Minimum Number of Input Clues in Robust Information Retrieval

Ville Junnila and Tero Laihonen
Department of Mathematics and Statistics
University of Turku, FI-20014 Turku, Finland
viljun@utu.fi and terolai@utu.fi

Abstract

Information retrieval in associative memories was considered recently by Yaakobi and Bruck in [15]. In their model, a stored information unit is retrieved using input clues. In this paper, we study the problem where at most $s(s \geq 0)$ of the received input clues can be false and we still want to determine the sought information unit uniquely. We use a coding theoretical approach to estimate the maximum number of stored information units with respect to a given s. Moreover, optimal results for the problem are given, for example, in the infinite king grid. We also discuss the problem in the class of line graphs where a characterization and a connection to k-factors is given.

Keywords: Information retrieval, associative memory, robustness, Johnson bound, k-factor

1 Introduction

Let $G=(V, E)$ be a simple, undirected and connected graph. The graphic distance $d(x, y)$ between vertices $x \in V$ and $y \in V$ is the number of edges in any shortest path between them. If vertices x and y are adjacent, we use the notation $x \sim y$. The degree of a vertex x, denoted by $\operatorname{deg}(x)$, is the number of vertices adjacent to x. The minimum degree of G is $\delta=\delta(G)$.

Information retrieval in an associative memory is modeled as follows. Let $G=(V, E)$ be a graph where the vertices correspond to the memory entries containing the stored information units. The edges between the vertices represent associations between information units and two vertices $x, y \in V$ are said to be t-associated if $d(x, y) \leq t$. The set of t-associated vertices to x constitutes a ball of radius t centered at x, that is,

$$
B_{t}(x)=\{y \in V \mid d(x, y) \leq t\}
$$

If $t=1$, we omit t and write the closed neighbourhood $B_{1}(x)=B(x)$.
The information retrieval in the memory is performed based on associations as follows. We have a reference set $C \subseteq V$. We retrieve the sought information unit $x \in V$ by receiving input clues from C one after another (until we can determine x uniquely). Moreover, if the input clues are t-associated to x then
we say that they are correct input clues and, if they are not t-associated to x then they are called false input clues. We assume that there are at most s false input clues for some fixed $s \geq 0$. The set

$$
I_{t}(x)=I_{t}(C ; x)=B_{t}(x) \cap C
$$

is the set of all possible correct input clues for $x \in V$. Again, if $t=1$, we write $I_{1}(x)=I(x)$. Next we consider when it is possible to find a sought information unit uniquely assuming there are at most s false input clues.

If $\left|I_{t}(x) \backslash I_{t}(y)\right| \leq s$ for some $y \in V, x \neq y$, then we cannot retrieve x without ambiguity. Namely, even receiving all the possible correct input clues in $I_{t}(x)$, we cannot determine x uniquely. Indeed, in spite of receiving $I_{t}(x), y$ could also be the sought information unit, because we may have received $I_{t}(x) \cap I_{t}(y)$ correct input clues for y and the rest $I_{t}(x) \backslash I_{t}(y)$ (at most s of them!) are false clues (regarding y). Hence, based on the input clues in $I_{t}(x)$, the sought information unit could be either x or y (and we cannot expect to receive any more clues for x).

If $\left|I_{t}(x) \backslash I_{t}(y)\right| \geq s+1$ for every $y \in V, y \neq x$, then we can determine x uniquely. Moreover, in order to determine x, it is enough to receive any

$$
m_{t}(C ; x, s)=\max _{x \neq y}\left|I_{t}(x) \cap I_{t}(y)\right|+s+1
$$

correct clues from $I_{t}(x)$. Namely, suppose we have received (at least) such amount of correct clues together with at most s false clues. Denote the set of received input clues by U. So $\left|U \cap I_{t}(x)\right| \geq m_{t}(C ; x, s)$ and $\left|U \backslash I_{t}(x)\right| \leq s$. If now some $y \in V$ would be the sought information unit instead of x, then, by the definition of $m_{t}(C ; x, s)$, there are at least $s+1$ input clues in U which are not in $I_{t}(y)$. Hence y cannot be the sought information unit, because there would be at least $s+1$ false input clues regarding y and we allowed at most s.

In the sequel, we assume that we can retrieve all information units in V without ambiguity, so we require from the reference set C that for all distinct vertices $x, y \in V$ we have

$$
\begin{equation*}
\left|I_{t}(C ; x) \backslash I_{t}(C ; y)\right| \geq s+1 \tag{1}
\end{equation*}
$$

Recall that we may receive up to s false clues. Therefore, in the worst case, we need to listen to at most $m_{t}(C ; x, s)+s$ input clues in order to determine x uniquely. It is natural to require that there is some fixed upper bound m on number of input clues needed to determine any information unit. This leads to the following definition.

Definition 1. Let $G=(V, E)$ and $C \subseteq V$. We say that a pair (G, C) is a sequential (t, m)-associative memory robust against at most s false input clues with the reference set C if (1) holds for all distinct vertices $x, y \in V$ and

$$
m_{t}(C ; x, s)+s \leq m \quad \text { for any } x \in V
$$

In short, the sequential (t, m)-associative memory robust against at most s false input clues is called s-robust $\mathcal{S A} \mathcal{M}_{G}(t, m)$. We also say that C gives an s-robust $\mathcal{S} \mathcal{A} \mathcal{M}_{G}(t, m)$ if it is a reference set of the memory. In the sequel, we call the reference set a code and its elements codewords.

Figure 1: The graph $G_{8}=(V, E)$. The set $C=V$ gives a 1-robust $\mathcal{S} \mathcal{A} \mathcal{M}_{G_{8}}(1,5)$.

Naturally, we would like to find the sought information unit with as small number of input clues as possible, so we prefer a code (a reference set) $C \subseteq V$ giving an s-robust $\mathcal{S} \mathcal{A} \mathcal{M}_{G}(t, m)$ with as small value of

$$
\begin{equation*}
m=\max _{x \neq y}\left\{\left|I_{t}(C ; x) \cap I_{t}(C ; y)\right|\right\}+2 s+1 \tag{2}
\end{equation*}
$$

as possible.
Example 2. Consider the graph G_{8} in Figure 1. The whole vertex set $C=V$ of G_{8} is a code giving a 1 -robust $\mathcal{S A}_{G_{8}}(1,5)$ as shown next. The graph is 3-regular and for $C=V$ we have $I(x)=I(V ; x)=B(x) \cap V=B(x)$. Hence $|I(x)|=4$ for all $x \in V$ and it is easy to check that $|I(x) \cap I(y)| \leq 2$ for any $x, y \in V, x \neq y$. These observations yield $|I(x) \backslash I(y)| \geq 2$ for distinct vertices $x, y \in V$. Hence the condition (1) is satisfied when $s=1$. Using (2) we get $m=5$, as claimed.

