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On the Steps of Emil Post: from Normal Systems

to the Correspondence Decision Problem∗

Vesa Halavaa and Tero Harjub

Abstract

In 1946 Emil Leon Post (Bull. Amer. Math. Soc. 52 (1946), 264–268) in-
troduced his famous correspondence decision problem, nowadays known as the
Post Correspondence Problem (PCP). Post proved the undecidability of the
PCP by a reduction from his normal systems. In the present article we follow
the steps of Post, and give another, somewhat simpler and more straightfor-
ward proof of the undecidability of the problem by using the same source of
reductions as Post did. We investigate these, very different, techniques, and
point out out some peculiarities in the approach taken by Post.

Keywords: normal systems, Post correspondence problem, undecidability,
assertion problem

1 Introduction

The original formulation of the Post correspondence problem (or, as Post called it,
the correspondence decision problem [8]), PCP for short, is stated as follows:

Problem 1 (Post Correspondence Problem). Let A = {a, b} be a binary alphabet,
and denote by A∗ the set of all finite words over A. Given a finite set of pairs of
words in A∗,

W = {(ui, vi) | ui, vi ∈ A∗, i = 1, 2, . . . , n},

does there exist a nonempty sequence i1, i2, . . . , ik of indices, where ij ∈ {1, 2, . . . , n}
for 1 ≤ j ≤ k, such that

ui1ui2 · · ·uik = vi1vi2 · · · vik ? (1)
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In the history of computability, the Post correspondence problem and its many
variants have played an important role as simply defined algorithmically undecid-
able problems that can be used to prove other undecidability results. Here we
concentrate on the undecidability proofs of the PCP itself.

A standard textbook proof of the undecidability of the PCP employs the halting
problem of the Turing machines as the base of the reduction; see e.g. [9], or the
construction by Claus [2] from the word problem of the semi-Thue systems, which
gives better undecidability bounds on the number of pairs in the sets. The integer
n = |W | in Problem 1 is said to be the size of the set W . The set W is called
an instance of the PCP. Recently, Neary [5] showed that the PCP is undecidable
for |W | = 5 using the (Post) tag systems that form a special class of Post normal
systems; see [6].

In his article [8], Post proved that the PCP is unsolvable, i.e., undecidable, by
a technical and nontrivial reduction from the assertion problem of the Post normal
systems. We shall give another proof by utilizing the same source.

There are several proofs of the PCP. The standard reductions from the Turing
machines, semi-Thue systems and tag systems to the PCP have a common leading
idea: An instance of the PCP is constructed so that any solution to the instance
is a (encoded) concatenation of the configurations required in the computation or
derivation of the original machine or system. This is not the case in Post’s original
proof. Indeed, he relies simply on the words in the rules of a derivation in a normal
system. A sequence of these words imply a required derivation in the normal system
if and only if the sequence is a solution of a particular instance of the PCP. The
new proof presented in this article is based on the idea in the standard type – a
solution exists to the constructed instance of the PCP if and only if the solution is
a concatenation of the full configurations required of the given Post normal system.

We note that, in Post’s definition, the PCP is defined for binary words. Actually,
the cardinality of the alphabet A is not relevant, since every instance of the PCP
with any alphabet size has an equivalent one in terms of binary words using an
injective encoding into binary alphabet {a, b}∗ from A∗. For example, if A =
{a1, a2, . . . , ak}, then ϕ defined by ϕ(ai) = aib is such an encoding. Note, however,
that the PCP is decidable for sets of pairs W over unary alphabet.

The structure of this article is the following: In Section 2, we present the ba-
sic notions, notations needed in this article. Especially, we introduce the normal
systems and present preliminary results on them. In Section 3 we present Post’s
construction, following Post’s original article, but also give some explanatory steps
for readability. In Section 4 we present our main contribution: another proof for
the undecidability of the Post Correspondence Problem using the same source of
undecidability as in Section 3 in the Post’s construction.

