
Chapter 1

Obfuscation and Diversification for
Securing Cloud Computing

1

Shohreh Hosseinzadeh, Samuel Laurén, Sampsa
Rauti, Sami Hyrynsalmi, Mauro Conti, Ville
Leppänen

May 24, 2016

Springer

Contents

1 Obfuscation and Diversification for Securing Cloud
Computing . 1
1.1 Introduction . 4
1.2 Security and privacy in cloud computing 5

1.2.1 Application security in cloud computing 8
1.3 Obfuscation and diversification for securing cloud computing . 10

1.3.1 Related work on security of cloud through obfuscation
and diversification . 12

1.4 Enhancing the security of cloud computing using obfuscation
and diversification . 18
1.4.1 Motivation behind our idea . 18
1.4.2 Threat model . 19
1.4.3 Our proposed approach . 20
1.4.4 Choice of application . 21
1.4.5 Implementation . 22
1.4.6 Limitations of the approach . 22

1.5 Conclusion . 24
References . 25

Abstract The evolution of cloud computing and advancement of its services
has motivated the organizations and enterprises to move towards the cloud,
in order to provide their services to their customers, with greater ease and
higher efficiency. Utilizing the cloud-based services, on one hand has brought
along numerous compelling benefits and, on the other hand, has raised con-
cerns regarding the security and privacy of the data on the cloud, which is still
an ongoing challenge. In this regard, there has been a large body of research
on improving the security and privacy in cloud computing. In this chapter,
we first study the status of security and privacy in cloud computing. Then
among all the existing security techniques, we narrow our focus on obfusca-
tion and diversification techniques. We present the state-of-the-art review in
this field of study, how these two techniques have been used in cloud com-
puting to improve security. Finally, we propose an approach that uses these

3

4 Contents

two techniques with the aim of improving the security in cloud computing
environment and preserve the privacy of its users.
Keywords: cloud computing, enterprise security, security, privacy, obfusca-
tion, diversification

1.1 Introduction

The recent changes in the business world have made the organizations and
enterprises more interested in using cloud to share their services and resources
remotely to their users. For this purpose, cloud computing offers three differ-
ent models (Mell and Grance, 2011): Software as a service (SaaS), Platform
as a service (PaaS), and Infrastructure as a service (IaaS). In IaaS model the
services that are offered by the service provider include computing resources,
storage, and virtual machines. The PaaS model presents computing platforms
to the business and its end users. In SaaS, the main services offered by the
service providers are the applications that are hosted and executed on the
cloud and are available to the customers through the network, typically over
the Internet. Depending on the need of the enterprise, a suitable delivery
model is deployed.

The advancements in the cloud computing have facilitated the business,
organizations, and enterprises with services providing lower cost and higher
performance, scalability, and availability. Due to these advantages, cloud com-
puting has become a highly demanded technology and organizations are rely-
ing on cloud services more and more. However, by using the cloud, more data
is stored outside the organization’s perimeters, which raises concerns about
the security and privacy of the data. Therefore, it is significant for the cloud
service providers to employ effective practices to secure the cloud computing
infrastructure and preserve the privacy of its users. In the context of the
cloud computing security, there exist many different measures that protect
the cloud infrastructure. Some of these measures consider the cloud as an un-
trusted or malicious infrastructure that the user’s data should be protected
from (e.g., the cloud uses the data without the user’s consent). While some
other measures protect the infrastructure from the external intrusions.

Obfuscation and diversification are two propitious software security tech-
niques that have been employed in various domains, mainly to impede mal-
ware (i.e., malicious software) (Skoudis, 2004). These techniques have also
been used to provide security in cloud computing as well. In a previous work1,
we have systematically surveyed the studies that use obfuscation and diversifi-
cation techniques with the aim of improving the security in cloud computing
environment (see the details of this study in Section 1.3.1). By analyzing
the collected data, we managed to identify the areas that have gained more

1 This book chapter is a re-written extended version of our previous study (Hosseinzadeh

et al., 2015)

1.2 Security and privacy in cloud computing 5

attention by the previous research, and also the areas that have remained
intact and potential for further research. The results of the survey motivated
us to propose a diversification approach, aiming at improving the security
in cloud computing. We demonstrate this approach by applying obfuscation
on client-side JavaScript components of an application. As such, we make
it complicated for a piece of malware to gain knowledge about the internal
structure of the application and perform its malicious attack. Moreover, we
distribute unique versions of the application to the computers, which in the
end mitigates the risk of massive-scale attacks (more detail in Section 1.4).

This book chapter is structured as follows: Section 1.2 discusses the secu-
rity and privacy in domain of cloud computing. The available security threats
and different aspects of security, concerning the cloud computing technology.
In Section 1.3 we introduce the terms and techniques that are used in the pro-
posed approach, and we present the state of this field of study, i.e., how these
techniques have previously been used to boost the security of cloud comput-
ing. In Section 1.4, we present our proposed approach in detail. Conclusions
come in Section 1.5.

1.2 Security and privacy in cloud computing

Cloud computing is an evolving technology with new capabilities and services
that have remarkable benefits when compared to more traditional service
providing approaches. The services are delivered with lower cost (in usage
as it is pay-for-use, in disaster recovery, in data storage solutions), greater
ease, less complexity, higher availability and scalability, and also faster de-
ployment. These compelling benefits have motivated the enterprises to adopt
cloud solutions in their architectures and deliver their services over cloud.
Depending on the need of the enterprise and how large the organization is,
different deployment models are available, including public clouds, private
clouds, community cloud, and hybrid clouds (Mell and Grance, 2011; Mather
et al., 2009). Again, depending on the need of the enterprise, cloud providers
offer three different delivery models, i.e., SaaS, IaaS, and PaaS. In the fol-
lowing, we discuss various deployment models, and various business models
in cloud computing (CSA, 2016).

In a public cloud (or external cloud), a third party vendor is responsible for
hosting, operating, and managing the cloud. A common infrastructure is used
to serve multiple customers, which means that the customers are not required
to acquire for any software, hardware, and network devices. This makes the
public cloud a suitable model for the enterprises that wish to invest less and
manage the costs efficiently. The security in a public cloud is managed by
the third party, which leaves less control for the organization and its users
over the security (Rhoton et al., 2013). A kind of opposite solution to that
is private cloud (or internal cloud), where the organization’s customers are

6 Contents

in charge of managing the cloud. The storage, computing, and network are
dedicated to the organization owning the cloud, and not shared with other
organizations. This enables the customers to have a higher control on security
management and have more insight about logical and physical aspects of the
cloud infrastructure. Community cloud refers to the type of clouds that are
used exclusively by a community of customers from enterprises with common
requirements and concerns (e.g., policies, security requirements, and compli-
ance considerations). The last model is hybrid cloud that is the composition
of several clouds (private, public, and community). According to the needs
and budget of the enterprise and how critical its resources are, a suitable de-
ployment model is chosen that can serve the enterprise’s needs the best. For
instance, an enterprise pays more for private cloud and has better security
control over its shared resources, while it spends less on a public cloud for
which it has less security control (CSA, 2016; Mather et al., 2009).

As mentioned before, cloud service providers use three different business
models to deliver their services to the end users: IaaS, PaaS, and SaaS. IaaS
is the foundation of the cloud, PaaS comes on top of that, and SaaS is built
upon PaaS. Each of these delivery models has different security issues, and is
prone to different types of security threats, and therefore, it requires different
levels of security.

The IaaS service model offers capabilities such as storage, processing, net-
works, and computing resources to the consumers. The end user does not
manage the underlying infrastructure of the cloud, but has control over ap-
plications, operating system and storage. IaaS has made it a lot easier for the
enterprises to deliver their services, in a way that they no longer worry about
provisioning and managing the infrastructure and dealing with the underly-
ing complexities. In addition to that, it has made it cheaper for businesses,
in a way that instead of paying for the data centers and hosting companies,
they only need to spend for the resources they consume to IaaS providers
(Mell and Grance, 2011; Mather et al., 2009).

The PaaS model is built upon IaaS and offers a development environment
to the developers to develop their applications, without worrying about the
underlying infrastructure. The offered services consist of a complete set of
software development kit, ranging from design to testing and maintenance.
The consumers of this model do not have control on the beneath services (e.g.
the operating system, server, network, and the storage), but they can manage
the application-hosting environment (Mell and Grance, 2011; Mather et al.,
2009). The dark side of these advantages is that the PaaS infrastructure can
also be used by a hacker to malicious purposes (e.g., running the malware
codes and commands).

