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A B S T R A C T

The numbers of reported human tick-borne encephalitis (TBE) cases in Europe have increased in several endemic
regions (including Finland) in recent decades, indicative of an increasing threat to public health. As such, it is
important to identify the regions at risk and the most influential factors associated with TBE distributions,
particularly in understudied regions. This study aimed to identify the risk areas of TBE transmission in two
different datasets based on human TBE disease cases from 2007 to 2011 (n=86) and 2012–2017 (n =244). We
also examined which factors best explain the presence of human TBE cases. We used ensemble modelling to
determine the relationship of TBE occurrence with environmental, ecological, and anthropogenic factors in
Finland. Geospatial data including these variables were acquired from several open data sources and satellite and
aerial imagery and, were processed in GIS software. Biomod2, an ensemble platform designed for species dis-
tribution modelling, was used to generate ensemble models in R. The proportion of built-up areas, field, forest,
and snow-covered land in November, people working in the primary sector, human population density, mean
precipitation in April and July, and densities of European hares, white-tailed deer, and raccoon dogs best es-
timated distribution of human TBE disease cases in the two datasets. Random forest and generalized boosted
regression models performed with a very good to excellent predictive power (ROC=0.89–0.96) in both time
periods. Based on the predictive maps, high-risk areas for TBE transmission were located in the coastal regions in
Southern and Western Finland (including the Åland Islands), several municipalities in Central and Eastern
Finland, and coastal municipalities in Southern Lapland. To explore potential changes in TBE distributions in
future climate, we used bioclimatic factors with current and future climate forecast data to reveal possible future
hotspot areas. Based on the future forecasts, a slightly wider geographical extent of TBE risk was introduced in
the Åland Islands and Southern, Western and Northern Finland, even though the risk itself was not increased.
Our results are the first steps towards TBE-risk area mapping in current and future climate in Finland.

1. Introduction

High-latitude regions (> 60°) in the Northern Hemisphere are un-
dergoing rapid changes associated with climate warming. Climate
change interacts with the global change through atmospheric circula-
tion and biogeophysical and biogeochemical effects; such changes are

particularly affected by rising temperatures at high latitudes (Groisman
and Soja, 2007). As a result of these climatic changes, distribution of
invasive species is expanding to new regions and environmental con-
ditions have become more suitable for the circulation of several vector-
borne viruses (Koch et al., 2017; Hobbs, 2000; Jore et al., 2014;
Sutherst et al., 2000). Ensemble modelling and geographical
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information systems (GIS) have been used to understand the connec-
tions between vectors, their habitats, and vector-borne diseases (Honig
et al., 2019; Stefanoff et al., 2018; Gama et al., 2017; Sun et al., 2017;
Deka and Morshed, 2018). The distribution of vector-borne diseases
remains understudied in many regions. GIS and ensemble modelling
approaches used for identification of influential environmental factors
and estimation of vector-borne disease risks can improve knowledge on
disease prevention.

Tick-borne encephalitis (TBE) is a zoonotic disease caused by the
TBE virus (TBEV). TBEV infection typically induces an influenza-like
illness. In one third of cases, the initial illness may be followed by fever,
meningitis, or meningoencephalitis. Neurological sequelae, including
paresis, may occur. Death occurs in 1–2% of cases (World Health
Organization (WHO, 2019). TBE occurs focally in endemic areas across
large regions of the temperate and boreal forest regions of Europe and
Asia (European Centre for Disease Prevention and Control (ECDC, 2015;
Charrel et al., 2004; Woolhouse et al., 2001). The annual number of
TBE cases in the European Union and the European Free Trade Asso-
ciation varies between 2000 and 3500 cases; most cases occur between
June and September (Beauté et al., 2018; European Centre for Disease
Prevention and Control (ECDC, 2015). The Finnish Government has
defined TBE as one of the major risks to public health in changing
climate and has called for preparedness and risk assessment
(Tuomenvirta et al., 2018).

Although ticks are both the vectors and the main reservoir for the
virus, vertebrate species can also be infected by TBEV. Small mammals
can harbor the virus and transmit it to their offspring. TBEV can be
transmitted directly from an infected vertebrate host to its progeny or
occasionally transovarially (Alekseev and Chunikhin, 1990). Trans-
mission can also occur by co-feeding, when uninfected ticks feed si-
multaneously close to infected ticks (Labuda et al., 1993; Randolph
et al., 1996). TBEV is transmitted by Ixodes spp. ticks from Western
Europe through Russia to the Far East (Lindquist and Vapalahti, 2008).
Finland lies in the zone where the two tick species (Ixodes ricinus and I.
persulcatus) overlap and they can transmit both the European and Si-
berian virus subtypes (Süss, 2011; Tonteri et al., 2015; Öhman, 1961;
Jääskeläinen et al., 2006, 2010; Kuivanen et al., 2018). Ixodes ricinus is
predominant in Southern Finland while I. persulcatus prevails in
Northern Finland (Laaksonen et al., 2017). In Finland and in the
neighboring countries Sweden and Russia, the host tick species and the
distribution of TBEV have moved to more northern latitudes
(Tokarevich et al., 2011; Jaenson et al., 2012; Laaksonen et al., 2017).

