypothesis
with the chosen threshold and data of two dependent variables. It is known
that the amount of statistical noise in the relationship affects the power of
the coefficients and, in particular, the MIC has been criticized for having
too low power in case of noisy data (Simon and Tibshirani, 2014).

The third criterion is the equitability of the measures of dependence. Does
the coefficient give similar values for such relationships that are based on
different functions but have the same level of noise? Especially, this property
was first attributed for the MIC in (Reshef et al., 2011) but, according to
(Kinney and Atwal, 2014), it does not work as well as implied earlier.

While each of the coefficients considered here has been already stud-
ied separately (Asoodeh et al., 2015; Kinney and Atwal, 2014; Xiao et al.,
2016) and there is a survey article by D. Tjøstheim et al. (Tjøstheim et al.,
2022) about copulas and local measures of dependence, there is relatively
little research comparing different non-local measures based only one coef-
ficient. Our aim in this article is to fill this gap by studying Pearson’s and
Spearman’s correlation coefficients, the maximal correlation, the distance
correlation, mutual information, and the MIC together. To find out if there
is some coefficient that detects dependence always better than the others,
we study them experimentally through several simulations implemented with
the programming language R.

The structure of this article is as follows. First, we define of all the mea-
sures of dependence studied here and explain the methods for their compu-
tation in Section 2. In Section 3, we introduce our models and check what
kind of values our coefficients give for them. Then, in Section 4, we compare
the power of our coefficients by also considering how it is affected by certain
elements, such as the exact type of dependence, the amount of noise, and
the number of observations. Finally, in Section 5, we study the equitability
of the coefficients under different functional relationships.

2 Preliminaries

Let us first define all the measures of dependence and show how they
can be computed with the programming language R. If we have observa-
tions (xi, yi), i = 1, ..., n, from two variables X and Y , we can estimate
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the correlation between these variables by computing Pearson’s correlation
coefficient (Xiao et al., 2016, (4), p. 3868)

r =

∑n
i=1(xi − x)(yi − y)

√∑n
i=1(xi − x)2

∑n
i=1(yi − y)2

∈ [−1, 1], (2.1)

where x and y denote the means of vectors (x1, ..., xn) and (y1, ..., yn), re-
spectively. This coefficient was designed for measuring linear dependence be-
tween two variables whose marginal distributions are assumed to be normal,
but it can also recognize non-linear dependence as long as it is monotonic.

One of the most well-known alternatives for Pearson’s correlation coef-
ficient is Spearman’s correlation coefficient rs, which is found for n paired
observations (xi, yi) by first converting them into their rank numbers and
then calculating Pearson’s correlation coefficient of these ranks (Xiao et al.,
2016, p. 3869). Spearman’s coefficient is also from the interval [−1, 1] but,
compared to Pearson’s coefficient, it suits better for such situations where
the dependence is non-linear but monotonic or the variables are not normally
distributed. Still, neither Pearson’s nor Spearman’s correlation coefficient is
a good choice when the relationship between the variables is non-monotonic.

However, we can use the maximal correlation (Asoodeh et al., 2015, (1),
p. 27)

ρmax = sup{ρ(f0(X); f1(Y ))} ∈ [0, 1] (2.2)

to measure all types of functional dependence, regardless of if they are mono-
tonic or not. Above, the supremum is taken over all the real-valued functions
f0, f1 defined for the values of the variables X and Y , respectively, such that
E(f0(X)) = E(f1(Y )) = 0 and E(f0(X)2) = E(f1(Y )2) = 1. The notation
ρ(; ) means here the population correlation, which is can be estimated from
the data by computing Pearson’s coefficient r.