Let a code C give an s-robust $\mathcal{S A} \mathcal{M}_{G}(t, m)$. As discussed, we listen to clues (sequentially) one after another in order to find the sought information unit $x \in V$. Suppose we have received clues $U \subseteq C$. We discard any $y \in V$ such that $\left|U \backslash I_{t}(y)\right| \geq s+1$, since it cannot be the sought information unit (too many false clues regarding y). It is guaranteed by C, that after receiving at most m clues, we are left with one single non-discarded vertex in V. This is the sought information unit x.

The model of information retrieval in an associative memory discussed above was introduced by Yaakobi and Bruck [15] without the notion of false clues (i.e., they considered the case $s=0$). In this paper, we allow the possibility of at most s false clues. Besides [15], the information retrieval has also been studied in [16], [6], [7], [9] and [8] - again when $s=0$. Related codes concerning (1) can also be found in [5, Theorem 3]. Apart from the information retrieval in an associative memory, the concept of Definition 1 has applications to Levenshtein's sequences reconstruction problem (see $[10,15,8]$) and to the following problem of RF-based localization.

Remark 3. Consider a sensor network monitoring with RF-based localization, which is discussed in $[4,14]$ for indoor environments. Sensors in a building are mapped to vertices of a graph $G=(V, E)$ and a pair of vertices is connected by an edge if the two corresponding sensors are within each other's communication range. A small portion of all sensors $C \subseteq V$ are kept active while the others can be put in energy-saving mode. The system periodically broadcasts

ID packets from the active sensors. Suppose C gives an s-robust $\mathcal{S} \mathcal{A M}_{G}(t, m)$. An observer can determine her location $x \in V$ from the set of ID packets U that she receives even if there were s false ID packets in U caused by changes in a harsh environment [14] (like door openings permitting ID package from an active sensor, which is not normally at the communication range from x). For more details, see $[4,14]$.

The paper is organized as follows. In Section 2, we provide optimal results for codes giving an s-robust $\mathcal{S} \mathcal{A} \mathcal{M}_{\mathcal{K}}(t, m)$ in the king grid \mathcal{K}, which is a widely studied graph (see, for example, [3] and numerous other papers in [11]). The Section 3 discusses a lower bound on the number of input clues m when $t=1$. We use a method from coding theory in Section 4 to estimate the number of possible information units when s is given. It is also shown that this estimate is attained for a family of strongly regular graphs $\mathcal{A}^{r}, r \geq 1$. In the last section, we show that in the class of line graphs we can characterize the structure of s-robust codes. We also give optimal results with the aid of suitable k-factors.

2 The infinite king grid

In this section, we consider as the underlying graph the infinite two-dimensional square lattice with diagonals (illustrated in Figure 2). Its vertex set is $V=$ $\mathbb{Z} \times \mathbb{Z}=\mathbb{Z}^{2}$ and two vertices $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$ are adjacent if their Euclidean distance is at most $\sqrt{2}$, that is, $\left|u_{1}-v_{1}\right| \leq 1$ and $\left|u_{2}-v_{2}\right| \leq 1$. We call the resulting infinite graph the king grid and denote it by \mathcal{K}.

Observe that the ball of radius t centered at $u=\left(u_{1}, u_{2}\right)$ in \mathcal{K} is a $(2 t+1) \times$ $(2 t+1)$-square (see Figure 2(a))

$$
B_{t}(u)=\left\{(x, y) \in \mathbb{Z}^{2}| | u_{1}-x\left|\leq t,\left|u_{2}-y\right| \leq t\right\}\right.
$$

The next theorem provides the optimal results in the king grid \mathcal{K} for any $t \geq 1$ and (all possible values of) s.

Theorem 4. For each $t \geq 1$ and $0 \leq s \leq 2 t$, there exists a code C giving an s-robust $\mathcal{S A} \mathcal{M}_{\mathcal{K}}(t, m)$ with $m=2 t(s+1)+2 s+1$. Moreover, this is the smallest possible m in the sense that for any code giving an s-robust $\mathcal{S A}_{\mathcal{K}}(t, m)$ we have $m \geq 2 t(s+1)+2 s+1$.

Proof. Denote $S_{s}=\{0,1,2, \ldots, s\}$. Let

$$
C_{s, t}=\left\{(a, b) \in \mathbb{Z}^{2} \mid a-b \equiv i \quad(\bmod 2 t+1) \text { for } i \in S_{s}\right\}
$$

We have illustrated $C_{1,2}$ in Figure 2(b). We will verify using (1) and (2) that $C_{s, t}$ gives an s-robust $\mathcal{S} \mathcal{A}_{\mathcal{K}}(t, m)$ with $m=2 t(s+1)+2 s+1$.

First we consider (1). Let $x=\left(x_{1}, x_{2}\right) \in \mathbb{Z}^{2}$ and $y=\left(y_{1}, y_{2}\right) \in \mathbb{Z}^{2}, x \neq y$.
Assume first that $x_{1}<y_{1}$. Then $B_{t}(x) \backslash B_{t}(y)$ contains the set of $2 t+1$ vertically consecutive vertices $\{x+(-t,-t+j) \mid j=0,1, \ldots, 2 t\}$. Clearly, $s+1=\left|S_{s}\right|$ of these consecutive points satisfies the congruence which defines $C_{s, t}$. Hence, $|I(x) \backslash I(y)| \geq s+1$ as required in (1).

The case $x_{1}>y_{1}$ is analogous to the previous one, so it suffices to assume that $x_{1}=y_{1}$. Then either $x_{2}<y_{2}$ or $x_{2}>y_{2}$. Suppose $x_{2}<y_{2}$ (the case $x_{2}>y_{2}$ is similar). Now $B_{t}(x) \backslash B_{t}(y)$ contains the set of the following $2 t+1$

Figure 2: (a) The gray vertices constitute the ball $B_{2}(x)$. The dashed box illustrates $P_{0}(x)$. (b) The black vertices constitute the code $C_{1,2}$.
horizontally consecutive points $\{x+(-t+j,-t) \mid j=0,1, \ldots, 2 t\}$ and $s+1$ of these belong to $C_{s, t}$ giving again $|I(x) \backslash I(y)| \geq s+1$.