The natural cycles of TBEV are sensitive to various environmental
and ecological factors, such as climate (Daniel et al., 2015; Semenza
and Menne, 2009; Brabec et al., 2017), microclimate (Haider et al.,
2017; Randolph et al., 2001), and population density of tick hosts
(Heyman et al., 2010; Brugger et al., 2017). Changes in weather con-
ditions influence the distribution of vector ticks and host and reservoir
animals and therefore affects pathogen transmission and incidence of
human disease cases (Alkishe et al., 2017; Lindgren, 1998a). The like-
lihood of tick co-feeding (and consequently co-feeding transmission of
TBEV), tick host densities, and human-tick encounters are all influenced
by climatic associations. Seasonal tick activity starts when the daily
temperature rises above 5 °C but ceases in temperatures above 25 °C
(Daniel et al., 2015, 2018). Daylight length and relative humidity (RH),
particularly long periods of low RH, affect tick activity (Gray et al.,
1998; Daniel et al., 2015). In addition, RH also affects tick survival
(Gray et al., 1998). The presence of suitable host animals also influ-
ences tick abundance. Adult I. ricinus and I. persulcatus normally feed on
medium-sized and large-sized animals such as deer and hares, while
nymphal ticks mainly feed on small to medium-sized animals such as
rodents, birds and hares, but also on large-sized animals (Gray et al.,
2016; Brugger et al., 2017). TBE has been found to correlate with the
abundance of deer and hares in Sweden (Jaenson et al., 2018), and in
Finland with white-tailed deer density (Dub et al., unpublished results).

Habitat suitability refers to condition, when the combination of

abiotic environmental variables at the site is included in the environ-
mental conditions that a species needs to grow and maintain viable
populations (Hutchinson, 1992). This is the basis for habitat suitability
modelling approach which can improve knowledge on the distribution
of pathogens, vector-borne diseases, vectors and hosts in the changing
climate (Guisan and Zimmermann, 2000; Guisan et al., 2017). In this
study, we use the definition of habitat suitability to refer to the ability
of a habitat to promote the occurrence of TBE, and to the probability of
TBE occurrence. Recently, ensemble modelling has been widely used to
predict distribution of vectors (Miller et al., 2018; Chalghaf et al., 2018;
Uusitalo et al., 2019) and vector-borne diseases (Deribe et al., 2018;
Deka and Morshed, 2018; Gama et al., 2017; Eneanya et al., 2018). This
tool also has the advantage of producing more robust decision making
in the face of uncertainty in comparison with single-model forecasts
(Araújo and New, 2007). Modelling studies of vector-borne diseases and
their associations with climate change have been conducted since the
1990s (Rogers and Packer, 1993; Haines et al., 2000). The Southern
Finland coastline has been predicted to be suitable for TBEV circulation
a few decades ago (Randolph and Rogers, 2001), and several distinct
foci have since been found in the region (Jääskeläinen et al., 2016;
Smura et al., 2019). However, recent spatial modelling studies on TBE
in Finland are missing.

The aims of this study are to predict the distribution of TBE in the
identified foci (Tonteri et al., 2015) in Finland based on known factors
that affect TBE incidence; to discover which environmental, anthro-
pogenic, and ecological factors best explain the probability of TBE
disease case occurrence; and to analyze the effect of predicted climate
change on TBE distribution based on bioclimatic variables. To reach
these aims, we chose to apply biomod2, an ensemble platform for
species distribution modelling (Thuiller et al., 2016).

2. Material and methods

2.1. TBE occurrence data and study datasets

Finland (59°50′N, 20°38′E, 70°09′N, 31°30′E) is located in Northern
Europe between Sweden and Russia (Fig. 1.). TBE occurrence data in-
clude serologically confirmed human TBE cases by municipality from
2007 to 2017 obtained from the National Infectious Diseases Register
(NIDR). In total, 488 TBE cases were reported in 2007–2017. Patients
infected abroad and whose location of exposure or date of onset were
unknown, were excluded from this study (n =158) (Fig. 1.).

Overall, the number of TBE cases has increased annually and the
distribution of exposures has spread to new areas from 2007 to 2017
(Figs. 1 and 2). The geographical distribution of TBE cases is mainly
focused in coastal and Southern Finland (including the Åland Islands).
In the past 6 years, the distribution of TBE cases has also expanded to
Central, Eastern, and Northern Finland, excluding northernmost Fin-
land. The annual number of TBE cases has almost quadrupled in 11
years from 2007 (n =20) to 2017 (n =72).