Another measure of dependence based on the definition of correlation is
the (sample) distance correlation

ρdist =

√
V2
n(X;Y )

√
V2
n(X)V2

n(Y )
∈ [0, 1], (2.3)

where, for n paired observations (xi, yi) from the variables X and Y ,
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V2
n(X;Y )=

1

n2

n∑

j=1

n∑

k=1

Aj,kBj,k, V2
n(X)=V2

n(X;X), V2
n(Y )=V2

n(Y ;Y ),

Aj,k = |xj−xk| −
1

n

n∑

l=1

|xj−xl| −
1

n

n∑

l=1

|xk − xl|+
1

n2

n∑

l=1

n∑

h=1

|xl − xh|,

and

Bj,k = |yj − yk| −
1

n

n∑

l=1

|yj − yl| −
1

n

n∑

l=1

|yk − yl|+
1

n2

n∑

l=1

n∑

h=1

|yl − yh|.

This coefficient is much newer than the previous ones and should be able to
recognize different functional relationships. Note that if the denominator in
Eq. 2.3 is 0, we simply set ρdist = 0.

A slightly different way to identify dependence is compute the mutual
information between variables X and Y , which is defined as a sum (Veyrat-
Charvillon and Standaert, 2009, p. 431)

I(X;Y ) =
∑

i

∑

j

p(xi, yj) log2

(
p(xi, yj)

p(xi)p(yj)

)

∈ [0,∞) (2.4)

for discrete random variables X and Y with values xi and yj , and as an
integral (Linfoot, 1957, (14), p. 88)

I(X;Y ) =

∫

x∈X

∫

y∈Y
p(x, y) log2

(
p(x, y)

p(x)p(y)

)

dxdy ∈ [0,∞). (2.5)

for continuous random variablesX and Y with value sets X and Y. While the
exact value of the mutual information is often quite difficult to find because
it requires knowing the probability distribution function p, this quantity can
be estimated by dividing the domain into small bins and then using the
so-called naive estimate (Kinney and Atwal, 2014, (6), p. 3356)

Inaive(X;Y ) =
∑

x̃, ỹ

p̂(x̃, ỹ) log2

(
p̂(x̃, ỹ)

p̂(x̃)p̂(ỹ)

)

, (2.6)

where p̂(x̃, ỹ) is the fraction of data points inside one bin. The mutual in-
formation tells us the expected amount of information that the observations
of one variable give about the other variable, and this measure therefore
describes also non-functional relationships.

By denoting the estimate of the mutual information found with the bins
of a rectangular nx × ny-grid G by IG(X;Y ), we can write the definition of
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the maximal information coefficient (MIC) as (Kinney and Atwal, 2014, (7),
p. 3356)

MIC(X;Y ) = max
nx×ny

maxG IG(X;Y )

log(min{nx, ny})
∈ [0, 1]. (2.7)

Here, the value of the product nx × ny has usually some upper bound, such
as B(n) = n0.6, where n is the number of paired observations. Clearly, the
MIC is a non-parametric measure of dependence between the variables X
and Y and, since its definition is based on that of the mutual information, it
should also be able to detect both functional and non-functional dependence.

One of the issues when comparing these measures of dependence is that
they are defined on different intervals. Here, we are interested in such a
coefficient whose value is 0 if the variables X and Y are independent, 1 if
one of these variables fully determines the values of the other, and some
number from the interval (0, 1) if there is a relationship between X and Y so
that this value decreases as the amount of noise in the data increases. The
maximal correlation, the distance correlation and the MIC already fulfill
this condition, but we will consider below only the absolute values of both
Pearson’s and Spearman’s correlation coefficient to deal with their values in-
dicating negative correlation. Furthermore, because the mutual information
is measured in bits and has sometimes values greater than 1, we consider
the information coefficient of correlation (Linfoot, 1957, (13), p. 88)

r1 =
√
1− e−2·I(X;Y ) ∈ [0, 1], (2.8)

which was introduced in 1957 by H.E. Linfoot so that the value of the mutual
information could be interpreted better.