In the SaaS model, the service providers host the applications remotely
and make them available to the users, when requested, over the Internet.
SaaS is an advantageous model for the IT enterprises and their customers, as
it is more cost-effective and has better operational efficiency. However, there
are still concerns about the security of the data store and software, which the

1.2 Security and privacy in cloud computing 7

vendors are required to address them (Mell and Grance, 2011; Mather et al.,
2009).

In addition to these three main service delivery models, the cloud offers
other models and the infrastructure is utilized these days for many other
purposes, such as Security-as-a-Service (SECaaS). Using this service model,
many security vendors deliver their security solutions using cloud services.
That is to say, the security management services are outsourced to an ex-
ternal service provider, and delivered to the users over the Internet. SECaaS
applications can be in the form of anti-virus, anti-spam, and malware de-
tection programs. The programs operate on the cloud, instead of client-side
installed software, and with no need for on-premises hardware (Varadharajan
and Tupakula, 2014)

Employing cloud services by an enterprise is a two-edged sword, meaning
that it has both positive and negative impacts. On one hand, by outsourc-
ing and shifting some responsibilities from the enterprise to the cloud, fewer
unwanted incidents are expected to occur. This is due to the fact that the
cloud providers have a more advanced and experienced position in offering
more secure services that are supported by their specialized staff, and also
there are incident management plans for the case of break outs. However,
this transferring of the responsibilities, on the other hand, decreases the con-
trol of the enterprise over the critical services. In addition to that, storing
the data outside the organization’s firewalls raises concerns about potential
vulnerabilities and possible leaks. For instance, if the information fall into
wrong hands (e.g., exposed to hackers or competitors), it results in loss of
customer’s confidence, damage to the organization’s reputation, and even le-
gal and financial penalties for the organization. On this basis, enterprises that
are planning to adopt cloud services put together the positive and negative
impacts, weigh them up, and do risk assessment (Rhoton et al., 2013).

In spite of the benefits of adopting cloud-based services in the enterprises,
there exist still some barriers. Among all, security and privacy are the most
significant barriers. The fundamental challenges related to the cloud security
are the security of the data storage, security in data transmission, application
security, and security of the third party resources (Subashini and Kavitha,
2011). Among all the security risks associated with the cloud, the followings
are the top severe security threats reported by the Cloud Security Alliance
(CSA) (Top Threats Working Group, 2013):

• Data breach: As a result of a malicious intrusion the (sensitive) data may
be disclosed to unwanted parties, including the attacker and competitors.

• Data loss: The data stored on the cloud could be lost due to an attack,
unintentional/accidental deletion of the data by the service provider, and
physical corruption of the system infrastructure.

• Hijacking of the accounts and traffic: Attackers by getting access to the
users’ credentials, through phishing and exploiting the software vulnera-
bilities can read or alter the users’ activities. This consequently puts the
confidentiality, integrity, and availability of the system at risk.

8 Contents

• Insecure Application Program Interfaces (API): Clients use the SW inter-
faces to interact with the cloud. These APIs should be sufficiently secure
to protect both the consumer and the service provider.

• Denial of service: An intruder by sending illegitimate requests to the service
provider attempts to occupy the resources, so to disable/slow down the
cloud to process the legitimate requests.

• Malicious insider: The adversary is not always an outsider, but can be a
person inside the cloud system who has an authorized access to the data
and intentionally misuses such authorization.

• Abuse of the cloud service: The cloud computing serves the organizations
with extensive computational power; however, this power could be misused
by a malicious user to perform his belligerent action.

• Insufficient due diligence: Before the organizations move their services to
the cloud, it is significant to have a proper understanding of the capabilities
and adaptabilities of their resources with the cloud technologies.

• Shared technology issues: Sharing platforms, infrastructures, and applica-
tions has made the delivery of the cloud services feasible; however, such
sharing has the drawback that vulnerability in a single piece of shared
component can be propagated potentially to the entire cloud.

In securing the cloud computing environment various aspects should be
taken into account. The International Information Systems Security Certi-
fication Consortium (ISC)2 (ISC, 2016) has presented taxonomy of the se-
curity domains concerning the cloud computing, which covers the following
aspects: physical security, access control, telecommunications and network
security, cryptography, application security, operation security, information
security and risk management practices, and business continuity and disaster
recovery planning.

Security and privacy come hand in hand, in other words, a more secure
system better protects the privacy of its users. Therefore, while integrating
cloud in organization’s architecture, it is highly significant for the enterprise
to assure that a cloud service provider is considering all the security aspects,
and adequately addressing the privacy regulations.

Considering the fact that the proposed approach in this study is aimed
at securing the application, and protecting SaaS and PaaS models, in the
following section we study the state of cloud application security.

1.2.1 Application security in cloud computing

Talking about the IaaS model, it is more straightforward to provide protec-
tion by hardening the platform through allowing the traffic from trusted IP
addresses, running anti-virus programs, applying security patches, and so on.
However, when it comes to PaaS and SaaS models, this may not be the case;

1.2 Security and privacy in cloud computing 9

since in these models, ensuring the security of the platform is the service
provider’s responsibility (Rhoton et al., 2013). Moreover, in SaaS, there is
less transparency and visibility about how the data is stored and secured.
This makes it more difficult for the enterprises to trust the service provider.

Application security covers the measures and practices taken throughout
the software development life-cycle to reduce the vulnerabilities and flaws.
Because of the fact that the cloud-base applications are connected directly
to the Internet, cloud offers less physical security compared to traditional
data centers and service providers. Also because of the co-mingled data and
multi-tenancy behavior of the cloud, the cloud’s applications are prone to
additional attack vectors.

Recent security incidents clearly show that the exploits by taking advan-
tage of the software flaws and vulnerabilities, make the web applications
the leading targets for attacks. Web applications are the simplest and the
most profitable targets, from the attackers’ perspective. Especially, in the
case of cloud computing that the applications are accessed through the user’s
browser, website security is the sole means to impede the attacks. Moreover,
the security breaches through exploiting the applications and web services
have shown to be pretty severe and have lead to big losses. Stuxnet (Chen
and Abu-Nimeh, 2011) is one example of infecting the software with the aim
of affecting critical physical infrastructures and industrial control systems.
The other example is using SQL injection to steal the debit/credit card num-
bers, which in the end resulted in $1 million withdrawals from the ATM
machines worldwide (CSA, 2016).

In spite of the significance of the application security, it has been con-
sidered as an afterthought in many enterprises. In other words, application
security has seldom been the top priority and the main focus for neither the
security practitioners and nor the enterprises and less security budget has
been allocated on it (CSA, 2016).

On this basis, more consideration is required both from the business side
by shifting more budget to application security and also from the security
team to concentrate more on securing the web applications, the most exposed
component of the business.

As in other domains, application security in cloud computing is a crucial
component in operational IT strategy. Regardless of where an application
is residing, the enterprise is responsible for ensuring the effectiveness of the
security practices to protect the application. Also, as we discussed earlier, the
nature of cloud computing environment introduces additional risks compared
to on-premise applications and web services.

10 Contents

1.3 Obfuscation and diversification for securing cloud
computing

Code obfuscation refers to the deliberate act of scrambling the program’s
code and transforming it in a way that it becomes harder to read (Coll-
berg et al., 1997). This new version of the code is functionally similar to the
original code, while syntactically different. This means that even though the
obfuscated code has different implementation, given the same input, it pro-
duces the same output. The main purpose of code obfuscation is to make the
understanding of code and its functionality more complicated and to prevent
the act of malicious reverse engineering.

Fig. 1.1 a) a piece of JavaScript code, and b) an obfuscated version of the same code

Figure 1.1 is an example of obfuscated code that clearly shows how much
harder it can become to read and comprehend the code after it is obfuscated.
With no doubt, within a given time an attacker may succeed in reverse engi-
neering the obfuscated code and breaking it: however, it is harder and costlier
now, compared to the original code.

In the literature, many different obfuscation mechanisms have been pro-
posed (Popov et al., 2007; Linn and Debray, 2003). Each of these mecha-
nisms targets various parts of the code to apply the obfuscation transforma-
tion. Among all, the techniques that attempt to obfuscate the control of the
program (Nagra and Collberg, 2009), are the most commonly used. These
techniques alter the control flow of the program, or generate a fake one, so it
would be more challenging for a malicious analyzer to understand the code.
To this end, bogus insertion (Drape and Majumdar, 2007), and opaque pred-
icates (Collberg et al., 1998) are effective control flow obfuscation techniques.