Short preliminary version of this article can be found in [3].
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2 Normal systems

Let A be a finite alphabet and denote by A∗ the set of all finite words over A
including the empty word ε. The length of a word u, i.e., the number of occurrences
of letters in u, is denoted by |u|. For words u and w, the word u is a prefix of w
if there exists a word v such that w = uv. If u is a prefix of w with w = uv, we
denote the suffix v also by u−1w.

For a word w ∈ A∗, if w = a1 · · · an−1an where ai ∈ A for all i = 1, . . . , n, then
the reverse of w is defined to be wR = anan−1 · · · a1.

The words u and v are (cyclic) conjugates if there exist words x and y such that
u = xy and v = yx.

We give a formal definition of a normal system instead of the bit informal one
used by Post in [8].

Let A = {a, b} be a binary alphabet, and let X be a variable ranging over the
words in A∗. A normal system S = (w,P ) consists of an initial word w ∈ A+ and
a finite set P of rules of the form αX 7→ Xβ, where α, β ∈ A∗. We say that a word
v is a successor of a word u, if there is a rule αX 7→ Xβ in P such that u = αu′

and v = u′β. We denote this by u → v. Let →∗ be the reflexive and transitive
closure of→. Then u→∗ v holds if and only if u = v or there is a finite sequence of
words u = v1, v2, . . . , vn = v such that vi → vi+1 for i = 1, 2, . . . , n − 1. A normal
system is a special case of the Post canonical system for which Post proved in 1943
the Normal-Form Theorem; see [6]. On the other hand, the tag systems mentioned
in the introduction are a special class of the normal systems that have a constant
length left for rule words α; see [6].

The assertion of a normal system S = (w,P ) is the set

AS = {v ∈ A∗ | w →∗ v} . (2)

Problem 2 (Assertion Problem). Given a normal system S = (w,P ) and a word
u, does u ∈ AS hold?

The following result is crucial for the construction presented in this article, but
the reference for it is a bit peculiar: in footnote 2 of [8], Post gives citation to his
paper [7] for an informal proof and to Church [1] for a formal proof, but with a
comment that a verification of the recursiveness of the reduction is needed and then
he gives guidelines for missing details on the footnote.

Proposition 1. The assertion problem for normal systems is undecidable.

Actually, the problem remains undecidable even if we assume that in each rule
αX 7→ Xβ in P the words α and β are non-empty; see Post [8], footnote 3. A
normal system with non-empty rule words is called a standard normal system in
the literature. Therefore, we can assume in the following that the normal systems
are standard. This assumption is indeed crucial when we construct instances of the
PCP from the normal systems in Sections 3 and 4.
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3 Undecidability of the PCP by Emil Post

In this section we present the original proof and construction of Emil Post in [8].
Occasionally we use more modern terminology instead of Post’s original terms.

Let u ∈ AS , where S = (w,P ). As the assertion problem is trivial for the case
u = w, we assume that u 6= w. Therefore, there exists a sequence

w = α1x1, x1β1 = α2x2, . . . , xk−1βk−1 = αkxk, xkβk = u , (3)

where αiX → Xβi is a rule for each i with xj ∈ A∗ for all j. The idea in Post’s
proof is to present the set of equations in (3) as a single equation in the form of a
word equality (1).

Consider the word wβ1β2 · · ·βk obtained from (3). Using the equations in (3),
we obtain, for each j = 1, 2, . . . , k,

wβ1β2 · · ·βj−1 = α1α2 · · ·αjxj , (4)

and finally
wβ1β2 · · ·βk = α1α2 · · ·αku . (5)

By (4), we have, for each j = 1, 2, . . . , k,

|wβ1β2 · · ·βj−1| ≥ |α1α2 · · ·αj | . (6)

So we have shown that the derivation sequence (3) implies (4), which further implies
(5) together with the inequalities (6). Actually, u ∈ AS , that is, existence of a
sequence (3) is indeed equivalent to the join of (5) and (6). For this we need to
prove the above implications in the opposite direction.