Next we determine m using (2). If $x_{1}<y_{1}$, then $B_{t}(x) \cap B_{t}(y)$ is a subset of $B_{t}(x) \cap B_{t}(x+(1,0))$. The set $B_{t}(x) \cap B_{t}(x+(1,0))$ consists of $2 t$ disjoint subsets $P_{i}(x), i=0,1, \ldots, 2 t-1$ where (see Figure 2(a))

$$
P_{i}(x)=\{x+(t-i,-t+j) \mid j=0,1,2, \ldots, 2 t\} .
$$

Each of these subsets $P_{i}(x)$ consists of $2 t+1$ vertically consecutive points, so exactly $s+1$ of them belongs to $C_{s, t}$. Consequently, $\left|I_{t}(x) \cap I_{t}(y)\right| \leq 2 t(s+1)$. The case $x_{1}>y_{1}$ is analogous. If $x_{1}=y_{1}$ we use horizontal disjoint subsets instead of $P_{i}(x)$ and the same argument works. Therefore, by (2), we have $m=2 t(s+1)+2 s+1$.

Finally, we estimate m for any code D giving an s-robust $\mathcal{S} \mathcal{A} \mathcal{M}_{\mathcal{K}}(t, m)$. Now the vertical subsets $P_{i}(x)$ each contain at least $s+1$ codewords of D due to (1), which must be satisfied by D. Thus $\left|I_{t}(D ; x) \cap I_{t}(D ; x+(1,0))\right| \geq 2 t(s+1)$. This yield the estimate on $m \geq 2 t(s+1)+2 s+1$ for D.

3 Lower bound on the number of input clues

The next result discusses the relation between the number of input clues m and the robustness $s \geq 0$ when the radius $t=1$.

Theorem 5. Let G be a d-regular graph and $\Omega=\min _{x \sim y}|B(x) \cap B(y)|$. If C gives an s-robust $\mathcal{S A}_{G}(1, m)$, then

$$
\begin{equation*}
m \geq \frac{(s+2) \Omega}{d}+2 s+1 \tag{3}
\end{equation*}
$$

Proof. Let C give an s-robust $\mathcal{S A}_{G}(1, m)$ in $G=(V, E)$. First we will show that

$$
\begin{equation*}
|C| \geq \frac{|V|(s+2)}{d} \tag{4}
\end{equation*}
$$

- For each non-codeword $x \in V \backslash C$, we have $|I(x)| \geq s+2$. Indeed, by (1), we have $|I(x)| \geq s+1$. Choose $c \in I(x)$. The set $I(x)$ contains the set
$I(x) \backslash I(c)$ and in addition at least the codeword c. By (1), $|I(x) \backslash I(c)| \geq$ $s+1$ and we are done. For a codeword $x \in C$ we have $|I(x)| \geq s+3$. Indeed, let $c^{\prime} \in I(x), x \neq c^{\prime}$. Now $I(x) \backslash I\left(c^{\prime}\right)$ contains neither x nor $c^{\prime}($ and $I(x)$ contains both of them), which gives the claim since $\left|I(x) \backslash I\left(c^{\prime}\right)\right| \geq s+1$.
Counting in two ways the number N of pairs (x, c) where $x \in V$ and $c \in C$ with $d(x, c) \leq 1$ we get

$$
|C|(d+1)=N \geq|V \backslash C|(s+2)+|C|(s+3) .
$$

This yields the bound (4).
Now we will prove the claimed bound (3) on m. Since each intersection $I(x) \cap I(y)$, where $x \sim y$, contains by (2) at most $m-2 s-1$ codewords of C, we obtain (since G is d-regular) that

$$
(m-2 s-1)|V| d \geq \sum_{\substack{x, y \in V \\ x \sim y}}|I(x) \cap I(y)|
$$

Next we will verify the estimate

$$
\sum_{\substack{x, y \in V \\ x \sim y}}|I(x) \cap I(y)| \geq|C| d \Omega
$$

Indeed, for a fixed $c \in C$ let us count the number of pairs x and y such that $x \sim y$ and $c \in I(x) \cap I(y)$. If $x=c$, then there exist d such pairs (x, y). If $x \neq c$, there are at least $d(\Omega-1)$ such pairs (notice that $x \neq y$). Consequently, the number of pairs it at least $d \Omega$ for each $c \in C$.

The two inequalities above yield $(m-2 s-1)|V| \geq|C| \Omega$. Combining this with (4) gives

$$
(m-2 s-1)|V| \geq \frac{|V|(s+2) \Omega}{d}
$$

from which the assertion follows.
The lower bound (3) is attained, for example in the case of Example 2. There we observed that $C=V$ gives a 1-robust $\mathcal{S A M}_{G_{8}}(1,5)$. In G_{8} we have $\Omega=2$ and $d=3$. Consequently, the bound $m \geq 5$ provided by (3) is achieved by the code C.

4 A family of strongly regular graphs

We start the section by discussing in Theorem 6 the relation between the number of information units $|V|$ and the robustness s using an approach from coding theory. Then we show that the bound (5) is attained for a family of strongly regular graphs $\mathcal{A}^{r}, r \geq 1$. Finally, we construct codes (see Example 8 and Theorem 9) giving an s-robust $\mathcal{S} \mathcal{A} \mathcal{M}(1, m)$ in the graph \mathcal{A}^{r}.

Let n and w be positive integers where $0 \leq w \leq n$. Denote the binary field by $\mathbb{F}=\{0,1\}$ and the Cartesian product $\mathbb{F}^{n}=\mathbb{F} \times \mathbb{F} \times \cdots \times \mathbb{F}$ (n times). The elements of \mathbb{F}^{n} are called words and a nonempty subset C of \mathbb{F}^{n} is called a code. For $x=x_{1} x_{2} \ldots x_{n} \in \mathbb{F}^{n}$, we define the (Hamming) weight $w(x)$ as the number
of coordinates with 1 in x. Let binary Johnson space $\mathbb{F}^{n, w}$ consists of all the words in \mathbb{F}^{n} with weight exactly w. We endow the space with the Hamming distance $d(x, y)$ which is the number of bits where words x and y differ.

A subset C of the Johnson space $\mathbb{F}^{n, w}$ is called a constant weight code and its elements are called codewords. We define further $A(n, d, w)$ to be the greatest cardinality of a constant weight code in which the distinct codewords have Hamming distance at least d apart.