Software diversification aims at generating unique instances of software
in a way that they appear with different syntax but equivalent functionality
(Cohen, 1993). Diversification breaks the idea of developing and distributing
the software in a monoculture manner, and introduces multiculturalism to
software design. In the other words, the identical designs of the software in-

1.3 Obfuscation and diversification for securing cloud computing 11

stances make them have similar vulnerabilities and are prone to similar types
of security threats. This offers the opportunity to an attacker to design an
attack model to exploit those vulnerabilities and easily compromise a wide
number of execution platforms (e.g., computers). The risk of this kind of
massive-scale attacks can be mitigated through diversifying the software ver-
sions, so that the same attack model will not be effectual on all instances. The
way a program is diversified is kept secret and pieces of malware that do not
know the secret cannot interact with the environment and eventually become
ineffective. However, the created secret has to be propagated to the trusted
applications, so it will still be feasible for them to access the resources. In the
worst case scenario, even if the attacker gains the secret of diversification of
one instance, that secret is specified to that computer and a costly analysis is
required to find out other secrets to attack other computers. There has been
survey studies surveying software diversity (Larsen et al., 2014; Baudry and
Monperrus, 2015)

A particular version of diversification is interface diversification which is
applied to internal interfaces of software (APIs or instruction sets of lan-
guages). For example, the system call interface (for accessing all kinds of
resources of a system) is one typical internal interface which can be changed
without sharing the details of new internal interface to external parties (e.g.
malware) (Rauti et al., 2014). Of course, the details on diversified internal in-
terface need to be propagated to all legal applications so that those programs
can still use the system’s resources (Laurén et al., 2014).

Figure 1.2 illustrates distribution of diversified versions of program P
among the users. Each of the programs P1, P2, and P3 are unique in struc-
ture and diversified differently. Thus, one single attack model does not work
for multiple systems, and attack models need to be designed to be system-
specific. When program P3 is attacked, other versions are still safe.

Fig. 1.2 Diversification generates unique versions of software. Therefore, even if one copy

of software is breached, other copies are safe.

12 Contents

Program bugs left at the development time are inevitable and cause soft-
ware vulnerabilities. Some of these vulnerabilities are not known, while re-
leasing the software. Later on, a malicious person can gain knowledge about
the system and its vulnerabilities, and write a piece of malware to exploit
those vulnerabilities performing a successful attack. Especially, the interface
diversification techniques can be helpful in preventing such zero day type of
attacks, since the malicious person no longer automatically know the neces-
sary (for malware) internal interfaces for accessing resources.

In general, diversification and obfuscation techniques do not attempt to
remove these vulnerabilities, but attempt to prevent (or make it hard, at
least) the attacker/malware to taking advantage of them to run its malicious
code. Obfuscating and diversifying the internal interfaces of the system makes
it challenging for malware to attain the required knowledge about the system,
how to call the systems interfaces, in order to execute its malicious code.

1.3.1 Related work on security of cloud through
obfuscation and diversification

As mentioned before, diversification and obfuscation techniques have been
used in different domains to provide security, including cloud computing. In
a previous study (Hosseinzadeh et al., 2015), we systematically studies in
what ways these two techniques have been used in cloud computing envi-
ronment with the aim of improving the security. As the result of the search,
we collected 43 studies that were discussing diversification and obfuscation
as the techniques for improving the security in the cloud and protect the
privacy of its users, and we classified them based on how the techniques
are used to this aim. After extracting data from those studies, we identified
that the obfuscation and diversification techniques are used in nine different
ways to boost the security and privacy of the cloud, including: 1) generating
noise obfuscation, 2) client-side data obfuscation as a middleware, 3) general
data obfuscation, 4) source code obfuscation, 5) location obfuscation, 6) file
splitting and storing on separate clouds, 7) encryption as obfuscation, 8) di-
versification, and 9) cloud security by virtue of securing the browser. Figure
1.3 illustrates these categories with the number of studies in each group.

Many of the cloud service providers are complying with the policies and
regulations in order to protect the privacy of their customers. However, there
exist a wide number of service providers that may record the collected data
from the customers, deduce and misuse the private information without user’s
consent. Hence, there is a need for practices to be taken at client side (with-
out service provider’s interference) to protect the privacy. Obfuscation and
diversification techniques were employed to protect the data from the cloud.
In majority of studied works, the cloud service provider was considered as
untrusted/malicious.

1.3 Obfuscation and diversification for securing cloud computing 13

Fig. 1.3 The related studies on security and privacy in cloud computing through obfus-
cation and diversification techniques.

In the following, we explain the nine different ways that obfuscation/di-
versification have been used in the literature for protecting the cloud from
security threats, and also protecting the user’s privacy from the malicious
cloud.

• Generating noise obfuscation: This approach resides on the client side and
tries confuses the malicious cloud by injecting irrelevant requests that are
similar to legitimate requests of the user (called noise) into the user’s ser-
vice requests, i.e., the requests sent from the customer to the cloud. In this
way, the occurrence probability of the legitimate requests and the noise
requests become the same, so it becomes difficult for the cloud to distin-
guish the real request. Noise generation strategy, conceals real requests
coming from the users, and therefore, lessens the probability of request
being revealed. As the result, the privacy of the customer is protected.

• Client-side data obfuscation as a middleware: This method protects the
data from the untrusted service provider while the data is stored or pro-
cessed on the cloud. A privacy managing middleware on the client side
obfuscates the (sensitive) data using a secret key which is chosen and kept
by the user. The obfuscated data is sent to the cloud and is processed
on the cloud without being de-obfuscated. This is because the key is kept
secret to the user and the cloud does not have the key to de-obfuscate the

14 Contents

data. The result of the process is sent to the user and is de-obfuscated on
the client side, so the user sees the plain data.

• General data obfuscation: In this class obfuscation, some transformations
that are made into the user’s data, which make them harder to read/under-
stood. This method can be used to protect the user’s identity information,
the data stored on the database of the cloud, and the user’s behavioral pat-
tern. Data obfuscation makes the user’s confidential harder to be exposed,
and therefore, protects the user’s data privacy.

• Source code obfuscation: As explained before, source code obfuscation is
a technique for protecting the software from reverse engineering. This
method can also be used for securing the cloud’s software from attacks
and risk of malware.

• Location obfuscation: As we know, there exist services that rely on the
physical information of the user to provide the services. This includes pri-
vacy concerns on revealing the precise location of the user (e.g., concerns
about locating and tracking down the user). To this end, obfuscating the
location information is a technique to make the exact location imprecise
through generalizing, or slightly altering the precise location to avoid the
actual position being exposed and consequently, preserve the location pri-
vacy.

• File splitting and storing on separate clouds: The idea in this obfuscation
strategy is to divide the data/files into different sectors and store them
on different clouds. This approach ensures not only the security, but also
the availability of the data. If one cloud is attacked, only one part will be
leaked, and the other parts are safe.

• Encryption as obfuscation: Obfuscation could be attained through cryp-
tographic techniques. For instance, homomorphic encryption and one-way
hash function are examples of this obfuscation strategy. Obfuscating the
data reduces the risk of data leakage and even if the data is leaked, it is
quite useless, as it is scrambled. Therefore, it is a beneficial technique in
preserving the confidentiality of the data on the cloud.

• Diversification: As discussed before, different components could be the
target for diversification depending on the security need of the system.
In cloud computing paradigm, it is proposed to continuously diversify the
execution environment, so to shorten the time for the attacker to learn
the execution environment and the vulnerabilities of it. The execution
environment changes to a new environment, before the attacker gets the
chance to obtain sufficient knowledge about it.

• Cloud security through securing the browser: In this idea a plug-in is
embedded in the user’s web browser, which has the capability of data ob-
fuscation and hybrid authentication. Therein, the security and the privacy
of the data are addressed in the web browser.

Table 1.1 lists all the papers that are discussing diversification and obfus-
cation as the promising security techniques in cloud computing environment.

1.3 Obfuscation and diversification for securing cloud computing 15

Based on how the studies use diversification/obfuscation is in cloud comput-
ing, they fall into nine different categories.

Table 1.1: List of the studies

No. Description of method

Category 1: Generating noise obfuscation
1 (Zhang et al., 2013): Injecting noise requests in user’s request makes it

difficult for the cloud to distinguish the legitimate request. The paper
considers noise obfuscation as a way for privacy-leakage-tolerance.