First, we show that the join of the equalities (5) and (6) imply the equations
in (4). For this it suffices to choose

xj = (α1α2 · · ·αj)−1(wβ1β2 · · ·βj−1)

for all j.
Furthermore, for the equations in (3), we obtain, for all 1 ≤ j ≤ k,

αj+1xj+1 = αj+1(α1α2 · · ·αj+1)−1(wβ1β2 · · ·βj)
= (α1α2 · · ·αj)−1(wβ1β2 · · ·βj−1)βj = xjβj ,

and we have the equations in (3) except the first and the last ones. The first one
is obtained directly from (4) by setting j = 1. Also, the last one will follow, since

α1α2 · · ·αkxkβk = wβ1β2 · · ·βk−1βk = α1α2 · · ·αku .

We have proved that (5) and (6) are satisfied if and only if the equations in (3) are
satisfied, i.e., (5) and (6) are equivalent to the condition u ∈ AS .

Finally, we need to get rid of the extra condition (6). This is done by construct-
ing a new normal system S1, where (5) implies (6), and uc ∈ AS1 if and only if
uR ∈ AS holds, where c is a new letter introduced below.
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For this, let first S′ = (wR, P ′), where

P ′ =
{
XαR 7→ βRX | αX 7→ Xβ ∈ P

}
.

Strictly speaking the system S′ is not normal. It is a ‘dual’ of a normal system.
However, we can still write u ∈ As if and only if uR ∈ AS′ . Next we design a
system S′′ = (wRc, P ′′), where c is a new letter. Let

P ′′ =
{
XαRc 7→ βRXc | αX 7→ Xβ ∈ P

}
.

It is immediate that uR ∈ AS′ if and only if uRc ∈ AS′′ . Obviously, S′′ is even less
normal as the letter c is kept constantly in the end of the words of the derivations.

Finally, let S1 = (wRc, P1) be the normal system, where

P1 =
{
αRcX 7→ XcβR | αX 7→ Xβ ∈ P

}
∪ {yX 7→ Xy | y ∈ {a, b, c}} .

Notice that the rules yX 7→ Xy for y ∈ {a, b, c} imply that any sequence can
be transformed to its conjugates. Therefore, if a rule is applied in S′′, then the
corresponding rule can be applied in S1, since in the rules in P1 the left hand sides
are conjugates of the left hand sides of the rules in P ′′ and the right hand sides are
conjugates of the right hand sides of the corresponding rules in P ′′. Let

Cv = {w | w is a conjugate of v}

called the conjugacy class of the word v.
Then we have

AS1
= AS′′ ∪

⋃
v∈AS′′

Cv = (AS′)Rc ∪
⋃

v∈AS′

CvRc = (AS)
R
c ∪

⋃
v∈AS

CvRc =
⋃
v∈AS

CvRc .

To verify the above equality of sets, assume u ∈ AS1
. Denote by x

C→ y if y ∈ Cx.
For u, there exist a sequence of words and successors

wRc
C→ αR1 cx1, x1cβ

R
1
C→ αR2 cx2, x2cβ

R
2
C→ αR3 cx3, . . . ,

xn−1cβ
R
n−1

C→ αRn cxn, xncβ
R
n
C→ u ,

(7)

where αRcX 7→ XcβRn are in P1 and
C→ part are done with rules yX 7→ Xy in S1.

Using cyclic shifts for all words in sequence (7) so that the special symbol c is the

right most symbol of the word makes
C→ to be equality, and we get that there exists

a sequence

wRc = x1α
R
1 c, βR1 x1c = x2α

R
2 c, βR2 x2c = x3α

R
3 c, . . . ,

βRn−1xn−1c = xnα
R
n c, βRn xnc

C→ u .

Now cancelling the letters c, taking reverse of all words and using the equality
(xy)R = yRxR, we have the sequence

w = (wR)R = (x1α
R
1 )R = α1x

R
1 , xR1 β1 = (βR1 x1)R = (x2α

R
2 )R = α2x

R
2 , . . . ,

xRn−1βn−1 = (βRn−1xn−1)R = (xnα
R
n )R = αnx

R
n , xRnβn = v,



618 Vesa Halava and Tero Harju

for a word v with vc
C→ uR. We have proved that u ∈ AS1

implies uR ∈ Cvc for
a word v ∈ AS . We note that uR ∈ Cvc is equivalent to u ∈ CvRc. As the above
verification works also in the other direction, we have proved that

AS1
=
⋃
v∈AS

CvRc.