Theorem 6. Let $G=(V, E)$ be a k-regular graph. If C gives an s-robust $\mathcal{S A M}_{G}(1, m)$, then

$$
|V| \leq A(|V|, 2(s+1), k+1)
$$

In particular,

$$
\begin{equation*}
|V| \leq\left\lfloor\frac{(s+1)|V|}{(k+1)^{2}-(k+1)|V|+(s+1)|V|}\right\rfloor \tag{5}
\end{equation*}
$$

provided that the denominator is positive.
Proof. Let $C=\left\{c_{1}, c_{2}, \ldots, c_{|C|}\right\}$ give an s-robust $\mathcal{S A M}_{G}(1, m)$ in a k-regular graph $G=(V, E)$. Let us write the sets $I(C ; x), x \in V$, using binary words $b(x)=b_{1}^{x} b_{2}^{x} \ldots b_{|C|}^{x} \in \mathbb{F}^{|C|}$ in the following way:

$$
b_{i}^{x}= \begin{cases}1 & \text { if } c_{i} \in B(x) \\ 0 & \text { otherwise }\end{cases}
$$

Let us denote by $\mathcal{B}(C)$ the binary code obtained in this way. Obviously, the distance between any two words of $\mathcal{B}(C)$ is at least $2(s+1)$, due to (1).

Because C gives an s-robust $\mathcal{S A} \mathcal{M}_{G}(1, m)$, then also V gives an s-robust $\mathcal{S A} \mathcal{M}_{G}\left(1, m^{\prime}\right)$ for some $m^{\prime} \geq m$. Now, since G is k-regular, the code $\mathcal{B}(V)$ is a constant weight code with weight $k+1$ and the the distance between any two codewords of $\mathcal{B}(V)$ is still at least $2(s+1)$. Clearly, the number of codewords in $\mathcal{B}(V)$ equals $|V|$. Consequently,

$$
|V| \leq A(|V|, 2(s+1), k+1)
$$

For the second claim (5) we use the Johnson bound [12, p. 525]

$$
A(n, 2 \delta, w) \leq\left\lfloor\frac{\delta n}{w^{2}-w n+\delta n}\right\rfloor
$$

if the denominator is positive.
The following theorem 7 shows that the bound of the previous theorem can be attained.

Let us first introduce some definitions and notations. A graph $G=(V, E)$ is called strongly regular with parameters (n, k, λ, μ) if $|V|=n, G$ is k-regular and any two adjacent vertices have exactly λ common neighbours and any two nonadjacent vertices have exactly μ common neighbours. See [1] for more information.

Let $\mathbb{A}=\{1,2,3,4\}$ and $r \geq 1$. We will focus on a graph \mathcal{A}^{r} where the vertex set is the Cartesian product $\mathbb{A}^{r}=\mathbb{A} \times \cdots \times \mathbb{A}(r$ times $)$ and two different vertices $i_{1} \ldots i_{r} \in \mathbb{A}^{r}$ and $j_{1} \ldots j_{r} \in \mathbb{A}^{r}$ are adjacent if and only if the number
of coordinates ρ such that $i_{\rho}+j_{\rho}=5$ is even. For any $r \geq 1$, it is known [2] that \mathcal{A}^{r} is a strongly regular graph with parameters

$$
\left(2^{2 r}, 2^{2 r-1}+2^{r-1}-1,2^{2 r-2}+2^{r-1}-2,2^{2 r-2}+2^{r-1}\right) .
$$

Theorem 7. Letr ≥ 1. The code $C=\mathbb{A}^{r}$ gives a $\left(2^{2 r-2}-1\right)$-robust $\mathcal{S} \mathcal{A} \mathcal{M}_{\mathcal{A}^{r}}(1,3$. $2^{2 r-2}+2^{r-1}-1$), which attains the bound (5).

Proof. Consider the graph \mathcal{A}^{r} and choose as the code C the whole set of vertices. Since in the graph \mathcal{A}^{r} the cardinality of the ball $B(x)$ equals $2^{2 r-1}+2^{r-1}$ for all x and the intersection $|B(x) \cap B(y)|=\lambda+2=\mu=2^{2 r-2}+2^{r-1}$ for any x and y with $1 \leq d(x, y) \leq 2$, the set $B(x) \backslash B(y)$ contains $2^{2 r-2}$ elements. Hence it follows that C is a $\left(2^{2 r-2}-1\right)$-robust $\mathcal{S} \mathcal{A} \mathcal{M}_{\mathcal{A}^{r}}(1, m)$ with

$$
m=3 \cdot 2^{2 r-2}+2^{r-1}-1
$$

Now clearly, $\left|\mathbb{A}^{r}\right|=4^{r}$ and it is easy to check that the right-hand side of (5) equals 4^{r} also.

Theorem 7 gives the maximum value for s of an s-robust $\mathcal{S A M}(1, m)$ in \mathcal{A}^{r}. Next we consider smaller values of s in the following example and in Theorem 9.
Example 8. In this example, we provide codes giving an s-robust $\mathcal{S} \mathcal{A}_{\mathcal{A}^{r}}(1, m)$ for $r=2$. (For $r=1, \mathcal{A}^{1}$ is a 4-cycle, and there are clearly no other values of s except the $s=0$ of the previous theorem). Let

$$
\begin{gathered}
C_{0}=\{14,22,23,24,31,33,34,41,42,44\}, \\
C_{1}=\{13,14,23,24,31,32,33,34,41,42,43,44\}
\end{gathered}
$$

and $C_{2}=\mathbb{A}^{2} \backslash\{11\}$. The previous codes C_{s} are such s-robust $\mathcal{S} \mathcal{A} \mathcal{M}_{\mathcal{A}^{2}}\left(1, m_{s}\right)$ codes that (as computer searches show) they have the smallest values of (2), namely, $m_{0}=6, m_{1}=9$ and $m_{2}=11$. In addition to these, we have the code $C=\mathbb{A}^{2}$ of the previous theorem giving $m=13$.