2 (Yang et al., 2013): This paper proposes noise generation approach as a way
to obfuscate the data while the characteristic of the data is not changed.
The main goal is to protect the privacy in the domain of data statics and
data mining.

3 (Zhang et al., 2012b): In this paper, Time-series Pattern Strategy Noise
Generation (TPNGS) is used to create a pattern based on the previous
requests that the user has made, and with the help of this pattern predict
the occurrence probability of the future requests. This approach makes the
real requests of the user vague, and protects the privacy of the client from
a malicious cloud.

4 (Zhang et al., 2015): In this work, noise obfuscation approach considers
occurrence probability fluctuation as a way to disguise the customer’s data.

5 (Zhang et al., 2012c): Noise injection is discussed in this paper as a method
to confuse the malicious cloud provider, with the aim of privacy protection.

6 (Zhang et al., 2012a): Injecting noise (=irrelevant requests) into the user’s
request makes the occurrence possibility of the real and the noise requests
the same, and thus make them indistinguishable.

7 (Lamanna et al., 2012): This paper considers homomorphic encryption,
oblivious transfer, and query obfuscation in the proxy as the techniques to
protect the information from an untrusted cloud. Query obfuscation aims
at generating random noisy/fake queries and confusing for the cloud.

8 (Zhang et al., 2012d): Noise obfuscation disguises the occurrence proba-
bility of the user’s requests. In this way, the user’s personal information is
kept safe, and therefore, the privacy is conserved.

9 (Liu et al., 2012): In this paper, generating noise in user’s requests is
discussed as a way to protect the privacy.

Category 2: Client-side data obfuscation as a middleware
10 (Arockiam and Monikandan, 2014): Before sending the data to the cloud,

encryption and obfuscation techniques are used to ensure the confidential-
ity of the data. Obfuscation is used for the numerical data types, while
encryption is applied on alphabetical type of data.

11 (Tian et al., 2011): This paper suggests that the user’s information be
encrypted before being sent to the cloud. This encrypted data is decrypted
only on the client side.

Continued on the next page

16 Contents

Table 1.1 – continued from the previous page

No. Description of method

12 (Yau and An, 2010): The proposed approach protects the customer’s data
from malicious cloud through data obfuscation, information hiding, and
separating the software and the infrastructure of the service provider.

13 (Mowbray et al., 2012): This paper introduces a privacy manager that pro-
tects the user’s private information by obfuscating them before delivering
to the cloud. The key used for this purpose is selected by the privacy man-
ager. The same key is used to de-obfuscate the processed data received
from the cloud. They use the term obfuscation rather than encryption,
since the data is partially obfuscated and some parts remain intact.

14 (Pearson et al., 2009): This work presents a mathematical formulation for
obfuscation, and also a privacy manager founded on obfuscation and de-
obfuscation approaches.

15 (Mowbray and Pearson, 2009): This paper proposes a privacy managing
technique based on obfuscation and de-obfuscation approaches, to control
the data transferred to the cloud. User’s information is obfuscated using
the key selected by user, and then sent to the cloud. This key is kept secret
by the user, so the cloud is never able to de-obfuscate the data.

16 (Govinda and Sathiyamoorthy, 2012): In this approach customer’s confi-
dential data is obfuscated before being sent to the cloud service provider.
The result of the processed data is sent back to the customer. There, the
data is de-obfuscated on the client side using the user’s secret key.

17 (Patibandla et al., 2012): In this work, a privacy manager software is pre-
sented that obfuscates the user’s sensitive data, prior to send to the cloud,
based on the user’s preferences.

Category 3: General data obfuscation
18 (Reiss et al., 2012): This paper proposes a systematic obfuscation approach

that aims at protecting personal data. The obfuscation techniques used
are: a) transforming: changing the information into another format, b)
sub-setting: selecting a particular fraction of data, c) culling: deleting a
particular fraction of data, and d) aggregation.

19 (Kuzu et al., 2014): Data obfuscation is an advantageous solution to protect
the data that is stored in the cloud’s database. Besides, the access patterns
could be obfuscated and protected as well.

20 (Vleju, 2012): The confidential information of the user can be protected
through obfuscation. For instance, obfuscating the identification informa-
tion conceals the user’s real identity. After obfuscation is applied, the data
can be deciphered only by the user.

21 (Li et al., 2011): To protect the data privacy in SaaS, data obfuscation is
proposed as a beneficial technique.

22 (Qin et al., 2014): This paper proposes an algorithm based on obfusca-
tion techniques to protect the confidential information that exist in CNF
(Conjunctive Normal Form) format.

Continued on the next page

1.3 Obfuscation and diversification for securing cloud computing 17

Table 1.1 – continued from the previous page

No. Description of method

23 (Tapiador et al., 2012): Typically, a user’s decisions and behavior follow
a similar pattern. Analyzing this pattern helps in foreseeing the future
behavior which raises privacy concerns. Obfuscating the user’s behavioral
pattern, make this information inaccessible, or at least makes it harder to
access.

24 (Kansal et al., 2015): This paper proposes image obfuscation as a technique
to hide and obfuscate an image (for instance by hiding the position of the
pixels or the colors). For this purpose, the paper integrates the compression
and secret sharing to produce multiple numbers of shadow images.
Category 4: Source code obfuscation

25 (Bertholon et al., 2013a): JavaScript is the language that is widely used
in today’s web services. To protect the JavaScript code, obfuscation is
proposed to make it harder to reverse engineer.

26 (Bertholon et al., 2013b): The paper presents a framework that transform-
s/obfuscates the source code of the C program into a jumbled form.

27 (Hataba and El-Mahdy, 2012): This paper is a survey of existing obfusca-
tion techniques that aim at making the reverse engineering harder.

28 (Bertholon et al., 2014): JSHADOF framework is designed to obfuscate
the JavaScript code. The target of the transformation is the source code
in cloud computing web services.

29 (Omar et al., 2014): This paper uses control-flow obfuscation and junk
code insertion to present a threat-based obfuscation technique.

Category 5: Location obfuscation
30 (Karuppanan et al., 2012): This paper states that the user’s private infor-

mation needs to be protected from being disclosed. Location obfuscation
is proposed to conceal the user’s location.

31 (Skvortsov et al., 2012): The paper states that the Location Services (LS)
present services based on the location information of the user, which brings
along privacy concerns. Location obfuscation solves this problem by mak-
ing this information appear imprecise.

32 (Agir et al., 2014): This paper considers location obfuscation as a way to
confuse the server about the location of the user.

Category 6: File splitting and storing on separate clouds
33 (Celesti et al., 2014): In this work, data obfuscation is done through divid-

ing the files and storing them on multiple clouds. In this way, each cloud
has partial view to the file.

34 (Ryan and Falvey, 2012): In order to obfuscate the data, this work pro-
poses splitting the data and storing them on geographically separated data
stores.

35 (Villari et al., 2013): To keep the data confidential, it is proposed to spread
the data over various clouds.

Category 7: Encryption as obfuscation
Continued on the next page

18 Contents

Table 1.1 – continued from the previous page

No. Description of method

36 (Padilha and Pedone, 2015): The most common way to achieve obfusca-
tion is to employ cryptographic approaches. Secret sharing is one practical
example, in this regard.

37 (Gao-xiang et al., 2013): This paper proposes achieving the obfuscation
through homomorphic encryption.

38 (Furukawa et al., 2013): This paper studies point function obfuscation
which relies on one way hash functions.
Category 8: Diversification

39 (Tunc et al., 2014): Moving target defences aim at continuously altering
the execution environment of the system and its configurations, in order to
make it challenging and costly for the intruder to learn about the environ-
ment and discover its vulnerabilities. This paper proposes diversification
of the cloud’s execution environment.

40 (Yang et al., 2014): This paper proposes to continuously change the exe-
cution environment and also the platforms used to execute them. Hence,
till the time that the attacker learns the execution environment, it has
changed. Moreover, hardware redundancy is introduced as a way to in-
crease the tolerance to the attacks.

41 (Guo and Bhattacharya, 2014): Design diversity is proposed in this paper
for the cloud infrastructure. The target of the diversification is the config-
uration of virtual replicas. This increases the resiliency of the service, in
case of possible attacks.

Category 9: Cloud security through securing the browser
42 (Prasadreddy et al., 2011): This paper proposes a plug-in for the user’s

web browser that offers double authentication and hybrid obfuscation for
the data, and protects the security and privacy of the cloud in this way.

43 (Palanques et al., 2012): In this work, obfuscation is used to extend the
session’s life time.