Denote the rules of P1 in the form γX 7→ Xδ. As in the above for the system
S, we obtain that if uRc ∈ AS1

then

wRcδ1δ2 · · · δk = γ1γ2 · · · γkuRc , (8)

where γiX 7→ Xδi ∈ P1 for each i. We shall prove that in S1 the condition (8)
implies the condition

|wRcδ1δ2 · · · δj−1| ≥ |γ1γ2 · · · γj | , (9)

for all j = 1, 2, . . . , k.
Assume contrary to the claim that there is a solution to (8) such that for some s,

|wRcδ1δ2 · · · δs−1| < |γ1γ2 · · · γs| ,

and let v be a nonempty word in {a, b, c}∗ such that

wRcδ1δ2 · · · δs−1v = γ1γ2 · · · γs . (10)

Now for each rule γiX 7→ Xδi of P1, either both sides contain one c or neither of
them contains c. Therefore if γs contains no occurrences of c then the left hand
side of (10) would have at least one more occurrence of c than the right hand side;
a contradiction. If c occurs in γs, then c is necessarily the last letter of γs and v
would also end with c, and again the left hand side has more occurrences of the
letter c than the right hand side; again a contradiction.

Therefore we have shown that u ∈ As if and only if uRc ∈ AS1
, which holds if

and only if there exist rules γiX 7→ Xδi ∈ P1 for i = 1, . . . , k with

wRcδ1δ2 · · · δk = γ1γ2 · · · γkuRc . (11)

We then begin by the equation (11), and use the technique which is nowadays
called desynchronization. Let d be a new symbol absent in S1 and define a mapping
`d : {a, b, c} → {a, b, c, d} which writes the letter d before (to the left hand side of)
every letter in a word, and define rd similarly writing d to the right hand side of
every letter. The mappings `d and rd extend to morphisms in the natural manner.
They are called desynchronizing morphisms. Now from equation (11), we obtain

d`d
(
wRcδ1δ2 · · · δk

)
dd = ddrd

(
γ1γ2 · · · γkuRc

)
d , (12)

where both sides begin and end with a double dd, and elsewhere d is between all
pairs of letters from {a, b, c}. We let

W = {(`d(γ), rd(δ)) | γX 7→ Xδ ∈ P1} ∪
{

(d`d(w
Rc), dd), (dd, rd(u

Rc)d)
}

(13)
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be an instance of the PCP. It is straightforward that if u ∈ AS , then the instance W
has a solution. We note that the assumption that the normal system S is standard,
i.e., the rule words are non-empty, is needed at this point to guarantee that the
desynchronization works properly.

What is left is to show is the converse: if W has a solution, then u ∈ AS . For
this, assume that W has a solution, and choose a minimal solution, i.e. a solution
that does not contain any solutions as a proper prefix. It is immediate that if W
has a solution, it has a minimal solution.

Obviously, a solution must begin with the pair (d`d(w
Rc), dd) as that is the

only pair having a common nonempty prefix. Similarly, a solution must end with
the pair (dd, rd(u

Rc)d), since that is the only pair in W with a common nonempty
suffix. On the other hand, these two special pairs with occurrences of the word
dd cannot appear in the middle of any minimal solution as dd can be covered only
by these two pair. Therefore, if i1, . . . , ik is a minimal solution to the instance W ,
then

ui1ui2 · · ·uik = vi1vi2 · · · vik with (uij , vij ) ∈W for j = 1, . . . , k ,

then (ui1 , vi1) = (d`d(w
Rc), dd), (uik , vik) = (dd, rd(u

Rc)d) and

(uij , vij ) = (`d(γj), rd(δj)) and γjX 7→ Xδj ∈ P1 ,

for j = 2, . . . , k−1. It follows that the minimal solution corresponds to the equation
(12) which implies that u ∈ As.

By Proposition 1, we have

Theorem 3. The PCP is undecidable.