Let us yet briefly introduce the methods of computation used in our sim-
ulations. Firstly, Pearson’s correlation coefficient can be computed with the
base R-function cor and this same function also returns Spearman’s coeffi-
cient if we choose value “spearman” for its parameter “method”. The max-
imal correlation is found by first maximizing the linear correlation with the
alternative conditional expectations algorithm ace from the package acepack
and then using the function cor. The distance correlation can be com-
puted with the function dcor from the package energy. The coefficient r1
is obtained by first discretizing the data with discretize from the package
infotheo, estimating the mutual information the function mutinformation

from the same package and just applying the formula in Eq. 2.8 in R. Finally,
the MIC is computed with the function mine from the package minerva. We
use here default settings for each function and more details can be found in
the manuals of these R-packages.
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3 Generality for Different Types of Dependence

In this section, we define nine different models of dependence, which
can be seen from Fig. 1. For each type of dependence, we study the values
of six different measures introduced in the previous section. The models
below are built by generating observations from the normal distribution for
the explanatory variable, but they can be easily redefined for some other
marginal distribution.

Figure 1: Scatter plots of one simulation from the models (3.1)–(3.4) with
σ = 0 and n = 1000
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In our simulations of functional dependence, the observations i = 1, ..., n
of the variables X and Y are generated according the model

xi ∼ N(0, 1), yi = fj(xi) + εi, εi ∼ N(0, σ2), (3.1)

in which the function fj is either the linear, logarithmic, cubic, quadratic,
sinusoidal, or piecewise function, defined as

f1(x) = x, f2(x) = 5 ln(|x+ 5|), f3(x) = 0.3x3, f4(x) = 0.7x2, f5(x) = 1.3 sin(3x),

f6(x) = min{max{1/x,−3}, 3}.

We also compute our coefficients for three non-functional models of de-
pendence, including the cross-shaped dependence

xi ∼ N(0, 1), yi ∼ N(0, (σ/3)2) for i = 1, ..., �n/2�,
xi ∼ N(0, (σ/3)2), yi ∼ N(0, 1) for i = �n/2�+ 1, ..., n, (3.2)

the circular dependence

(xi, yi) ∈ {(hi cos(ki), hi sin(ki)) | hi ∼ N(1, (σ/7)2), ki ∼ N(0, 1)}, i = 1, ..., n, (3.3)

and the checkerboard dependence

xi = ki0, yi = ki1 + εi, εi ∼ N(0, (σ/2)2), i = 1, ..., n, where(
ki0
ki1

)
∈

{(
k0
k1

)
∼ N

((
0
0

)
,

(
1 0
0 1

)) ∣∣∣∣ �0.7k0� − �0.7k1� ≡ 0 (mod 2)

}
. (3.4)

These models have been created so that the amount of statistical noise in
the data can be added by increasing the value of the parameter σ > 0 in all
the models except the cross-shaped model (3.2), where the amount of noise
is increasing with respect to σ ∈ [0, 3], decreasing with respect to σ ≥ 3,
and the data comes from two independent, normally distributed variables if
σ = 3.

First, let us consider the noiseless versions of these models with 1000 ob-
servations to see how our coefficients recognize different types of dependence
without any disrupting factors. For each model, we compute the average
values of the coefficients |r|, |rs| ρmax, ρdist, r1, and MIC in 1000 simulations
with n = 1000 and σ = 0. The results of this experiment are collected in
Table 1.



Different coefficients for studying dependence 9

Table 1: The average values of the coefficients |r|, |rs|, ρmax, ρdist, r1, and
MIC in 1000 simulations of the models (3.1)–(3.4) with n = 1000 and σ = 0
Model |r| |rs| ρmax ρdist r1 MIC

Linear 1.000 1.000 1.000 1.000 0.994 1.000
Logarithmic 0.987 1.000 1.000 0.998 0.994 1.000
Cubic 0.779 1.000 0.995 0.854 0.994 1.000
Quadratic 0.056 0.033 1.000 0.542 0.969 1.000
Sinusoidal 0.049 0.123 0.984 0.359 0.919 1.000
Piecewise 0.441 0.504 0.979 0.735 0.973 1.000
Cross-shaped 0.001 0.001 0.931 0.328 0.800 0.631
Circular 0.027 0.032 0.995 0.411 0.958 0.996
Checkerboard 0.062 0.151 0.928 0.255 0.713 0.497

From Table 1, we see that Pearson’s correlation coefficient |r| has a value
of 1 only for the linear dependence, Spearman’s coefficient |rs| is 1 for all
the monotonic relationships whereas the MIC is 1 for all functional models.
Clearly, the two first coefficients cannot detect non-monotonic dependence
properly and their values are very small for the symmetric models, like the
cross-shaped, circular and quadratic types of dependence. Interestingly, the
maximal correlation ρmax always has larger values than the coefficients ρdist
and r1 and it also exceeds the MIC for the models (3.2) and Eq. 3.4, even
though the maximal correlation was designed only for identifying functional
relationships.