1.4 Enhancing the security of cloud computing using
obfuscation and diversification

1.4.1 Motivation behind our idea

As discussed in Section 1.2.1 about the importance of application security in
cloud computing environment and the big losses that might happen as the
consequence of insecure applications, we were motivated to propose an ap-
proach to improve the cloud’s security through securing the applications.
Considering the fact that obfuscation and diversification techniques have

1.4 Enhancing the security of cloud computing using obfuscation and diversification 19

shown success in impeding the malware in various domains to lessen the
risk of harmful damage, we were motivated to use this techniques in our ap-
proach. To this aim, first we investigated ”how these two techniques are used
in cloud computing with the goal of boosting security” (Hosseinzadeh et al.,
2015). We systematically reviewed all the studies that were trying to answer
this research question. By answering this question, we were aiming at identi-
fying the research gaps which lead us in our future research. After collecting
and analyzing the data, we concluded that: there is a growing interest in
this field of study, as the number of publications was increasing year by year.
Obfuscation and diversification techniques have been used in the literature in
different ways, that we presented a classification of this studies based on the
way they use these techniques. The classification is presented in Section 1.3.1.
Furthermore, as the result of this survey, we realized that the majority of the
studied works have proposed approaches using obfuscation techniques, and
few were focusing on diversification techniques. This implies that there is a
room for more research on the use of diversification as a beneficial technique
to bring security to cloud computing.

The previous survey shed more light on the areas that are still potential
targets for further research, which motivated us to propose an efficient ap-
proach with the help of diversification and obfuscation techniques to secure
the cloud’s applications. We discuss the details of the proposed approach in
Sections 1.4.3.

1.4.2 Threat model

To make using and deploying SaaS applications easy, these applications are
usually available in web environment. A significant proportion of the code
of these applications is usually run on the client side, which makes them
vulnerable to client-side attacks. Also, the client-side interfaces are often a
natural weak point that an adversary can utilize to launch an attack. In what
follows, we will concentrate on this threat.

In a man-in-the-browser attack (MitB), the adversary has successfully
compromised the client’s endpoint application, usually the browser, by get-
ting malware into user’s system. The malware can then modify how the
browser represents certain web sites and how the user can interact with them.
Because the malware is operating inside user’s browser, it is able to perform
actions using user’s authentication credentials by exploiting active log-in ses-
sions (Gühring, 2006; Laperdrix et al., 2015).

To be more specific, the malicious program infects the computer’s soft-
ware. The malware – often implemented as a browser extension – then waits
for the user to submit some interesting data. As the data is input in the
application, the malware intercepts this delivery and extracts all the data
using the interfaces provided by the browser (usually by accessing the DOM

20 Contents

interface using JavaScript) and stores the values. The malware then modi-
fies the values using browser’s interface. The malware then tells the browser
to continue submitting the data to the server (or just store it locally in the
web application) and the browser goes on without knowing the data has been
tampered with. The modified values are now stored by the server (or locally),
but neither the user or the server knows that they are not the original values.

In the case the server generates a receipt of the performed transaction or
otherwise shows the previously sent values to the user, the malware again
transforms them to the original ones. The user thinks everything is fine, be-
cause it appears that the original transaction was received and stored intact.
In reality, however, the stored values have been fabricated by the malicious
adversary.

It is important to note that attacks of this kind have been seen in the wild
(Binsalleeh et al., 2010) and there is no completely satisfactory solution to
prevent them. Therefore, mitigating these attacks has become an important
goal.

1.4.3 Our proposed approach

For this work, we decided to evaluate integrating source code level obfus-
cation into an existing web application written in JavaScript. Our solution
is a proactive and transparent method that protects applications from data
manipulation. Although it does not guarantee to completely prevent all tam-
pering, it significantly mitigates the attack scenario we described.

An important key observation in our solution is the fact that a malicious
program in the user’s browser needs knowledge about the web application’s
internal structure in order modify the data provided by the user. We therefore,
change the application that is being executed on the user’s web browser in a
way that will make it very difficult for a harmful program to compromise it.

After we have applied unique obfuscation to the program, the code is
unique on each user’s computer. Generic and automatic large-scale malware
attacks become infeasible, since the adversary needs to know what to change
in the target application’s code.

Given enough time, however, the attacker may be able to break the obfus-
cation. Taking this possibility into account, we could make attacking the web
application even harder by continuously re-obfuscating it during its execu-
tion. As the internal structure of the web application is dynamically changed
like this, a malicious program has only a short time to analyze it in order to
modify the data.

In web environment, certain obfuscation methods can also be used to ob-
fuscate the HTML code on the web page that is the target of protection. This
makes it even harder for a piece of malware to attach itself to the web appli-
cation (for example, by using known attribute names of HTML elements). In

1.4 Enhancing the security of cloud computing using obfuscation and diversification 21

is also worth noting that in our scheme, we scramble HTML and JavaScript
code but not to the actual data that is transmitted over the network. The
usual cryptographic protocols like Transport Layer Security (TLS) (Dierks,
2008), are still applied to this data on most web pages handling private data.

It is worth noting that when the obfuscation has been performed, the
user of a web application will not notice any changes in the functionality
of the application. Obfuscation is transparent to the user. We also want our
solution to be transparent for the web application developer. The obfuscation
is performed automatically after the code is written so the developer does not
have to worry about it.

Data modification attacks are often highly dependent on the known struc-
ture of a web application. For example, the adversary might try to edit some
function in the JavaScript code based on its known name. Our approach
should therefore effectively mitigate these kinds of attacks by obscuring the
structure of executable code.

1.4.4 Choice of application

For the choice of application, we had the following criteria that the selected
application had to fulfill:

1. Availability of production-ready obfuscation tooling and libraries. It can
be argued, that source code level obfuscation tooling is still in its infancy
and, at least in our experience gathered from this exercise, such tools
are simply non-existent for many languages and environments. However,
for some languages and environments – like JavaScript run in the user’s
browser – several obfuscation tools and libraries exist today.

2. The application had to be implemented using technologies that are com-
mon in today’s web development environment. Using commonplace tech-
nologies was especially important because we wanted the experiences to be
applicable to real-world web application deployment scenarios. In short,
we wanted our choice of application be representative of a generic web
application.

In the end, we decided to obfuscate Laverna (lav, 2016), a simple note
taking application that relies entirely for client side scripting for its function-
ality. Since Laverna contains essentially no server-side components, the main
security risk it faces comes from man-in-the-browser attacks.

22 Contents

1.4.5 Implementation

Ideally, we would like the obfuscation to be seamlessly integrated into
project’s development work-flow. It is common for modern web-applications
already contain a complex build process: resource compression, source code
transpiling and request count optimization are just few of the steps that a
typical application might employ. Orchestrating all these interdependent op-
erations is a challenging task that has given a rise for a cornucopia of different
build automation tools targeting the web platforms.

Laverna is not an exception on this front. The project makes heavy use
of Gulp (gul, 2016a), Browserify (bro, 2016), and npm (npm, 2016) to auto-
mate its build process and manage the complex web of dependencies required
for building the application. As a part of the standard build process, Gulp
transpiles stylesheets written in Less (les, 2016) into css, compresses the
html, produces caching manifest and runs various code quality checkers on
the project.

We wanted the obfuscation to be as transparent to the software developer
as possible. To this end, we decided to integrate the source code obfuscation
as an additional step in Gulp’s project build specification. Using common
tools for the deployment process served our overall goal: evaluating the real-
world challenges related to deploying obfuscation.

The concrete obfuscation implementation is composed of three third-party
components: gulp-js-obfuscator (gul, 2016b), js-obfuscator (jso, 2016),
and the service provided by javascriptobfuscator.com (jav, 2016). The
last of which, provides the actual source code transformations in a software-
as-a-service like manner. js-obfuscate implements a programmatic api
around the the service and gulp-js-obfuscate provides integration with
Gulp’s build pipeline architecture.

The results of the diversification experiment we performed on Laverna ap-
plications with our tool indicate that the program would indeed be much
more difficult to understand and tamper with after diversification has been
applied. For example, the average Halstead difficulty (the difficulty of under-
standing a given program) was X for the functions of the diversified version
of the program, compared to Y for the original code. Naturally, even better
results would be achieved with a framework that would use a larger set of
even more resilient obfuscation transformations.