TBE datasets were built based on NIDR data. Data were split into
two different datasets (2007–2011 and 2012–2017), to identify differ-
ences in predictors and TBE risk between the two time periods. The first
dataset includes an area of 35,344 km2 and consists of 24 municipalities
with 86 TBE cases and 24 control municipalities without TBE cases
(Fig. 3.). The second dataset includes an area of 83,720 km2, and con-
sists of 51 (presence) municipalities with 244 TBE cases and 51 control
(absence) municipalities (Fig. 3). Absence data were randomly selected
from municipalities located in the vicinity of TBE municipalities.

2.2. Environmental, ecological and anthropogenic data

The selection of explanatory data were based on those introduced in
the existing literature. Environmental data for Finland were obtained
directly from satellite imagery, or were derived from the satellite
imagery in ESRI ArcGIS (version 10.3.1). Ecological data included tick
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data and hunting data of selected game animals. Anthropogenic data
consisted of data on human population density and people working in
primary production. Altogether, explanatory data included 50 pre-
dictors (excluding separate variables for each month e.g. temperature)
before modelling analysis (Table 1.; Table A.1).

Bioclimatic variables (N=19) were derived from the WorldClim
datasets (Hijmans et al., 2005; Fick and Hijmans, 2017). Precipitation,
temperature, land surface temperature, snow cover, and vegetation
data were derived from satellite imagery. Due to the lack of real game
animal density data in Finland, we used hunting data of known tick host
game animals as game animal densities, as hunting data correlates with
animal densities (Cattadori et al., 2003; Jore et al., 2014). The data
consists of hunted European hares (Lepus europaeus), mountain hares
(Lepus timidus), moose (Alces alces), red foxes (Vulpes vulpes), roe deer
(Capreolus capreolus), white-tailed deer (Odocoileus virginianus), raccoon
dogs (Nyctereutes procyonoides), martens (Martes spp.), minks (Neovison
vison), fowls, waterfowls, and other wildfowls. For the Åland Islands,
only annual hunting data of moose, white-tailed deer, and roe deer was
available.

2.3. Data analysis and habitat suitability modelling

All the geospatial datasets including environmental and other at-
tributes, were set to the same spatial extent, geographic coordinate
system (EUREF FIN TM35FIN), and resolutions (1000m×1000m).
Mean values of explanatory data per each municipality were calculated.
The compiled dataset consisted of the presence-absence data of TBE and
environmental, ecological, and anthropogenic data. Prior to modelling
analysis, multicollinearity of the variables was tested using Variance
Inflation Factors (VIFs) in R (Besley et al., 1980). The VIFs of the suite
of environmental variables were calculated and correlated variables
were excluded in a stepwise procedure at a generally accepted
threshold value of 5 (Dormann et al., 2013; Ringle et al., 2015). Final
explanatory variables used in the modelling consisted of 14 variables in
the first dataset and 13 variables in the second dataset (Table 2.).

To model the habitat suitability of TBE in Finland, we used en-
semble modelling in the biomod2 platform (version 3.3–7) in RStudio
computing software (version 1.2.5033; RStudio Inc.). We fitted our data
using the following eight predictive modelling techniques: generalized
linear models (GLM), generalized additive models (GAM), classification
tree analysis (CTA), artificial neural networks (ANNs), multivariate
adaptive regression splines (MARS), generalized boosting models
(GBM), random forest (RF), and maximum entropy (MAXENT). Flexible
discriminant analysis (FDA) and surface range envelope (SRE) were
excluded due to methodological weaknesses (Zhao and Gao, 2015; Elith
et al., 2006; Pearson et al., 2006). Models were processed mainly using
the default settings of the biomod2 with the following exception: we
used the function bam mgcv package in GAM model in R due to its
advantages regarding use of random term smoothers, specification of
weights, offset, and ability to handle large datasets with good estimates
(Wood, 2017).

We performed an iteration of 10 model runs for each of the eight
algorithms, (80 model runs total). Model calibration was performed
using randomly divided model training (70%) set, and model evalua-
tion was performed using the remaining 30% of the data over the 10
model replicate runs (Guisan and Zimmermann, 2000). The area under
the curve of a receiver operating characteristic (ROC) value (Fielding
and Bell, 1997) and true skill statistics (TSS) (Peirce, 1884) were pro-
duced based on each model to estimate the predictive power of the

Fig. 1. Human TBE cases in 2007–2011 (A)
and 2012–2017 (B) are presented here as red
dots. The number of patient cases has in-
creased and the geographical range of ex-
posures has expanded during 2012–2017. (For
interpretation of the references to colour in this
figure legend, the reader is referred to the web
version of this article.)