Recall that {a, b, c, d}∗ can be embedded into {a, b}∗ by an injective morphisms.
In this way we obtain instances in the binary alphabet as originally considered by
Post.

Actually, Post proved the undecidability of a special form of the PCP, called
the generalized PCP in the literature; see for example [4].

Theorem 4. It is undecidable for given set of pairs {(ui, vi) | 1 ≤ i ≤ n} of words
whether or not there exist a sequence i1, i2, . . . , ik such that

u1ui1 · · ·uikkun = v1vi1 · · · vikvn . (14)

Note that in Theorem 4 the first pair and the last pair of the required solution
are fixed in (14) to be (u1, v1) and (un, vn), respectively. In W constructed in (13),
(u1, v1) = (d`d(w

Rc), dd) and (un, vn) = (dd, rd(u
Rc)d). Note also that in (14) we

could assume that, ij /∈ {1, n} for all j = 1, . . . , k.

4 Another proof for the PCP from the normal sys-
tems

In this section we give a new proof for the undecidability of the PCP by a reduction
to the assertion problem of the normal systems, i.e., we show that if the PCP
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is decidable, then the assertion problem of the normal systems is also decidable,
contradicting Proposition 1. For this, we take an arbitrary (non-trivial) instance of
the assertion problem, that is, normal system S = (w,P ) and word u with u 6= w,
and construct an instance WS,u of the PCP such that WS,u has a solution if and
only if u ∈ AS .

The present proof takes a modern approach of connecting the configurations of
a derivation in the normal systems to a solution of the PCP – instead of the rule
words used by PCP as was done in the original proof by Post in Section 3.

Let S = (w,P ) be a normal system over the binary alphabet {a, b} where
P = {p1, . . . , pt} and pj = αjX 7→ Xβj for j = 1, . . . , t. As Post did, we begin with
the sequence (3), but use different indices: we assume that there exists a sequence
of equalities

w = αi1x1, x1βi1 = αi2x2, . . . , xk−1βik−1
= αikxk, xkβik = u , (15)

for the input word u where αijX 7→ Xβij ∈ P for j = 1, . . . , k. Instead of the
equations (5) and (6), we take

wx1βi1x2βi2 · · ·xkβik = αi1x1αi2x2 · · ·αikxku, (16)

where the configurations in (15) are concatenated – left hand sides on the left and
right hand sides on the right.

Let c and f be new letters. We split each rule pj ∈ P to two pairs pαj and pβj
as follows:

pαj = (`d(c
jf), rd(fαj)) and pβj = (`d(βj), rd(c

j)),

where rd and `d are the desynchronizing mappings for the letter d. The word cjf
is a marker word that forces a solution of the (the below) instance of the PCP to
choose the pairs jointly. Consider the following instance of the PCP:

W ={(d`d(fw), dd), (dd, rd(fu)d), (da, ad), (db, bd)}

∪ {pαj , p
β
j | j = 1, . . . , t}.

(17)

To see the idea encoded in W , let us first assume that W has a solution. A solution
must necessarily begin with the pair (d`d(fw), dd) that we now write in the form

L: d`d(fw)

R: dd

In order to produce rd(fw) to the right hand side, we need to use a pair which has
f as a first symbol on the right hand side. As the pair (dd, rd(fu)d) produces dd to
the end of left hand side, which then has to match with dd produced by the right
hand side, we must have

d`d(fw) · dd = dd · rd(fu)d,
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implying w = u. In a non-trivial case of the assertion problem, u 6= w, for producing
rd(fw) to the right hand side, there must exist a pair pαi1 = (`d(c

i1f), rd(fαi1)) in
W with w = αi1x1. After this we have

L: d`d(fwc
i1f)

R: ddrd(fαi1)

Now the first occurrence of the letter c forces the use of the pairs (da, ad), (db, bd) ∈
W in order to have x1 and cover the start word w of the left hand side. So now we
have

L: d`d(fwc
i1fx1)

R: ddrd(fαi1x1)

Next to match ci1 , we must chose the other half of the rule Pi1 , i.e., the pair

pβi1 = (`d(βi1), rd(c
i1)). We then have

L: d`d(fwc
i1fx1βi1)

R: ddrd(fαi1x1c
i1).