Next we provide an approach to give codes when r is general. Let C be a code giving an s-robust $\mathcal{S} \mathcal{A} \mathcal{M}(1, m)$ in $\mathcal{A}^{r}, r \geq 1$. In the following theorem, we provide a method to obtain using C a robust $\mathcal{S} \mathcal{A} \mathcal{M}\left(1, m^{\prime}\right)$ for the larger graph \mathcal{A}^{r+1}. Let $F \subseteq \mathbb{A}^{r}$. Denote by

$$
\operatorname{App}(F, i)=\left\{x_{1} \ldots x_{r} i \mid x_{1} \ldots x_{r} \in F\right\} \subseteq \mathbb{A}^{r+1}
$$

the set where we have appended the last fixed coordinate $i \in \mathbb{A}$.
Theorem 9. Let $r \geq 1$ and C give an s-robust $\mathcal{S A M}(1, m)$ in \mathcal{A}^{r}. Denote $i_{\text {max }}=\max \left\{|I(x)| \mid x \in \mathbb{A}^{r}\right\}, i_{\text {min }}=\min \left\{|I(x)| \mid x \in \mathbb{A}^{r}\right\}$ and $l=\min \{\mid I(x) \cup$ $I(y)\left|\mid x, y \in \mathbb{A}^{r}, x \neq y\right\}$. Then the code

$$
D=A p p(C, 1) \cup A p p(C, 2) \cup A p p(C, 3)
$$

gives an S-robust $\mathcal{S} \mathcal{A} \mathcal{M}\left(1, m^{\prime}\right)$ in \mathcal{A}^{r+1} with parameters

$$
S=\min \left\{2(s+1), i_{\min },|C|-i_{\max }\right\}-1
$$

and

$$
m^{\prime}=\max \left\{3(m-2 s-1), 2 i_{\max }, 2(m-2 s-1)+|C|-l\right\}+2 S+1
$$

Figure 3: The graph \mathcal{A}^{1} is a 4 -cycle. In the figure there are the vertices of the graph \mathcal{A}^{2} given as the four "copies" of \mathcal{A}^{1}. The vertices between the different layers A_{i} are not given except those that are incident with 11 indicating $B(11)$.

Proof. Let us first consider the structure of \mathcal{A}^{r+1} with the aid of \mathcal{A}^{r}. We divide the set of vertices \mathbb{A}^{r+1} into four layers depending on the last coordinate, namely,

$$
\mathbb{A}^{r+1}=A_{1} \cup A_{2} \cup A_{3} \cup A_{4}
$$

where

$$
A_{i}=\left\{x_{1} x_{2} \ldots x_{r} i \mid x_{1} x_{2} \ldots x_{r} \in \mathbb{A}^{r}\right\}
$$

for any $i=1,2,3,4$. We also divide a vertex $x \in \mathbb{A}^{r+1}$ into two parts, namely, $x=x^{\prime} i$ where $x^{\prime} \in \mathbb{A}^{r}$ and $i \in \mathbb{A}$.

Next we consider a ball $B(x)$ in \mathbb{A}^{r+1} and examine its parts $B(x) \cap A_{j}$ in the layers $j=1,2,3,4$:

- Denote by $\tilde{B}\left(x^{\prime}\right)$ be the ball centered at x^{\prime} in the smaller graph \mathcal{A}^{r} for any $x=x^{\prime} i \in \mathbb{A}^{r+1}$. The ball $B(x)=B\left(x^{\prime} i\right)$ consists of the four parts in the different layers (see Figure 3) where

$$
B\left(x^{\prime} i\right) \cap A_{j}= \begin{cases}\operatorname{App}\left(\tilde{B}\left(x^{\prime}\right), j\right) & \text { if } i+j \neq 5 \tag{6}\\ \operatorname{App}\left(\mathbb{A}^{r} \backslash \tilde{B}\left(x^{\prime}\right), j\right) & \text { if } i+j=5 .\end{cases}
$$

Let us consider the code D where $\operatorname{App}(C, j)$ is a "copy" of the code C in the layer A_{j} for $j=1,2,3$. Notice that the layer A_{4} contains no codewords of D.

Let again $x=x^{\prime} i$ where $x^{\prime} \in \mathbb{A}^{r}$ and $i \in \mathbb{A}$. In what follows, we write in short $I\left(x^{\prime}\right)=I\left(C ; x^{\prime}\right)$ as usual, but in $I(D ; x)$ we always keep the D to distinguish between the two codes C and D. Due to (6) we have in the different layers $j=1,2,3,4$:

$$
I\left(D ; x^{\prime} i\right) \cap A_{j}= \begin{cases}\emptyset & \text { if } j=4, \tag{7}\\ \operatorname{App}\left(I\left(x^{\prime}\right), j\right) & \text { if } j \neq 4 \text { and } i+j \neq 5, \\ \operatorname{App}\left(C \backslash I\left(x^{\prime}\right), j\right) & \text { if } j \neq 4 \text { and } i+j=5 .\end{cases}
$$

We use (1) and (2) to verify our claim that D gives an S-robust $\mathcal{S A M}_{\mathcal{A}^{r+1}}\left(1, m^{\prime}\right)$ with the given parameters S and m^{\prime}. For that we also write $y \in \mathbb{A}^{r+1}, y \neq x$, as $y=y^{\prime} h$ where $y^{\prime} \in \mathbb{A}^{r}$ and $h \in \mathbb{A}$.