Fig. 2. Human TBE cases notified annually from 2007–2017 in Finland, in-
cluding cases excluded from the study (NIDR; THL).
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model. Ensemble model was generated using the best-performing model
algorithms (0.7 < ROC > 1.0) (Drew et al., 2010). Sensitivity (the
proportion of observed presences) and specificity (the proportion of
observed absences) were calculated to quantify the omission errors
(Fielding and Bell, 1997). The contribution of variables to the model
was calculated by correlating the fitted values of the full models with
those from the model in which the values of the predictor have been
randomly permuted. The relative importance of variables was averaged
over the eight model algorithms and compared with the variable con-
tributions in the models to define the most powerful variables and their
relative magnitude. All habitat suitability maps were created using
ArcGIS software. Spatial autocorrelation (SAC) of the predictor vari-
ables was measured using Moran’s Index (Moran, 1950).

3. Results

3.1. Ensemble distribution model performance

The model performance of eight model algorithms with mean ROC
and TSS values of 10 model runs in both datasets is presented in Fig. 4.
Altogether, six out of the eight models provided reliable estimates for
TBE distributions resulting in area under the ROC value of 0.74 at
minimum (ROC=0.74–0.91) in the first dataset. In the second dataset,
seven out of the eight model algorithms resulted in an ROC value of
0.76 at minimum, suggesting good to excellent predictive power. RF
and GBM models were the best performing model algorithms
(ROC=0.89–0.96) in both datasets.

Ensemble model performance in both datasets was classified as
excellent, based on the ensemble median TSS value (0.988) in the first
dataset and (0.956) in the second dataset. The ensemble model cor-
rectly predicted 98.8% of TBE presences (i.e. sensitivity) and 100% of
TBE absences (i.e. specificity) in the first dataset. In the second dataset,
sensitivity was 97.5% and specificity was 98.0%. SAC of the predictor
variables for both datasets indicated that several covariates were highly
spatially autocorrelated (0.5≤Moran’s I≥ 0.9) for short distances
(p < 0.05) but not at longer distances. (Figs. A.1. and A.2.).

3.2. The relative importance of predictors

The relative contribution of influential variables (%) in both data-
sets showed that several factors resulted in values close to or greater
than the mean importance value; these are thus important predictors
(Fig. 5.). Proportion of built-up areas, forest, and people working in the
primary sector, mean precipitation in April and July, and white-tailed
deer and European hare density were the most important predictors
(19–41%) in the first dataset. In the second dataset, the most important
predictors (12–27%) were proportion of built-up areas, field, human
population density, people working in the primary sector, snow-cov-
ered land in November, and raccoon dog density.

3.3. TBE risk based on suitability maps

The produced habitat suitability map of the first dataset suggests
that the majority of coastal municipalities, municipalities in the Åland
Islands, and several municipalities in Central and Southwestern Finland
are suitable for TBE transmission (Fig. 6.). The habitat suitability map
of TBE in the second dataset, strengthens the suggestion that coastal
municipalities widely reflect the geographic distribution of the actual
TBE risk and already notified TBE cases (Fig. 1.). Furthermore, the
habitat suitability map from 2012 to 2017 period suggests that there is
a considerable TBE transmission risk in several municipalities in Central
Finland and in Eastern municipalities close to the Russian border. In-
land municipalities in Northern Finland are estimated to have a lower
risk of TBE transmission in both datasets.

3.4. Predicted current and future distribution of TBE based on the
bioclimatic data

Our results showed an influence of a suite of environmental, an-
thropogenic, and ecological factors on probability of TBE disease case
occurrence in Finland during two time periods. The habitat suitability
maps indicated certain hotspot areas for TBE distribution. However,
based on these results we cannot reliably estimate how the distribution
of TBE may change in future climate in Finland. Therefore, we decided
to use current and future global climate data including 19 bioclimatic
variables obtained by WorldClim 2.0 and 1.4 (Table A.1.; Fick and

Fig. 3. Study area of the first dataset included
municipalities with human TBE cases from
2007–2011 and control municipalities (A).
Study area of the second dataset consisted of
human TBE cases from 2012–2017 and control
municipalities (B). Municipalities with TBE
presence are shown as red dots and control
municipalities as black dots. (For interpreta-
tion of the references to colour in this figure
legend, the reader is referred to the web ver-
sion of this article.)
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Table 1
Description and source of all explanatory data.

Data source Data layer(s) Spatial resolution

Finnish Meteorological Institute (FMI) Mean precipitation (mm) and mean temperature (°C) in April, May, June, July, August and
October in 2007–2011 and 2012–2017 were calculated based on daily means inputs in ArcGIS.
Daily relative humidity and daily global radiation were obtained from FMI. Temperature and
relative humidity measurement height was 2m (FMI).