1.4.6 Limitations of the approach

Tooling for analyzing errors in program code is obviously important from
a software development standpoint and when it comes to web development,
most popular browsers come with built-in debugging capabilities. Setting
break-points, single-stepping through the program code, and inspecting ob-

1.4 Enhancing the security of cloud computing using obfuscation and diversification 23

74\x49\x74\x65\x6D ”] ; d e f i n e ([0xa6ab [0] , 0xa6ab [1] , 0xa6ab [2]] ,
f unc t i on (0x27cax1 , 0x27cax2 , 0x27cax3) { 0xa6ab [3] ; var 0x27cax4

={dbs :{} , getDb : func t i on (0x27cax5) {var 0x27cax6= 0x27cax5 [

0xa6ab [4]] + 0xa6ab [5]+ 0x27cax5 [0xa6ab [6]] ; t h i s [0xa6ab [7]] [
0x27cax6]= t h i s [0xa6ab [7]] [0x27cax6] | | 0x27cax3 [0xa6ab [9]] ({

name : 0x27cax5 [0xa6ab [4]] | | 0xa6ab [8] , storeName : 0x27cax5 [

0xa6ab [6]] }) ; r e turn t h i s [0xa6ab [7]] [0x27cax6]} , f i n d : f unc t i on (
0x27cax7) {var 0x27cax8= 0x27cax2 [0xa6ab [1 0]] () ; t h i s [0xa6ab

[1 7]] (0x27cax7 [0xa6ab [1 6]]) [0xa6ab [1 5]] (0x27cax7 [0xa6ab

[1 1]] , f unc t i on (0x27cax9 , 0x27cax7) { i f (0x27cax9) { r e turn
0x27cax8 [0xa6ab [1 2]] (0x27cax9) } ; i f (! 0x27cax7) { 0x27cax8 [

0xa6ab [1 2]] (0xa6ab [1 3]) } ; r e turn 0x27cax8 [0xa6ab [1 4]] (
0x27cax7) }) ; r e turn 0x27cax8 [0xa6ab [1 8]] } , f i n d A l l : f unc t i on (
0x27cax7) {var 0x27cax8= 0x27cax2 [0xa6ab [1 0]] () , 0x27caxa=t h i s ;

t h i s [0xa6ab [1 7]] (0x27cax7 [0xa6ab [1 6]]) [0xa6ab [2 3]] (f unc t i on (
0x27cax9 , 0x27caxb) { i f (! 0x27caxb | | ! 0x27caxb [0xa6ab [1 9]]) {

r e turn 0x27cax8 [0xa6ab [1 4]] ([]) } ;

Fig. 1.4 Excerpt from obfuscated piece of JavaScript code.

jects are common requirements. Unfortunately, application of source code
level obfuscation makes utilizing available tooling challenging, to say the
least. The problem arises because the developer interacts with the original,
unobfuscated source code, but the browser only has access to the obfuscated
version of the code. This is not a problem that only affects obfuscation re-
lated tooling, source-to-source transpilers have long faced similar problems.
However, it could be argued that the problem is magnified for by the very
nature of obfuscation, desire to make programs harder to understand.

Source maps is a technique created to solve the aforementioned problem
of debugging (sou, 2016). Source maps provide the browser with auxiliary
debugging information about the obfuscated scripts, allowing it to map the
executed statements to statements in the original source. Unfortunately, our
current setup did not provide support for source maps. This problem can
be somewhat remedied by applying obfuscation only to release builds of the
software. While this approach works, with the added benefit of making the
build process faster, it does not allow analyzing problems that might arise due
to the application of obfuscation. It also limits software developer’s ability to
analyze possible error reports from end users.

When obfuscating any application, preserving good performance is also an
important goal and a challenge. Because of the requirement for transparency,
large performance losses clearly noticed by the user are not acceptable. As a
response to increasing use of JavaScript frameworks and ongoing competition
between web browser manufacturers, performances of the JavaScript engines
have gone up in recent years. Acceptable performance and good transparency

24 Contents

to the user are usually feasible goals even when using several obfuscation
techniques in combination and the obfuscation is dynamically changed.

Employing obfuscation also often increases bandwidth consumption as the
executable code grows longer. Dynamically updating the code during execu-
tion – a feature not implemented in our current proof-of-concept implemen-
tation – would also significantly increase the network traffic. All obfuscation
techniques do not increase the size of code that much, though. For example,
simply renaming functions does not really affect the bandwidth consumption.

The SaaS-based obfuscation backend provided by javascriptobfuscator.com

supports a number of obfuscating transformations. The basic settings employ
standard techniques such as variable renaming and string encoding, but more
complicated transformation options are also available. Still, we felt that the
service-oriented solution limited the amount of control over how the code
was to be modified. Figure 1.4 gives an idea of what the end result of the
obfuscation looks like.

1.5 Conclusion

Cloud computing is becoming an essential part of today’s Information Tech-
nology. Almost all enterprises and businesses, in all sizes, have deployed (or
are planning to deploy) cloud solutions for delivering their services to cus-
tomers. Cloud adoption is accelerating because of the advantages that cloud
computing has brought along, such as higher flexibility and capability of the
infrastructures, lower costs of operation and maintenance, wider accessibility,
and improved mobility and collaboration (Mather et al., 2009).

Despite of all these benefits, there are still barriers in turning into cloud.
Among all, security of the data is the primary concern that holds back the
projects from moving to the cloud. The cloud’s security threats can be clas-
sified in different ways. Cloud Security Alliance (CSA) presented a list of top
threats targeting the cloud computing environment (CSA, 2016; Top Threats
Working Group, 2013). In Section 1.2, we went through the security concerns
of the cloud and also security aspects that need to be taken into account in
cloud computing environment. We discussed that there are three main deliv-
ery models for delivering the cloud services (IaaS, PaaS, and SaaS) that each
require different levels of security (Rhoton et al., 2013).

In Section 1.3, first we presented the terms and techniques used in our
proposed security approach. Obfuscation and diversification are techniques
that have been used to secure the software, mainly with the aim of impeding
malware. These techniques have been utilized in various domains as well as
in cloud computing. In a previous study we conducted a thorough survey
to investigate in what way these two techniques have been previously used
to enhance the security of cloud computing and protect the privacy of its
users (Hosseinzadeh et al., 2015). As the result of this study, we managed to

References 25

identify research gaps that motivated us to demonstrate an approach, which
fills the gaps to some extent and improves the security in cloud efficiently.

In Section 1.4 we demonstrated an obfuscation (partly including diversi-
fication) approach for mainly securing the SaaS model in cloud computing.
In this approach we obfuscated the client-side JavaScript components of an
application, we did this to demonstrate the feasibility of applying obfuscation
in the real-world. We built our solution using existing tools and services to
evaluate the experience of integrating obfuscation into an existing applica-
tion. Implementing the obfuscation only required a relatively small amount
of work, mostly because of the use of ready-made libraries. However, the
amount of work required is likely to be highly dependant on the complexity
of one’s target application and the thoroughness of applied obfuscation.

References

Cloud security alliance (CSA): https://cloudsecurityalliance.org/, 2016. Ver-
ified 2016-04-08.

The International Information Systems Security Certification Consortium
((ISC)2: https://www.isc2.org/, 2016. Verified 2016-04-06.

Browserify. http://browserify.org, 2016.
gulp.js - the streaming build system. http://gulpjs.com, 2016a.
gulp-js-obfuscator. https://www.npmjs.com/package/

gulp-js-obfuscator, 2016b.
Free javascript obfuscator - protect javascript code from stealing and shrink

size. https://javascriptobfuscator.com, 2016.
js-obfuscator. https://www.npmjs.com/package/js-obfuscator, 2016.
Laverna - keep your notes private. https://laverna.cc, 2016.
Getting started — less.js. http://lesscss.org, 2016.
npm. https://www.npmjs.com, 2016.
Source Map Revision 3 Proposal. https://docs.google.com/document/d/
1U1RGAehQwRypUTovF1KRlpiOFze0b-_2gc6fAH0KY0k, 2016.

B. Agir, T. Papaioannou, R. Narendula, K. Aberer, and J.-P. Hubaux. User-
side adaptive protection of location privacy in participatory sensing. GeoIn-
formatica, 18(1):165–191, 2014.

L. Arockiam and S. Monikandan. Efficient cloud storage confidentiality to en-
sure data security. In Computer Communication and Informatics (ICCCI),
2014 International Conference on, pages 1–5, Jan 2014.

B. Baudry and M. Monperrus. The multiple facets of software diversity:
Recent developments in year 2000 and beyond. ACM Comput. Surv., 48
(1):16:1–16:26, Sept. 2015. ISSN 0360-0300.