By changing the values of the parameters σ and n in the simulations,
we can see what kind of an impact the amount of noise and the number of
observations, respectively, have on our measures of dependence. As we can
see from Table 2, the values of the MIC decrease notably faster than those of
the other coefficients, when the noise levels grow. According to Table 3, the
correlation coefficients seem to decrease while the values of r1 and the MIC
increase with respect to n. Note here that, even though Pearson’s coefficient

Table 2: The average values of the coefficients |r|, |rs|, ρmax, ρdist, r1, and
MIC in 1000 simulations with n = 1000 observations from the model (3.1)
with the linear function f1(x) = x, when the value of σ varies
σ |r| |rs| ρmax ρdist r1 MIC

0.1 0.995 0.994 0.995 0.992 0.979 0.980
0.5 0.895 0.885 0.895 0.862 0.873 0.663
1 0.706 0.670 0.709 0.658 0.703 0.409
3 0.316 0.303 0.321 0.287 0.384 0.181
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Table 3: The average values of the coefficients |r|, |rs|, ρmax, ρdist, r1, and
MIC in 1000 simulations of the model (3.1) with the linear function f1(x) = x
and σ = 1, when the number n of observations varies
n |r| |rs| ρmax ρdist r1 MIC

10 0.692 0.646 0.803 0.738 0.475 0.546
100 0.706 0.684 0.739 0.666 0.659 0.508
1000 0.706 0.670 0.709 0.658 0.703 0.409
3000 0.707 0.690 0.707 0.657 0.711 0.370

can be defined for even just 3 observations, our methods of computation
return 0 for the value of r1 if n ≤ 7 and, similarly, the distance correlation
cannot be computed either if n ≤ 4.

It can also be studied how our coefficients behave if we modify the
model (3.1) so that the observations of the variable X are generated from
some distribution other than the standard normal distribution, such as the
uniform, exponential or Poisson distribution. For instance, all the quanti-
ties give values close to 1 in case of the linear dependence, regardless of the
exact marginal distribution of X, but the value of the distance correlation is
greater for the sinusoidal model if we choose X ∼ Pois(3) instead. It must be
noted that these changes obviously also affect the shape of the data, though,
and such as noise parameter should be chosen that the amount of noise is
proportional to the range of the variable X.

However, the values of our measures of dependence do not tell us very
much without any additional information. In order to draw any conclusions
whether dependence in the data can be properly identified if, for instance,
the MIC has a value of 0.3, we need to compare this result to the value of the
coefficient computed from the data without any dependence. Consequently,
we need to study here the power of our coefficients.

4 Power for Identifying Dependence

In this section, we study the power of six coefficients, including the abso-
lute values of Pearson’s and Spearman’s correlation coefficients r and rs, the
maximal correlation ρmax, the distance correlation ρdist, the coefficient r1,
and the MIC. We apply the models (3.1)–(3.4) to create different types of
dependence in our simulations. Furthermore, we consider how the amount
of noise and the number of observations affect our results.

Recall that the power in a statistical test is the probability of rejecting a
false null hypothesis. When studying the dependence between two variables,
our null hypothesis is that there is no association between them, and we
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must therefore find out how likely it is to recognize the cases with some
underlying dependence present. In order to measure this probability, we
need to first decide the critical values of the coefficients which are used to
decide if the null hypothesis is rejected or not with the significance level of α.
In other words, the power is of some coefficient q is defined formally as the
probability

P (q(X,Y ) > qcrit | X �⊥ Y ) for {qcrit ∈ [0, 1] | P (q(X,Z) > qcrit | X ⊥ Z) = α}. (4.1)

Consequently, let us compute the values of the coefficients |r|, |rs|, ρmax,
ρdist, r1, and MIC in 3000 simulations, each of which consists of n = 1000
observations from two independent, similarly distributed variables. We have
then some approximations for the distributions of the values of these coeffi-
cients when the null hypothesis holds and, by taking the (1 − α)-quantiles
from their histograms, we have estimates for their critical values for α.
Table 4 contains these estimates in the cases where both the variables follow
the standard normal distribution N(0, 1) and α = 1, 5, 10%.