In other words, after forgetting the synchronizing letters d, the left hand side has
the overflow fx1βi1 . As above, the occurrence of f forces to chose the rule pαi2 , then

write xi2 and the other half of the rule pi2 , the pair pβi2 etc. Therefore, at some
point we must have

L: d`d(fwc
i1fx1βi1c

i2f · · · fxt−1βit−1c
itfxtβit)

R: ddrd(fαi1x1c
i1fαi2x2c

i2f · · · fαitxtcit)
(18)

with each w, u, xij , αij and βij satisfying (15) up to index t ≥ 2. Note that

d`d(fwc
i1fx1βi1c

i2f · · · fxt−1βit−1
cit)d = ddrd(fαi1x1c

i1fαi2x2c
i2f · · · fαitxtcit).

A minimal solution in W must end with pair (dd, rd(fu)d) in order to match the
d’s in the solution. As rd(fu)d begin with f and has no c’s, and left hand side has
one more f than the right hand side in (18), the pair (dd, rd(fu)d) has to match
fxtβit in (18). Therefore, at some point t = k in (15) and (16) with xkβik = u and

d`d(fwc
i1fx1βi1c

i2f · · · cikfxkβik)dd

=ddrd(fαi1x1c
i1fαi2x2c

i2f · · ·αikxkcikfu)d.

The other direction is clear: Suppose u ∈ AS . Then there exists a sequence of
equations (15) satisfying (16). We start with (16), and place symbols f and words
ci accordingly using the equations in (15). Then we get

fwci1fx1βi1c
i2f · · · cikfxkβik = fαi1x1c

i1fαi2x2c
i2f · · ·αikxkcikfu.
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Now placing dd to both ends and d between the letters a, b, c, f , we obtain

d`d(fwc
i1fx1βi1c

i2f · · · cikfxkβik)dd

= ddrd(fαi1x1c
i1fαi2x2c

i2f · · ·αikxkcikfu)d .
(19)

What is left is to show that the words in (19) can be build with pairs of W ,
correspondingly. For this, for a word x ∈ {a, b}∗, x = e1 · · · en and ei ∈ {a, b},
denote by x̄ the sequence of pairs (de1, e1d), . . . , (den, end) from W . The idea is
that the sequence x̄ writes `d(x) to the left hand side and rd(x) to the right hand
side in a solution. Let Z be the following sequence of pairs of W ,

(d`d(fw), dd), pαi1 , x̄1, p
β
i1
, pαi2 , x̄2, p

β
i2
, . . . , pαik , x̄k, p

β
ik
, (dd, rd(fu)d).

Now, Z is a solution of the PCP, as

d`d(fw)`d(c
i1f)`d(x1)`d(βi1)`d(c

i2f) · · · `d(cikf)`d(xk)`d(βik)dd

= d`d(fwc
i1fx1βi1c

i2f · · · cikfxkβik)dd

= ddrd(fαi1x1c
i1fαi2x2c

i2f · · ·αikxkcikfu)d

= ddrd(fαi1)rd(x1)rd(c
i1)rd(fαi2)rd(x2) · · · rd(fαik)rd(xk)rd(c

ik)rd(fu)d ,

(20)

where the first and the last words are the left hand and the right hand sides (respec-
tively) of words in pairs in Z catenated correspondingly. This implies the existence
of a solution of the PCP for the set W when u ∈ AS . Therefore, the PCP is
undecidable.

5 Conclusion

A shorter and bit simpler proof for the undecidability of the PCP was given using
the same source of undecidability, the Post normal systems, as in the original proof
by Post. We are in no doubt that the present proof could have been found by Emil
Post as well, but as a true pioneer of the field of computability he immediately
would have noticed the following deficiency of the construction: when considering
the size of an instance as constructed in the proof, Post’s original construction
gives an instance of size |P | + 5, but our new construction gives an instance of
size 2|P |+ 4. As the undecidable problem in the normal system, the cardinality of
P must be at least two, we realize that Post’s proof gives a better bound for the
undecidability.
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