1000m/ 10,000m

Natural Resources Institute Finland (LUKE) Mountain hare, European hare, white-tailed deer, roe deer, moose, fox, marten, mink, fowl,
raccoon dog, waterfowl and other wildfowl density data mainland Finland. Average hunting
data in 2007–2011 and 2012–2017 were calculated using the hunting data of each game
management area (GMA). To obtain the average hunting data for each municipality, we used
the value of game management area to which the municipality belonged. Game animal density
data were generated for both study periods TBE 2007–2011 and TBE 2012–2017 based on
annual hunting data.

Game management area

NASA Earthdata Derived from MODIS satellite imagery. Mean land surface temperature (°C) (Wan et al., 2015)
in April, May, June, July, August and October, normalized difference vegetation index (NDVI)
(Didan, 2015) and mean snow cover (Hall and Riggs, 2015) in March, April, November and
December were calculated in ArcGIS.

5600m/ 1000m/ 5600m

Finnish Institute for Health and Welfare (THL) Patient TBE case data obtained from the National Infectious Diseases Register (NIDR)
maintained by THL, and the locality of TBEV transmission based on patient interviews.

Municipality

National Land Survey of Finland Slope, flow direction, flow accumulation and elevation were derived from 25m digital
elevation model (DEM) (National Land Survey of Finland (NLS of Finland, 2000). Topographic
wetness index (TWI) by Beven and Kirkby, 1979, was created based on slope and flow
accumulation in ArcGIS. This was calculated by the following equation: TWI= ln (a/tan β),
where a is the specific catchment area (SCA), the local upslope area draining through a certain
point per unit contour length, and β is the local slope.

25m

Statistics of Finland People working in primary production (%) created by using the data of people working in
different sectors compared to all labor. Human population density (people/km²) created by
using population data per municipality from 2016 and calculating human population density
per each municipality in ArcGIS.

Municipality

Finnish Environment Institute (SYKE), European
Environment Agency (EEA)

Proportion (%) of field, water, wetlands, forest and built-up areas were derived from CORINE
land cover 2012, which was produced by the Finnish Environment Institute (SYKE), based on
automated interpretation of satellite images and data integration with existing digital map
data (European Environment Agency, EEA). Proportion (%) of field, water, wetlands, forest
and built-up areas were obtained by calculating percentage of each land cover type for each
municipality.

20 m

University of Turku Tick species distribution data included nearly 20 000 collected ticks identified by species
based on nationwide crowd sourcing study in 2015 (Laaksonen et al., 2017).

Location (Longitude,
Latitude)

WorldClim- Global climate data Annual Mean Temperature, Mean Diurnal Range (Mean of monthly (max temp - min temp)),
Isothermality (BIO2/BIO7) (* 100), Temperature Seasonality (standard deviation *100), Max
Temperature of Warmest Month, Min Temperature of Coldest Month,Temperature Annual
Range (BIO5-BIO6), Mean Temperature of Wettest Quarter, Mean Temperature of Driest
Quarter, Mean Temperature of Warmest Quarter, Mean Temperature of Coldest Quarter,
Annual Precipitation, Precipitation of Wettest Month, Precipitation of Driest Month,
Precipitation Seasonality (Coefficient of Variation), Precipitation of Wettest Quarter,
Precipitation of Driest Quarter, Precipitation of Warmest Quarter and Precipitation of Coldest
Quarter obtained from WorldClim version 2.0 (Fick and Hijmans, 2017) for current climate
conditions and from WorldClim version 1.4 (Hijmans et al., 2005) for future climate
conditions. Climate data were extracted to correspond the two datasets in ArcGIS.

∼1000m

Government of The Åland Islands Hunting data of white-tailed deer, roe deer and moose per each municipality. Average hunting
data of each municipality in 2007–2011 and 2012–2017 was calculated in ArcGIS and used as
game animal density data.

Municipality

Table 2
Final environmental and other TBE predictor data used in the modelling analysis of TBE 2007–2011 and TBE 2012–2017 with value ranges. GMA=game man-
agement area.

Dataset of 2007−2011 Min. Max. Avg. Dataset of 2012−2017 Min. Max. Avg.