Now, we can estimate the power of our coefficients by computing what
proportion of their values in 3000 simulations are above their critical values
in Table 4. In one experiment for all the models (3.1)–(3.4) with parameter
choices n = 1000, σ = 0.1, and α = 5%, it was observed that the powers
of the coefficients ρmax, ρdist, r1, and MIC were 1 for all these models. The
estimated powers of the absolute values of Pearson’s and Spearman’s corre-
lation coefficients were 1 for all the monotonic relationships (the model (3.1)
with j = 1, 2, 3), but notably less than this for the other models. Espe-
cially, the powers of these two coefficients are close to 0 in case of symmetric
non-monotonic dependence, like the cross-shaped dependence of model (3.2).

Next, let us inspect how the amount of noise affects the power of our
coefficients. To do this, we first choose some model and an appropriate
interval of the noise parameter σ for this model. For each value of σ, we
compute the values of our coefficients in 3000 simulations with n = 1000

Table 4: The critical values of the coefficients |r|, |rs|, ρmax, ρdist, r1, and
MIC estimated from 3000 simulations with n = 1000 observations from two
independent, normally distributed variables, when the significance varies
α |r| |rs| ρmax ρdist r1 MIC

1% 0.0827 0.0849 0.134 0.0934 0.301 0.152
5% 0.0628 0.0619 0.116 0.0774 0.287 0.147
10% 0.0517 0.0532 0.106 0.0706 0.278 0.143
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observations and estimate the powers from these results by using the critical
values of Table 2 for α = 5%. We plot the final results for three specific
models.

Figure 2 contains the powers of all our coefficients, when the model is
Eq. 3.1 with the cubic function f3(x) = 0.3x3 and σ = 0, 1, ..., 30. For the
first few values of σ, all our coefficients have power of 1, but the powers of the
MIC and the coefficient r1 decrease very fast when σ > 3. The most powerful
measure of dependence for this model is Pearson’s correlation coefficient |r|,
followed by the coefficients |rs|, ρmax, and ρdist, all of whose powers seem to
have very similar values.

Let us then consider the model (3.1) but choose the sinusoidal function
f5(x) = 1.3 sin(3x) instead and let σ = 0, 0.5, ..., 15. Since neither Pearson’s
nor Spearman’s correlation coefficient is well-suited for non-monotonic de-
pendence, we only consider the coefficients ρmax, ρdist, r1, and MIC. From
Fig. 3, we see that the maximal correlation ρmax is considerably more pow-
erful than the coefficients ρmax and r1, whereas the MIC has the least power.

Our third model considered is cross-shaped dependence of Eq. 3.2. Recall
that σ = 0 gives us here a noiseless dependence whereas σ = 3 means that
the data comes from two fully independent normal variables, so the powers
of our coefficients should decrease from 1 to the value of α as σ increases
from 0 to 3. Figure 4 is plotted by using the values σ = 0, 0.1, ..., 3 and, as

Figure 2: The estimated powers of the coefficients |r|, |rs|, ρmax, ρdist, r1 and
MIC for n = 1000 observations of the model (3.1) with the cubic function
f3(x) = 0.3x3, when σ = 0, 1, ..., 30
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Figure 3: The estimated powers of the coefficients |r|, |rs|, ρmax, ρdist, r1,
and MIC for n = 1000 observations of the model (3.1) with the sinusoidal
function f5(x) = 1.3 sin(3x), when σ = 0, 0.5, ..., 15

we can see, the power of the MIC decreases quickly close to 0 around σ = 0.6
and only the maximal correlation has values over 0.9 when σ exceeds 1.5.