First of all, we show (1), that is, $|I(D ; x) \backslash I(D ; y)| \geq S+1$ for any distinct x and y. Denote $T=I(D ; x) \backslash I(D ; y)$. We calculate $|T|$ examining three cases
depending on $x=x^{\prime} i$ and $y=y^{\prime} h$. First the case where $i=h$, secondly, when $x^{\prime}=y^{\prime}$, and finally the case that $x^{\prime} \neq y^{\prime}$ and $i \neq h$.
Case 1: Assume first that $i=h$, so both x and y are in the same layer A_{i}.
(i) Let first $i=1$. Notice that the layer A_{4} contains no codewords of D. In the other three layers $A_{j}, j \neq 4$, we have $i+j \neq 5$ and thus in each of these layers we have the set $\operatorname{App}\left(I\left(x^{\prime}\right), j\right) \backslash \operatorname{App}\left(I\left(y^{\prime}\right), j\right)$ which contributes to T. This set contains the same codewords as $I\left(x^{\prime}\right) \backslash I\left(y^{\prime}\right)$ appended with j. Hence the cardinality of it equals $\left|I\left(x^{\prime}\right) \backslash I\left(y^{\prime}\right)\right|$. Consequently, we get $|T|=3\left|I\left(x^{\prime}\right) \backslash I\left(y^{\prime}\right)\right|$.
(ii) Assume then that $i=2$ (the cases $i=3,4$ go similarly). Now the two layers $A_{j}, j=1,2$, both contribute $\operatorname{App}\left(I\left(x^{\prime}\right), j\right) \backslash \operatorname{App}\left(I\left(y^{\prime}\right), j\right)$ to T. The layer A_{3} (since $i+j=2+3=5$) contributes $\operatorname{App}\left(C \backslash I\left(x^{\prime}\right), 3\right) \backslash \operatorname{App}(C \backslash$ $\left.I\left(y^{\prime}\right), 3\right)$ to T. This equals the set $I\left(y^{\prime}\right) \backslash I\left(x^{\prime}\right)$ appended with 3 . Hence $|T|=2\left|I\left(x^{\prime}\right) \backslash I\left(y^{\prime}\right)\right|+\left|I\left(y^{\prime}\right) \backslash I\left(x^{\prime}\right)\right|$.
Case 2: Assume then that $x^{\prime}=y^{\prime}$ (and thus $i \neq h$).
(i) Let first $i=1$. Assume that $h=2$ (the cases $h=3,4$ go analogously and h cannot be 1). For the layers $j=1,2$ we have $h+j \neq 5$ and $i+j \neq 5$, so these layers contribute to T the sets $\operatorname{App}\left(I\left(x^{\prime}\right), j\right) \backslash \operatorname{App}\left(I\left(y^{\prime}\right), j\right)$. However, since $x^{\prime}=y^{\prime}$ this set is the empty set. So neither layer contributes to T. In the layer A_{3}, since $i+3 \neq 5$ and $h+3=5$, the layer 3 contributes $\operatorname{App}\left(I\left(x^{\prime}\right), 3\right) \backslash \operatorname{App}\left(C \backslash I\left(y^{\prime}\right), 3\right)$ to T. The fact that $y^{\prime}=x^{\prime}$ implies that this set equals $I\left(x^{\prime}\right)$ appended with 3 . Therefore, $|T|=\left|I\left(x^{\prime}\right)\right|$.
(ii) Assume next that $i=2$ (again $i=3,4$ are similar). Let first $h=1$. The layer A_{3} contributes $\operatorname{App}\left(C \backslash I\left(x^{\prime}\right), 3\right) \backslash \operatorname{App}\left(I\left(y^{\prime}\right), 3\right)$ which equals $\operatorname{App}(C \backslash$ $\left.I\left(x^{\prime}\right), 3\right)$ since $x^{\prime}=y^{\prime}$. Other layers contribute nothing, so $|T|=\left|C \backslash I\left(x^{\prime}\right)\right|$. Assume then that $h=3$ (the case $h=4$ is similar and h cannot be 2). Now the layer $A_{2}\left(\right.$ resp. $\left.A_{3}\right)$ contributes $\operatorname{App}\left(I\left(x^{\prime}\right), 2\right) \backslash \operatorname{App}\left(C \backslash I\left(y^{\prime}\right), 2\right)$ (resp. $\left.\operatorname{App}\left(C \backslash I\left(x^{\prime}\right), 3\right) \backslash \operatorname{App}\left(I\left(y^{\prime}\right), 3\right)\right)$. The layer A_{1} contributes nothing, so $|T|=\left|I\left(x^{\prime}\right)\right|+\left|C \backslash I\left(x^{\prime}\right)\right|=|C|$.

Case 3: Assume next that both $x^{\prime} \neq y^{\prime}$ and $i \neq h$.
(i) Let first $i=1$. Suppose first that $h=2$ (again the other cases $h=3,4$ are analogous). The layer A_{1} (resp. A_{2}) contributes $I\left(x^{\prime}\right) \backslash I\left(y^{\prime}\right)$ appended with 1 (resp. 2) to T. The layer A_{3} contributes $\operatorname{App}\left(I\left(x^{\prime}\right), 3\right) \backslash \operatorname{App}(C \backslash$ $\left.I\left(y^{\prime}\right), 3\right)$. This set equals $I\left(x^{\prime}\right) \cap I\left(y^{\prime}\right)$ appended with 3 . Consequently, $|T|=2\left|I\left(x^{\prime}\right) \backslash I\left(y^{\prime}\right)\right|+\left|I\left(x^{\prime}\right) \cap I\left(y^{\prime}\right)\right|$.
(ii) Let then $i=2$ (the cases $i=3,4$ go the same way). Assume first that $h=$ 1. Again the layer $A_{1}\left(\right.$ resp. $\left.A_{2}\right)$ contributes $I\left(x^{\prime}\right) \backslash I\left(y^{\prime}\right)$ appended with 1 (resp. 2) to T. The layer A_{3} contributes $\operatorname{App}\left(C \backslash I\left(x^{\prime}\right), 3\right) \backslash \operatorname{App}\left(I\left(y^{\prime}\right), 3\right)$. This set equals $C \backslash\left(I\left(x^{\prime}\right) \cup I\left(y^{\prime}\right)\right)$ appended with 3. Therefore, $|T|=$ $2\left|I\left(x^{\prime}\right) \backslash I\left(y^{\prime}\right)\right|+|C|-\left|I\left(x^{\prime}\right) \cup I\left(y^{\prime}\right)\right|$.
Suppose then that $h=3$ ($h=4$ is similar). Now the layer A_{1} contributes $I\left(x^{\prime}\right) \backslash I\left(y^{\prime}\right)$ appended with 1. The layer A_{2} contributes $\operatorname{App}\left(I\left(x^{\prime}\right), 2\right) \backslash$ $\operatorname{App}\left(C \backslash I\left(y^{\prime}\right), 2\right)$ which corresponds to $I\left(x^{\prime}\right) \cap I\left(y^{\prime}\right)$. The layer A_{3} contributes $\operatorname{App}\left(C \backslash I\left(x^{\prime}\right), 3\right) \backslash \operatorname{App}\left(I\left(y^{\prime}\right), 3\right)$ which corresponds to $C \backslash\left(I\left(x^{\prime}\right) \cup\right.$

$$
\begin{aligned}
& \left.I\left(y^{\prime}\right)\right) \text {. This implies that }|T|=\left|I\left(x^{\prime}\right) \backslash I\left(y^{\prime}\right)\right|+\left|I\left(x^{\prime}\right) \cap I\left(y^{\prime}\right)\right|+|C|-\mid I\left(x^{\prime}\right) \cup \\
& I\left(y^{\prime}\right)\left|=\left|I\left(x^{\prime}\right)\right|+|C|-\left|I\left(x^{\prime}\right) \cup I\left(y^{\prime}\right)\right| .\right.
\end{aligned}
$$

It is now straightforward to check that each of these values of $|T|$ is bounded from below by $\min \left\{2(s+1), i_{\text {min }},|C|-i_{\max }\right\}$. The claim for S follows from (1).

We can get the parameter m^{\prime} using (2) and the previous calculations. For (2) we need (besides S above) the cardinality of the intersections $I(D ; x) \cap I(D ; y)$, $x \neq y$. Since for any sets X and Y, we have $X \cap Y=X \backslash(X \backslash Y)$, we obtain the value $|I(D ; x) \cap I(D ; y)|$ using T (which corresponds to $X \backslash Y$) and the set $I(D ; x)$ (corresponding to X), which is given in (7).