European hare density (hunted animals/GMA) 0 15,840 5205 Fox density (hunted animals/GMA) 0 9366 3791
White-tailed deer density (hunted animals/GMA) 0 7957 3102 Raccoon dog density (hunted animals/GMA) 0 28,800 14,338
People working in primary sector (%) 0.10 22.90 6.29 People working in primary sector (%) 0.10 29.70 6.02
Built-up areas (%) 0.09 38.55 3.75 Built-up areas (%) 0.21 38.55 4.52
Field (%) 0.37 28.55 5.72 Field (%) 0.20 34.18 6.33
Forest (%) 2.31 83.63 32.01 Wetlands (%) 0.14 19.91 2.20
Mean precipitation in April (mm) 21.43 34.82 26.16 Human population density (persons/km²) 1 2863 152
Mean precipitation in May (mm) 33.00 55.94 41.09 Snow-covered land in November (%) 0.00 92.29 63.67
Mean precipitation in July (mm) 42.44 96.39 68.56 Snow-covered land in December (%) 1.84 100.00 37.70
Mean precipitation in August (mm) 69.14 100.54 79.14 Mean precipitation in August (mm) 58.42 99.34 75.60
Mean precipitation in September (mm) 50.51 81.78 65.40 Mean precipitation in September (mm) 42.22 76.70 57.41
Mean precipitation in October (mm) 55.03 86.59 70.44 Mean precipitation in October (mm) 49.18 87.97 64.18
Normalized Difference Vegetation Index (NDVI) 0.59 0.81 0.76 Topographic wetness index (TWI) 9.68 11.90 10.78
Topographic wetness index (TWI) 9.89 11.59 10.80
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Hijmans, 2017; Hijmans et al., 2005), to explore potential changes in
the distribution of TBE in the future within the study area of the second
dataset. In this substudy, we ignored all the other variables included in
the major study as future prediction data were not available for them.

For future climate scenarios, for reasons of feasibility only one
global climate model (GCM) called IPSL-CM5 (IPSL Earth system model
for the 5th Intergovernmental Panel on Climate Change (IPCC)
Assessment (2014)) was used (Dufresne et al., 2013). For greenhouse
gas scenarios, we chose representative concentration pathways (RCPs)
of both medium (RCP 4.5) and high (RCP 8.5) change for the years
2041–2060 and 2061–2080 to reveal possible climate change influ-
ences in two different time periods. Temperature in RCP 4.5 scenario
ranges from 2.0° to 4.5° and in RCP 8.5 scenario from 3.5° to 4.5° (van
Vuuren et al., 2011; Nazarenko et al., 2015). After multicollinearity of
bioclimatic variables was run with VIF, six variables for modelling
analyses were included (Table A.2). Modelling analyses were performed
by using the same workflow as described in Section 2.3. The

performance of eight models was similar within all climate conditions
(Table A.3). RF and GBM performed best in current and future climate
conditions with medium and high change scenarios and had predictive
power from good to excellent (ROC=0.76–0.94). A composition of
influential factors in the second dataset is presented in Fig. 7.A.–E.

The habitat suitability map of TBE in current climate conditions
indicates a high TBE risk in the Åland Islands, in Southern and
Southeastern Finland, and in Ostrobothnia and Northern municipalities
(Fig. 8.). In ensemble forecasts for 2041–2060 and 2061–2080 with
medium and high change scenarios, there is a slightly wider geo-
graphical extent of TBEV transmission risk in Northern Finland in
several inland municipalities compared to current climate conditions.
Southern Finland is predicted to be at high risk for TBE in all climatic
conditions. No increase in TBE risk is predicted for inland munici-
palities in Central and Eastern Finland.

Fig. 4. Model performance comparison of eight model algorithms for TBE 2007–2011 (A) and TBE 2012–2017 (B) by area under the receiver operating characteristic
curve (ROC) and true skill statistic (TSS) values of 10 model runs. The points represent the mean estimates and the solid lines represent the 95% confidence intervals.
ANN= artificial neural networks; CTA= classification tree analysis; GAM=generalized additive models; GBM=generalized boosted models; GLM=generalized
linear models; MARS=multivariate additive regression splines; MAXENT.Phillips=maximum entropy models; RF= random forest model.
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Fig. 5. Mean relative importance of the explanatory variables (%) used to predict the distribution of TBE during 2007–2011 (A) and 2012–2017 (B). Bars represent
the mean value of relative importance obtained from eight modelling algorithms with corresponding standard deviation values. The last bar on the right represents
the mean relative importance value across the predictors. GMA=game management area.

Fig. 6. Mean predicted habitat suitability of TBE in the two datasets in Finland. The probability of TBE in both datasets was highest in coastal municipalities in
Southern, Western and Northern Finland and several municipalities in Central and Eastern Finland.
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Fig. 7. Relative contribution of influential variables (%) predicting the distribution of human TBE disease cases in current climate conditions (A), in 2041–2060
climate conditions with representative concentration pathways (RCP) 4.5 (B), in 2041–2060 climate conditions with RCP 8.5 (C), in 2061–2080 climate conditions
with RCP 4.5 (D), and in 2061–2080 climate conditions with RCP 8.5 (E.).