By running similar experiments for all the other models introduced in
Section 3, it can be noticed that the results found above do not change much.

Figure 4: The estimated powers of the coefficients |r|, |rs|, ρmax, ρdist, r1,
and MIC for n = 1000 observations of the cross-shaped model (3.2), when
σ = 0, 0.1, ..., 3
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Namely, Pearson’s correlation coefficient |r| is the most powerful measure for
monotonic dependence and the maximal correlation has the most power for
detecting non-monotonic relationships, regardless of if they are functional or
not. The MIC is very sensitive to the noise and therefore has less power than
the coefficients ρmax, ρdist, and r1, whenever there is at least little noise in
the model. This result was not affected by changing the level of significance
into 10% or 1% with the corresponding critical values from Table 4.

However, if we choose the number n of observations so that it is clearly
less than 100, it influences on the power of the coefficients. For each n =
10, 11, ..., 50, we run 30000 simulations consisting of n observations of two
independent normal variables, use this data to compute the critical values
of the coefficients with the significance level α = 5% and then estimate the
power of these coefficients from 30000 simulations with n observations from
the model (3.1) where f is the linear function f1(x) = x and σ = 1. As can be
seen from Fig. 5, the Pearson’s coefficient |r| has the greatest power, followed
closely by the coefficients ρdist and |rs|, while the maximal correlation has
the least power.

Figure 5 also shows us that the powers of the coefficient r1 and the MIC
are not always increasing with respect to the number n of observations. This
is because of our methods of computation: The mutual information needed to
obtain the value of r1 is estimated by using 3

√
n bins and the MIC is computed

Figure 5: The estimated powers of the coefficients |r|, |rs|, ρmax, ρdist, r1,
and MIC for n observations from the model (3.1) with the linear function
f1(x) = x and σ = 1, when n = 10, 11, ..., 50
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on a grid whose size is limited with the function B(n) = max{n0.6, 4}. By
changing these default settings, we could fix this issue.

5 Equitability for Functional Types of Dependence

In this section, we study the equitability properties of the maximal cor-
relation, the distance correlation, the coefficient r1 and the MIC. By equi-
tability, we mean here such feature of a measure of dependence that it gives
similar values for equally noisy relationships, regardless of the exact type
of the association. We focus here on the model (3.1), where the function
fj is one of the six options defined in Section 3: linear, logarithmic, cubic,
quadratic, sinusoidal, or piecewise.

Recall the noiseless simulations of Table 1. It is clear that neither Pear-
son’s nor Spearman’s coefficient is equitable because they do not recognize
non-monotonic types of dependence so we do not consider these coefficients.
Similarly, the distance correlation cannot have this property because its val-
ues vary from 0.36 to 1 for functional relationships with σ = 0. Still, we can
use the coefficient ρdist as a control when assessing the equitability of ρmax,
r1, and MIC, who all have values close to 1 for these noiseless relationships.

However, in order to inspect the impact of the noise levels on our coeffi-
cients between several models, we need such a way to measure the amount of
noise that does not depend on the choice of the function fj in the model (3.1)
like the previously used parameter σ does. Consequently, we consider the
coefficient of determination, defined as (Kinney and Atwal, 2014, p. 3355)

R2 = R2(f(X);Y ) = (ρ(f(X);Y ))2 ∈ [0, 1], (5.1)

where X and Y are chosen so that the function f defines their relationship
so that Y = f(X) + ε with some third variable ε and ρ(; ) is the population
correlation estimated with Pearson’s coefficient r. Since the amount of noise
is decreasing with respect to R2, we consider here the difference 1 − R2

instead. Note also that, according to (Kinney and Atwal, 2014, p. 3355), no
non-trivial measure of dependence can be fully R2-equitable, but it is still
useful to know if some of our coefficients are closer to fulfilling this property
than the others.