If $x=x^{\prime} 1$ and $y=y^{\prime} 1$, then the three layers $A_{j}, j=1,2,3$ contribute $\operatorname{App}\left(I\left(x^{\prime}\right), j\right)$ to $I(D ; x)$. Consequently, $|I(D ; x)|=3|I(x)|$ and the intersection $|I(D ; x) \cap I(D, y)|=|I(D ; x)|-|T|=3\left|I\left(x^{\prime}\right)\right|-3\left|I\left(x^{\prime}\right) \backslash I\left(y^{\prime}\right)\right|=3\left|I\left(x^{\prime}\right) \cap I\left(y^{\prime}\right)\right|$ where $|T|$ comes from Case 1(i) above. The other cases are similar and we only give the results:

The size of the intersection $|(D ; x) \cap I(D ; y)|$ belongs to the set $\left\{3 \mid I\left(x^{\prime}\right) \cap\right.$ $I\left(y^{\prime}\right)|, 2| I\left(x^{\prime}\right) \cap I\left(y^{\prime}\right)\left|+|C|-\left|I\left(x^{\prime}\right) \cup I\left(y^{\prime}\right)\right|, 2\right| I\left(x^{\prime}\right)\left|,\left|I\left(x^{\prime}\right)\right|,\left|I\left(x^{\prime}\right) \cap I\left(y^{\prime}\right)\right|+\right.$ $\left.\left|I\left(x^{\prime}\right)\right|,\left|I\left(x^{\prime}\right) \cap I\left(y^{\prime}\right)\right|+\left|I\left(y^{\prime}\right)\right|,\left|I\left(x^{\prime}\right) \cup I\left(y^{\prime}\right)\right|\right\}$. It is easy to check that all of these values are bounded from above by $\max \left\{3(m-2 s-1), 2 i_{\max }, 2(m-2 s-\right.$ $1)+|C|-l\}$. This yields the claim for m^{\prime}.

5 Line graphs

In this section, we consider the problem of robust associative memories in the line graphs. Assuming $G=(V, E)$ is a graph, the line graph $L(G)$ of G is defined as follows. The vertex set of $L(G)$ consists of the edges of G, and two vertices in $L(G)$ are adjacent if the corresponding edges are adjacent in G, i.e., they share a common vertex. Due to the definition of line graphs, studying associative memories in $L(G)$ is equivalent to considering analogous problems in the original graph G for the edges. Hence, we propose the following definitions for the edges of G. For an edge $e \in E$, the notation $B(e)$ is used for the set of edges associated to e, i.e., adjacent to e (also including e itself). Assuming $C \subseteq E$ is code, we define $I(e)=B(e) \cap C$. Notice that in the case of edges we only consider t-association with $t=1$ implying the similar restriction for the line graphs. Therefore, for the rest of the section, let $t=1$.

Let s be a nonnegative integer. Recall that we had the earlier condition (1) for distinct vertices $x, y \in V$. In the case of edges, assuming $C \subseteq E$, this is equivalent to stating that

$$
\begin{equation*}
\left|I\left(C ; e_{1}\right) \backslash I\left(C ; e_{2}\right)\right| \geq s+1 \tag{8}
\end{equation*}
$$

for any distinct edges $e_{1}, e_{2} \in E$. In the following theorem, we give a characterization of the graphs admitting a code meeting the previous condition.

Theorem 10. Let G be a simple connected graph on at least three vertices. The graph G admits a code satisfying the condition (8) if and only if $\delta(G) \geq s+2$ and for any 3 -cycle \mathcal{C}_{3} in G each vertex u belonging to \mathcal{C}_{3} has $\operatorname{deg}(u) \geq s+3$.
Proof. Let $G=(V, E)$ be a graph. Notice first that if a code $C \subseteq E$ satisfies the condition (8), then any C^{\prime} such that $C \subseteq C^{\prime}$ also meets the condition.

Therefore, the graph G admits such a code if and only if the code $C=E$ satisfies the condition. Hence, for the graph G, it suffices to verify that

$$
\left|B\left(e_{1}\right) \backslash B\left(e_{2}\right)\right| \geq s+1
$$

for any distinct $e_{1}, e_{2} \in E$.
Assume first that G admits a code satisfying the condition (8). Assume to the contrary that $\delta(G) \leq s+1$, or there exists a 3-cycle \mathcal{C}_{3} and a vertex $u \in \mathcal{C}_{3}$ such that $\operatorname{deg}(u) \leq s+2$. Clearly, $\delta(G) \geq 1$. If there exists a vertex $u \in V$ such that $\operatorname{deg}(u) \leq s+1$, then consider an edge $e_{1}=u v$ incident with u. Let us first observe that the vertex v cannot have $\operatorname{deg}(v)=1$. Indeed, in that case there would be an edge $e^{\prime}=u z, e_{1} \neq e^{\prime}$, due to the fact that G is connected on at least three vertices. This would yield $\left|B\left(e_{1}\right) \backslash B\left(e^{\prime}\right)\right|=0$, contradicting (8). Hence $\operatorname{deg}(v) \geq 2$, so we can choose an edge $e_{2}=v w$ distinct from $u v$. Then, if $\operatorname{deg}(u) \leq s+1$, we obtain a contradiction as $\left|B\left(e_{1}\right) \backslash B\left(e_{2}\right)\right| \leq$ s. Assume then that there exist a 3 -cycle \mathcal{C}_{3} and a vertex u in it such that $\operatorname{deg}(u) \leq s+2$. Let then $e_{1}=u v$ and $e_{2}=u w$ be distinct edges of \mathcal{C}_{3}. This again implies a contradiction since $e_{3}=v w$ belongs to E as part of the 3-cycle and $\left|B\left(e_{1}\right) \backslash B\left(e_{3}\right)\right| \leq s$.