B. Bertholon, S. Varrette, and P. Bouvry. Jshadobf: A javascript obfuscator
based on multi-objective optimization algorithms. In J. Lopez, X. Huang,
and R. Sandhu, editors, Network and System Security, volume 7873 of

http://browserify.org
http://gulpjs.com
https://www.npmjs.com/package/gulp-js-obfuscator
https://www.npmjs.com/package/gulp-js-obfuscator
https://javascriptobfuscator.com
https://www.npmjs.com/package/js-obfuscator
https://laverna.cc
http://lesscss.org
https://www.npmjs.com
https://docs.google.com/document/d/1U1RGAehQwRypUTovF1KRlpiOFze0b-_2gc6fAH0KY0k
https://docs.google.com/document/d/1U1RGAehQwRypUTovF1KRlpiOFze0b-_2gc6fAH0KY0k

26 Contents

Lecture Notes in Computer Science, pages 336–349. Springer Berlin Hei-
delberg, 2013a.

B. Bertholon, S. Varrette, and S. Martinez. Shadobf: A c-source obfuscator
based on multi-objective optimisation algorithms. In Parallel and Dis-
tributed Processing Symposium Workshops PhD Forum (IPDPSW), 2013
IEEE 27th International, pages 435–444, May 2013b.

B. Bertholon, S. Varrette, and P. Bouvry. Comparison of multi-objective
optimization algorithms for the jshadobf javascript obfuscator. In Paral-
lel Distributed Processing Symposium Workshops (IPDPSW), 2014 IEEE
International, pages 489–496, May 2014.

H. Binsalleeh, T. Ormerod, A. Boukhtouta, P. Sinha, A. Youssef, M. Debbabi,
and L. Wang. On the analysis of the zeus botnet crimeware toolkit. In Pro-
ceedings of the 8th Annual International Conference on Privacy, Security
and Trust (PST), pages 31–38. IEEE, 2010.

A. Celesti, M. Fazio, M. Villari, and A. Puliafito. Adding long-term availabil-
ity, obfuscation, and encryption to multi-cloud storage systems. Journal
of Network and Computer Applications, 2014.

T. M. Chen and S. Abu-Nimeh. Lessons from stuxnet. Computer, 44(4):
91–93, April 2011.

F. B. Cohen. Operating System Protection through Program Evolution.
Comput. Secur., 12(6):565–584, Oct. 1993.

C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscating trans-
formations. Technical report, Department of Computer Science, The Uni-
versity of Auckland, New Zealand, 1997.

C. Collberg, C. Thomborson, and D. Low. Manufacturing cheap, resilient, and
stealthy opaque constructs. In Proceedings of the 25th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’98,
pages 184–196, New York, NY, USA, 1998. ACM.

T. Dierks. The transport layer security (tls) protocol version 1.2. 2008.
S. Drape and A. Majumdar. Design and evaluation of slicing obfuscation.

Technical report, Department of Computer Science, The University of
Auckland, New Zealand, 2007.

R. Furukawa, T. Takenouchi, and T. Mori. Behavioral tendency obfusca-
tion framework for personalization services. In H. Decker, L. Lhotsk,
S. Link, J. Basl, and A. Tjoa, editors, Database and Expert Systems Appli-
cations, volume 8056 of Lecture Notes in Computer Science, pages 289–303.
Springer Berlin Heidelberg, 2013.

G. Gao-xiang, Y. Zheng, and F. Xiao. The homomorphic encryption scheme
of security obfuscation. In T. Tan, Q. Ruan, X. Chen, H. Ma, and L. Wang,
editors, Advances in Image and Graphics Technologies, volume 363 of
Communications in Computer and Information Science, pages 127–135.
Springer Berlin Heidelberg, 2013.

K. Govinda and E. Sathiyamoorthy. Agent based security for cloud comput-
ing using obfuscation. Procedia Engineering(38),125-129, 2012.

References 27

P. Gühring. Concepts against Man-in-the-Browser Attacks. www.cacert.at/
svn/sourcerer/CAcert/SecureClient.pdf, 2006.

M. Guo and P. Bhattacharya. Diverse virtual replicas for improving intrusion
tolerance in cloud. In Proceedings of the 9th Annual Cyber and Information
Security Research Conference, CISR ’14, pages 41–44, New York, NY, USA,
2014. ACM.

M. Hataba and A. El-Mahdy. Cloud protection by obfuscation: Techniques
and metrics. In P2P, Parallel, Grid, Cloud and Internet Computing (3PG-
CIC), 2012 Seventh International Conference on, pages 369–372, Nov 2012.

S. Hosseinzadeh, S. Hyrynsalmi, M. Conti, and V. Leppänen. Security and
privacy in cloud computing via obfuscation and diversification: A survey. In
2015 IEEE 7th International Conference on Cloud Computing Technology
and Science (CloudCom), pages 529–535, Nov 2015.

K. Kansal, M. Mohanty, and P. K. Atrey. Scaling and cropping of wavelet-
based compressed images in hidden domain. In X. He, S. Luo, D. Tao,
C. Xu, J. Yang, and M. Hasan, editors, MultiMedia Modeling, volume 8935
of Lecture Notes in Computer Science, pages 430–441. Springer Interna-
tional Publishing, 2015.

K. Karuppanan, K. AparnaMeenaa, K. Radhika, and R. Suchitra. Privacy
adaptation for secured associations in a social cloud. In Advances in Com-
puting and Communications (ICACC), 2012 International Conference on,
pages 194–198, Aug 2012.

M. Kuzu, M. S. Islam, and M. Kantarcioglu. Efficient privacy-aware search
over encrypted databases. In Proceedings of the 4th ACM Conference on
Data and Application Security and Privacy, CODASPY ’14, pages 249–256,
New York, NY, USA, 2014. ACM.

D. Lamanna, G. Lodi, and R. Baldoni. How not to be seen in the cloud:
A progressive privacy solution for desktop-as-a-service. In R. Meersman,
H. Panetto, T. Dillon, S. Rinderle-Ma, P. Dadam, X. Zhou, S. Pearson,
A. Ferscha, S. Bergamaschi, and I. Cruz, editors, On the Move to Mean-
ingful Internet Systems: OTM 2012, volume 7566 of Lecture Notes in Com-
puter Science, pages 492–510. Springer Berlin Heidelberg, 2012.

P. Laperdrix, W. Rudametkin, and B. Baudry. Mitigating browser finger-
print tracking: Multi-level reconfiguration and diversification. In Soft-
ware Engineering for Adaptive and Self-Managing Systems (SEAMS), 2015
IEEE/ACM 10th International Symposium on, pages 98–108, May 2015.

P. Larsen, A. Homescu, S. Brunthaler, and M. Franz. SoK: Automated soft-
ware diversity. In Security and Privacy (SP), 2014 IEEE Symposium on,
pages 276–291, May 2014.

S. Laurén, P. Mäki, S. Rauti, S. Hosseinzadeh, S. Hyrynsalmi, and
V. Leppänen. Symbol Diversification of Linux Binaries. In Proceedings
of World Congress on Internet Security (WorldCIS-2014), 2014.

L. Li, Q. Li, Y. Shi, and K. Zhang. A new privacy-preserving scheme dospa
for saas. In Z. Gong, X. Luo, J. Chen, J. Lei, and F. Wang, editors, Web In-

www.cacert.at/svn/sourcerer/CAcert/SecureClient.pdf
www.cacert.at/svn/sourcerer/CAcert/SecureClient.pdf

28 Contents

formation Systems and Mining, Lecture Notes in Computer Science(6987),
pages 328–335. Springer Berlin Heidelberg, 2011.

C. Linn and S. Debray. Obfuscation of executable code to improve resistance
to static disassembly. In Proceedings of the 10th ACM Conference on Com-
puter and Communications Security, CCS ’03, pages 290–299, New York,
NY, USA, 2003. ACM.

X. Liu, D. Yuan, G. Zhang, W. Li, D. Cao, Q. He, J. Chen, and Y. Yang.
Cloud workflow system quality of service. In The Design of Cloud Workflow
Systems, SpringerBriefs in Computer Science, pages 27–50. Springer New
York, 2012.

T. Mather, S. Kumaraswamy, and S. Latif. Cloud Security and Privacy:
An Enterprise Perspective on Risks and Compliance. Theory in Practice.
O’Reilly Media, Inc., Sebastopol, CA, 2009.

P. Mell and T. Grance. The NIST definition of cloud computing. Computer
Security Division, Information Technology Laboratory, National Institute
of Standards and Technology, 2011.