Fig. 8. Mean predicted habitat suitability of TBE in current and future climate scenarios with representative concentration pathways (RCP) 4.5 and RCP 8.5 based on
six bioclimatic variables.
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4. Discussion

4.1. Validity of the study

In this study, we used the biomod2 ensemble platform in R to create
ensemble models to identify areas with suitable habitat conditions for
TBE under present-day and future climate in Finland. Ensemble fore-
casting yields more accurate estimates over single-model estimates
(Araújo and New, 2007) and is commonly used to estimate the potential
distributions of species and vector-borne diseases under current and
future climate conditions (Deka and Morshed, 2018; Eneanya et al.,
2018). Two different methods of accuracy, ROC and TSS were used in
order to give more comprehensive view of the model performance. The
ROC uses all possible thresholds for classifying the scores into confusion
matrices and obtains each matrix’ sensitivity and specificity; comparing
sensitivity against the corresponding proportion of false positives
(Fielding and Bell, 1997). The TSS is independent of prevalence and an
intuitive method of performance measurement of SDMs when predic-
tions are expressed as presence–absence maps (Allouche et al., 2006).
Even though ROC is widely used in modelling species distributions, TSS
might be more realistic and practical method (Shabani et al., 2018). The
majority of the models used herein produced moderate to high ROC and
TSS values in both datasets indicating reliable estimations. ROC scores
range from 0 to 1, where models higher than 0.5 predict better than
random draws, and TSS values range from −1 to 1, where models
higher than zero indicate a performance better than random (Ruete and
Leynaud, 2015). In this study, RF and GBM models had the highest
predictive power of all models and MAXENT the lowest (Fig. 4.). GBM
and RF have been widely used to predict disease distributions (Eneanya
et al., 2018; Elith et al., 2008; Breiman, 2001a) and the use of them
avoids over-fitting (Bhatt et al., 2013). In the model performance, eight
model algorithms performed generally better for the second dataset
than the first dataset. This is probably due to the lower amount of TBE
presence-absence data (n =110) in the first dataset than in the second
dataset (n =295).

In our study, data from human TBE cases were available at the
municipality level and produced results at the same resolution.
Explanatory data were mainly available at higher resolution (e.g.
temperature 1000m×1000m), and because explanatory data were
calculated to correspond the resolution of response variable, some in-
formation was lost. Due to the narrow geographical range of TBE cases,
it was not possible to predict TBE risk through the whole country. The
SAC of some covariates may produce some uncertainty in the study
results even though spatial autocorrelation does not necessarily gen-
erate bias (Diniz- Filho et al., 2003). Game animal density data were not
real density data but hunting data, and this may cause bias in the study
results even though hunting data correlates with animal densities
(Cattadori et al., 2003; Jore et al., 2014; Jaenson et al., 2018). Ex-
cluding the Åland Islands, hunting data were performed in game
management area (GMA) level, which is larger than municipality
boundaries (the mean area of GMA is approximately 25 000 km2) and
thus, are not real density data per municipality. Although tick species
presence-absence data were available but due to the weakened model
performance, data were excluded from the final modelling analysis. The
control municipalities were randomly selected from the neighboring
municipalities of TBE municipalities and this may cause overmatching
to the study results, particularly concerning models with climate-based
factors. The same amount of control municipalities (absence locations)
and municipalities with TBE (presence locations) were chosen for the
modelling analysis based on recommendations of producing reliable
species distribution models (Barbet‐Massin et al., 2012). Effective TBE
vaccination in risk localities after a few cases may make the risk in the
nature appear low or even nonexistent. However, data on vaccination
coverage were not available. Vaccination coverage is particularly high
in the Åland Islands. Furthermore, there are likely other influential
variables related to TBE distributions that were not included in the

modelling process, such as small mammal densities and microclimate
situations. These factors have been confirmed to affect tick abundance
and distribution of TBE but suitable data of these variables in Finland
are not currently available (Hubálek and Rudolf, 2012; Randolph and
Rogers, 2000).

4.2. Influential factors of TBE occurrence

Our study suggests that the distribution of TBE is affected by en-
vironmental factors such as mean precipitation in April and July, pro-
portion of snow-covered land in November, forest, and field; ecological
factors such as white-tailed deer, European hare, and raccoon dog
density; and anthropogenic factors including proportion of built-up
areas, human population density, and people working in the primary
sector. Consistent with previous research from other global locations,
these factors have been important drivers for large-scale distributional
patterns of TBE (Randolph et al., 2008; Czupryna et al., 2016; Brugger
et al., 2017; Gray et al., 2009; Brabec et al., 2017). Both I. ricinus and I.
persulcatus are vulnerable to desiccation and consequently require high
relative humidity (> 80%) in their microhabitats to be able to quest
and survive (Gray, 1998). The increased bursts of humidity provided by
more rainfall help in maintaining adequately humid shelters for ticks on
the ground floor and reduce moisture loss during questing, improving
tick survival and lengthening questing periods. Precipitation in April
has previously been found to correlate with TBE incidence (Czupryna
et al., 2016). Dry periods at the beginning of the tick season has been
found to lead to tick mortality and reduced late-season populations for
Ixodes scapularis and I. ricinus ticks (Berger et al., 2014; Perret et al.,
2000). July is typically seen as a “hiatus” month in the activity of I.
persulcatus adults (Gray et al., 2016; Korenberg, 2000), and I. ricinus
nymphs and adults, when ticks cease questing and withdraw to humid
microhabitats, either to escape unfavorable ambient conditions or due
to diapause (Cayol et al., 2017; Sormunen et al., in press).