Assume then that $\delta(G) \geq s+2$ and for any 3 -cycle \mathcal{C}_{3} in G each vertex u belonging to \mathcal{C}_{3} has $\operatorname{deg}(u) \geq s+3$. Let $e_{1}=u v$ and e_{2} be distinct edges in G. If e_{1} and e_{2} are not adjacent to each other, then we obtain (using the assumption) that

$$
\left|B\left(e_{1}\right) \backslash B\left(e_{2}\right)\right| \geq 2(s+1)+1-2=2 s+1
$$

and we are done. Hence, we may assume that e_{2} is adjacent to e_{1} and denote $e_{2}=v w$. Assume first that there is no edge between u and w. This implies that $\left|B\left(e_{1}\right) \backslash B\left(e_{2}\right)\right| \geq s+2-1=s+1$ and we are done. Therefore, we may assume that $e_{3}=u w \in E$. Thus e_{1}, e_{2} and e_{3} form a 3 -cycle. By the assumption, we now have $\operatorname{deg}(u) \geq s+3$. Thus, we obtain that (the graph G is simple)

$$
\left|B\left(e_{1}\right) \backslash B\left(e_{2}\right)\right| \geq s+3-2=s+1
$$

and the claim follows.
In the following theorem, we give a characterization for the codes satisfying the condition (8).

Theorem 11. Let $G=(V, E)$ be a simple connected graph on at least three vertices admitting a code satisfying the condition (8). Then a code $C \subseteq E$ satisfies the condition (8) if and only if
(a) each vertex of G is incident with at least $s+2$ edges of C and
(b) for any 3 -cycle \mathcal{C}_{3} in G each vertex of \mathcal{C}_{3} is incident with at least $s+1$ edges of C not belonging to \mathcal{C}_{3}

Proof. Assume first that $C \subseteq E$ is a code satisfying the condition (8). Assume to the contrary that the condition (a) is not satisfied, i.e., there exists a vertex $u \in V$ such that u is incident with at most $s+1$ edges of C. Let $e_{1}=u v$ be any edge of C incident with u. Then, for any distinct edge $e_{2}=v w$ (not necessarily in C), we have

$$
\left|I\left(C ; e_{1}\right) \backslash I\left(C ; e_{2}\right)\right| \leq s
$$

and a contradiction follows. Assume then to the contrary that the condition (b) is not satisfied, i.e., there exists a 3 -cycle \mathcal{C}_{3} and a vertex $u \in \mathcal{C}_{3}$ such that u is incident with at most s edges of C not belonging \mathcal{C}_{3}. As the condition (a) is satisfied, there exists distinct edges $e_{1}=u v \in C$ and $e_{2}=u w \in C$ such that e_{1} and e_{2} are part of the 3 -cycle \mathcal{C}_{3}. Hence, considering the edge $e_{3}=v w \in E$, we obtain a contradiction as

$$
\left|I\left(C ; e_{1}\right) \backslash I\left(C ; e_{3}\right)\right| \leq s
$$

Assume then that the conditions (a) and (b) hold. Now reasoning similarly as in the proof of Theorem 10, we obtain that (8) is satisfied.

(a) Graph with a 3-cycle

(b) The Petersen graph

Figure 4: The code consists of the bold edges.
In Figure 4(a), there is an example of a graph with 3-cycle. Let the code C consist of the bold edges in the figure. Clearly, C satisfies the conditions (a) and (b) of Theorem 11 for $s=0$.

Recall that a reference set $C \subseteq E$ satisfying the condition (8) or the conditions of the previous theorem gives an s-robust $\mathcal{S A} \mathcal{M}_{G}(1, m)$ (regarding the edge set of G) with

$$
m=\max _{e_{1} \neq e_{2}}\left\{\left|I\left(C ; e_{1}\right) \cap I\left(C ; e_{2}\right)\right|\right\}+2 s+1
$$

In order to construct such reference sets, we introduce the concept of k-factors, where k is a positive integers. We say that a subgraph H of G is k-factor if H contains all the vertices of G and is k-regular. For an extensive coverage on k-factors, we refer the interested reader to the survey [13]. Now we are ready to present the following corollary of Theorem 11.
Corollary 12. If $G=(V, E)$ is a graph without 3-cycles, then the edges of any $(s+2)$-factor form a reference set $C \subseteq E$ giving an s-robust $\mathcal{S A}_{G}(1, m)$ (regarding the edge set of G) with $m=3 s+3$ and no reference set implying smaller m exists.

An example of this corollary for $s=0$ is the 2 -factor (denoted by the bold edges) in the Petersen graph of Figure 4(b).

References

[1] A. E. Brouwer, A. M. Cohen, and A. Neumaier. Distance-regular graphs, volume 18 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1989.
[2] A. E. Brouwer and J. H. van Lint. Strongy regular graphs and partial geometries. In: Enumeration and design (Waterloo, Ont, 1982), pages 85122, Academic Press, Toronto, 1984
[3] I. Charon, I. Honkala, O. Hudry and A. Lobstein The minimum density of an identifying code in the king lattice. Discrete Math. 276: 95-109, 2004
[4] N. Fazlollahi, D. Starobinski and A. Trachtenberg. Connected identifying codes. IEEE Trans. Inform. Theory, 58(7): 4814-4824, 2012.
[5] I. Honkala and T. Laihonen. On a new class of identifying codes in graphs. Inform. Process. Lett., 102(2-3):92-98, 2007.
[6] V. Junnila and T. Laihonen. Codes for information retrieval with small uncertainty. IEEE Trans. Inform. Theory, 60:976-985, 2014.
[7] V. Junnila and T. Laihonen. Information retrieval with unambiguous output. Information and Computation, 242: 354-368, 2015.
[8] V. Junnila and T. Laihonen. Information retrieval with varying number of input clues. IEEE Trans. Inform. Theory, 62:1-14, 2016.
[9] T. Laihonen. Information retrieval and the average number of input clues. Submitted for publication.
[10] V. Levenshtein. Efficient reconstruction of sequences. IEEE Trans. Inform. Theory, 47(1): 2-22, 2001.
[11] A. Lobstein. Watching systems, identifying, locating-dominating and discrminating codes in graphs, a bibliography. Published electronically at http://perso.telecom-paristech.fr/~1obstein/debutBIBidetlocdom.pdf.
[12] F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes. North-Holland, Amsterdam, 1977.
[13] M. D. Plummer. Graph factors and factorization: 1985-2003: a survey. Discrete Math, 307(7-8): 791—821, 2007.
[14] S. Ray, D. Starobinski, A. Trachtenberg and R. Ungrangsi. Robust location detection with sensor networks. IEEE Journal on Selected Areas in Communications, 22(6): 1016-1025, 2004.
[15] E. Yaakobi and J. Bruck. On the uncertainty of information retrieval in associative memories. In Proceedings of 2012 IEEE International Symposium on Information Theory, pages 106-110, 2012.
[16] E. Yaakobi, M. Schwartz, M. Langberg, and J. Bruck. Sequence reconstruction for grassmann graphs and permutations. In Proceedings of 2013 IEEE International Symposium on Information Theory, pages 874-878, 2013.