Figure 6 shows us how the values of each coefficient ρmax, ρdist, r1, and
MIC change for different functional types of dependence, when the noise
measured with 1− R2 grows. This figure was produced by generating 1000
times n = 1000 values for X and Y according to the model (3.1) and,
during each iteration round, computing the values of different coefficients and
1−R2, where R is the Pearson’s correlation between f(X) and Y obtained
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Figure 6: The values of the coefficients ρmax, ρdist, r1, and MIC against the
noise measured with 1−R2 in 1000 simulations of n = 1000 observations from
the model (3.1) with the linear, logarithmic, cubic, quadratic, sinusoidal, and
piecewise functions fj

with the function cor in the R code. The results suggest that the most
equitable coefficient is r1, which is compatible with prior research (Kinney
and Atwal, 2014) where mutual information was noted to be able to measure
different types of dependence in a consistent way. The MIC fulfills here the
equitable better than the distance correlation but not as well as the maximal
correlation.

We also notice here one interesting aspect of the maximal correlation.
Namely, for several different functions f in the model (3.1), it follows from
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the similarities in the definitions (2.2) and Eq. 5.1 that ρmax ≥
√
R2. For

instance, suppose that f(X) = X so that our variables are X ∼ N(0, 1) and
Y = X + ε with ε ∼ N(0, σ2), X ⊥ ε. Now, E(X) = E(Y ) = 0, Var(X) = 1
and Var(Y 2) = 1 + σ2, so by the definition of correlation,

√
R2 = ρ(X;Y ) =

E((X − E(X))(Y − E(Y ))
√
Var(X)Var(Y )

=
E(XY )√
1 + σ2

=
1√

1 + σ2

= E

(

X
Y√

1 + σ2

)

= ρ

(

X;
Y√

1 + σ2

)

≤ ρmax,

as can be visually verified from Fig. 6 even though our computational meth-
ods are not fully accurate.

The equitability cannot be directly studied for non-functional relation-
ships because the coefficient R2 is only defined for measuring noise from
data that follows some functional model. Still, we know from Tables 1 and
2 that the values of the MIC are around 0.6 for both the cross-shaped de-
pendence with no noise and the linear dependence with σ ≈ 0.6 or, equiva-
lently, R2 ≈ 0.7. Since the maximal correlation has values close to 1 for all
non-functional types of dependence and, unlike the MIC, this coefficient is
not very sensitive to the noise, it probably has reasonably good equitability
properties when measuring non-functional relationships.

6 Conclusions

According to our three criteria of generality, power, and equitability, the
best choice of a measure of dependence is often the maximal correlation.
The information coefficient of correlation r1 and the distance correlation
also work relatively well. However, Pearson’s and Spearman’s correlation
coefficients are greatly limited by the type of the dependence and the MIC
is not well-suited for noisy data.

Both Pearson’s and Spearman’s correlation coefficients can be used to
recognize non-monotonic dependence also when it is non-linear, but they
do not find non-monotonic dependence if it is symmetric. Surprisingly, the
maximal correlation also identifies non-functional relationships, even better
than the coefficients that were actually designed for this objective. The
distance correlation and the coefficient r1 work in an expected way but the
MIC is considerably more sensitive to the amount of noise than any of the
other coefficients. The number of observations does not affect very much the
values of these quantities but there needs to at least 8 or so observations so
that our methods of computation work properly.
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For monotonic types of dependence, Pearson’s correlation coefficient is
the most powerful measure of dependence, regardless of the number of ob-
servations. In case of non-monotonic or non-functional dependence, the
maximal correlation has the most power, assuming we have at least 100
observations in the data. If we have less than 50 observations from a non-
monotonic model, the distance correlation is a good choice for a measure of
dependence because it is the most powerful out of the coefficients able to
recognize this association and it is not susceptible to the exact number of
observations. Predictably, the power of the MIC is very weak in all cases
with at least some noise when compared to the other quantities.

The coefficient r1 can be used to measure functional dependence in quite
an equitable way. The maximal correlation fulfills this property relatively
well and, while the MIC is less equitable than the coefficient r1 and the max-
imal correlation, it still gives values close to 1 for all functional relationships
with no noise and then decreases as the amount of noise grows. In turn, the
distance correlation is not equitable in any way because its values vary very
much depending on the function behind the dependence, even when there is
no noise.
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