Higher precipitation in July might not only allow for continued tick
questing during this period, but also ensure that ticks in shelters survive
to later activity periods in August–September (Sormunen et al., 2016).
Snow cover acts as an insulating blanket over ground litter and tends to
further insulate ticks from the frigid winter air temperatures (Lundkvist
et al., 2011; Vollack et al., 2017). The proportion of snow-covered land
in November may positively affect tick activity and survival because
snow cover protects ticks from exposure to freezing and frequent tem-
perature shifts when the air temperature decreases (Dautel et al., 2016).

Medium-sized and large animals such as deer, hares and raccoon
dogs are potential hosts for I. ricinus nymphs and adults, and I. persul-
catus adults (Gray et al., 2016; Klemola et al., 2019). The population
sizes of white-tailed deer and raccoon dogs have significantly increased
in Finland recently (Natural Resources Institute of Finland, 2018) and
may possibly be connected with higher I. persulcatus and I. ricinus
density. White-tailed deer density and hare density have earlier been
confirmed to correlate with I. ricinus abundance and consequently TBE
distribution (Brugger et al., 2017; Jaenson et al., 2018). The proportion
of field and forest area in municipalities have indirect effects on TBE
transmission. Forests are typical habitats for many important tick host
animals, such as deer and hares, and higher amounts of forests therefore
typically increase host animal and consequently tick abundance. On the
other hand, the increasing proportion of field area often means that a
more fragmented habitat mosaic is formed, wherein the amount of
boundary areas between different habitats increases. These increasing
edge effects allow for greater biodiversity and often higher animal
densities (Tack et al., 2012; Czupryna et al., 2016; Nadolny and Gaff,
2018). High human population density and a high proportion of built-
up areas are associated with the large number of population and
naturally increase TBE risk. People who are working in the primary
sector spend relatively more time outdoors than other sectors and
consequently have a higher risk for getting tick bites (Randolph et al.,
2008). In our future forecasts, mean temperature of the warmest month
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and wettest quarter and temperature seasonality were the most influ-
ential bioclimatic factors on TBE distribution. High spring and summer
temperatures and mild winter temperatures are drivers of new tick
establishment and higher TBE risk at high-latitudes in Northern Europe
(Gray et al., 2009; Randolph and Rogers, 2000).

5. Conclusions

Our results confirm the influence of game animal densities and
anthropogenic and environmental factors on distribution of human TBE
disease cases in Finland. The proportion of built-up areas, field, forest,
and snow-covered land, people working in the primary sector, human
population density, mean precipitation in April and July, white-tailed
deer density, and European hare and raccoon dog density were found
correlated with the occurrence of TBE. In future forecasts, temperature
variables were the most influential drivers for higher TBE risk. Based on
habitat suitability maps of 2007–2011 and 2012–2017, high-risk areas
of TBEV transmission were estimated to be in the Åland Islands, the
coastal regions of Southern, Western, and Northern Finland, and several
municipalities in Central and Eastern Finland. In future forecasts for
2041–2060 and 2061–2080 climate, a slightly wider geographical ex-
tent of TBE risk was introduced in the Åland Islands and Southern,
Western and Northern Finland, even though the risk itself was not
significantly increased (Fig. 7). Identified risk areas were consistent
with previous study results, in which Southern Finland (including the
Åland Islands) and Southeastern Finland were estimated to be suitable
for TBE transmission in the 2020 forecast, and risk areas were suggested
to expand up to Central Finland in the 2080 forecast (Randolph and
Rogers, 2000). Higher TBE risk in Northern regions will be reasonable
as temperature increase is greater in the northernmost latitudes
(Trenberth et al., 2007), which makes the region more favorable for tick
activity (Soucy et al., 2018; Medlock et al., 2013; Lindgren and
Gustafson, 2001; Gray et al., 2009). Our findings provide insight into
the identification of risk areas and influential factors for TBE in Finland
and can be applied to other regions located at high latitudes in the
Northern Hemisphere. Our goal in future studies is to combine larger
and more detailed datasets of human TBE cases from Scandinavia and
create predictions across Northern Europe.
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