M. Mowbray and S. Pearson. A client-based privacy manager for cloud com-
puting. In Proceedings of the Fourth International ICST Conference on
COMmunication System softWAre and middlewaRE, COMSWARE ’09,
pages 5:1–5:8, New York, NY, USA, 2009. ACM.

M. Mowbray, S. Pearson, and Y. Shen. Enhancing privacy in cloud computing
via policy-based obfuscation. The Journal of Supercomputing, 61(2):267–
291, 2012.

J. Nagra and C. Collberg. Surreptitious Software: Obfuscation, Watermark-
ing, and Tamperproofing for Software Protection. Pearson Education, 2009.

R. Omar, A. El-Mahdy, and E. Rohou. Arbitrary control-flow embedding
into multiple threads for obfuscation: A preliminary complexity and per-
formance analysis. In Proceedings of the 2Nd International Workshop on
Security in Cloud Computing, SCC ’14, pages 51–58, New York, NY, USA,
2014. ACM.

R. Padilha and F. Pedone. Confidentiality in the cloud. Security Privacy,
IEEE, 13(1):57–60, Jan 2015.

M. Palanques, R. DiPietro, C. del Ojo, M. Malet, M. Marino, and T. Felguera.
Secure cloud browser: Model and architecture to support secure web nav-
igation. In Reliable Distributed Systems (SRDS), 2012 IEEE 31st Sympo-
sium on, pages 402–403, Oct 2012.

R. Patibandla, S. Kurra, and N. Mundukur. A study on scalability of ser-
vices and privacy issues in cloud computing. In R. Ramanujam and S. Ra-
maswamy, editors, Distributed Computing and Internet Technology, volume
7154 of Lecture Notes in Computer Science, pages 212–230. Springer Berlin
Heidelberg, 2012.

S. Pearson, Y. Shen, and M. Mowbray. A privacy manager for cloud com-
puting. In M. Jaatun, G. Zhao, and C. Rong, editors, Cloud Computing,
volume 5931 of Lecture Notes in Computer Science, pages 90–106. Springer
Berlin Heidelberg, 2009.

References 29

I. V. Popov, S. K. Debray, and G. R. Andrews. Binary obfuscation using
signals. In USENIX Security, 2007.

P. Prasadreddy, T. Rao, and S. Venkat. A threat free architecture for privacy
assurance in cloud computing. In Services (SERVICES), 2011 IEEE World
Congress on, pages 564–568, July 2011.

Y. Qin, S. Shen, J. Kong, and H. Dai. Cloud-oriented sat solver based on ob-
fuscating cnf formula. In W. Han, Z. Huang, C. Hu, H. Zhang, and L. Guo,
editors, Web Technologies and Applications, volume 8710 of Lecture Notes
in Computer Science, pages 188–199. Springer International Publishing,
2014.

S. Rauti, S. Laurén, S. Hosseinzadeh, J.-M. Mäkelä, S. Hyrynsalmi, and
V. Leppänen. Diversification of System Calls in Linux Binaries. In Proceed-
ings of the 6th International Conference on Trustworthy Systems (InTrust
2014), 2014.

C. Reiss, J. Wilkes, and J. Hellerstein. Obfuscatory obscanturism: Making
workload traces of commercially-sensitive systems safe to release. In Net-
work Operations and Management Symposium (NOMS), 2012 IEEE, pages
1279–1286, April 2012.

J. Rhoton, J. de Clercq, and D. Graves. Cloud Computing Protected: Se-
curity Assessment Handbook. Security Assessment Handbook. Recursive,
Limited, 2013.

P. Ryan and S. Falvey. Trust in the clouds. Computer Law & Security Review,
28(5):513 – 521, 2012.

E. Skoudis. Malware: Fighting malicious code. Prentice Hall Professional,
2004.

P. Skvortsov, F. Drr, and K. Rothermel. Map-aware position sharing for lo-
cation privacy in non-trusted systems. In J. Kay, P. Lukowicz, H. Tokuda,
P. Olivier, and A. Krger, editors, Pervasive Computing, volume 7319 of
Lecture Notes in Computer Science, pages 388–405. Springer Berlin Hei-
delberg, 2012.

S. Subashini and V. Kavitha. A survey on security issues in service delivery
models of cloud computing. Journal of Network and Computer Applica-
tions, 34(1):1 – 11, 2011.

J. Tapiador, J. Hernandez-Castro, and P. Peris-Lopez. Online randomization
strategies to obfuscate user behavioral patterns. Journal of Network and
Systems Management, 20(4):561–578, 2012.

Y. Tian, B. Song, and E.-N. Huh. Towards the development of personal cloud
computing for mobile thin-clients. In International Conference Information
Science and Applications (ICISA), pages 1–5, April 2011.

Top Threats Working Group. The notorious nine: cloud computing top
threats in 2013. Cloud Security Alliance, 2013.

C. Tunc, F. Fargo, Y. Al-Nashif, S. Hariri, and J. Hughes. Autonomic resilient
cloud management (arcm) design and evaluation. In Cloud and Autonomic
Computing (ICCAC), 2014 International Conference on, pages 44–49, Sept
2014.

30 Contents

V. Varadharajan and U. Tupakula. Security as a service model for cloud
environment. IEEE Transactions on Network and Service Management,
11(1):60–75, March 2014.

M. Villari, A. Celesti, F. Tusa, and A. Puliafito. Data reliability in multi-
provider cloud storage service with rrns. In C. Canal and M. Villari, editors,
Advances in Service-Oriented and Cloud Computing, volume 393 of Com-
munications in Computer and Information Science, pages 83–93. Springer
Berlin Heidelberg, 2013.

M. Vleju. A client-centric asm-based approach to identity management
in cloud computing. In S. Castano, P. Vassiliadis, L. Lakshmanan, and
M. Lee, editors, Advances in Conceptual Modeling, volume 7518 of Lecture
Notes in Computer Science, pages 34–43. Springer Berlin Heidelberg, 2012.

P. Yang, X. Gui, F. Tian, J. Yao, and J. Lin. A privacy-preserving data obfus-
cation scheme used in data statistics and data mining. In High Performance
Computing and Communications 2013 IEEE International Conference on
Embedded and Ubiquitous Computing (HPCC-EUC), 2013 IEEE 10th In-
ternational Conference on, pages 881–887, Nov 2013.

Q. Yang, C. Cheng, and X. Che. A cost-aware method of privacy protec-
tion for multiple cloud service requests. In Computational Science and
Engineering (CSE), 2014 IEEE 17th International Conference on, pages
583–590, Dec 2014.

S. S. Yau and H. G. An. Protection of users’ data confidentiality in cloud
computing. In Proceedings of the Second Asia-Pacific Symposium on In-
ternetware, Internetware ’10, pages 11:1–11:6, New York, NY, USA, 2010.
ACM.

G. Zhang, Y. Yang, and J. Chen. A historical probability based noise gen-
eration strategy for privacy protection in cloud computing. Journal of
Computer and System Sciences, 78(5):1374 – 1381, 2012a. {JCSS} Special
Issue: Cloud Computing 2011.

G. Zhang, Y. Yang, X. Liu, and J. Chen. A time-series pattern based noise
generation strategy for privacy protection in cloud computing. In Cluster,
Cloud and Grid Computing (CCGrid), 2012 12th IEEE/ACM Interna-
tional Symposium on, pages 458–465, May 2012b.

G. Zhang, Y. Yang, D. Yuan, and J. Chen. A trust-based noise injection
strategy for privacy protection in cloud. Software: Practice and Experience,
42(4):431–445, 2012c.

G. Zhang, X. Zhang, Y. Yang, C. Liu, and J. Chen. An association probability
based noise generation strategy for privacy protection in cloud computing.
In C. Liu, H. Ludwig, F. Toumani, and Q. Yu, editors, Service-Oriented
Computing, volume 7636 of Lecture Notes in Computer Science, pages 639–
647. Springer Berlin Heidelberg, 2012d.

G. Zhang, Y. Yang, and J. Chen. A privacy-leakage-tolerance based noise en-
hancing strategy for privacy protection in cloud computing. In Trust, Se-
curity and Privacy in Computing and Communications (TrustCom), 12th
IEEE International Conference on, pages 1–8, July 2013.

References 31

G. Zhang, X. Liu, and Y. Yang. Time-series pattern based effective noise
generation for privacy protection on cloud. Computers 64(5), IEEE Trans-
actions on, pages 1456–1469, May 2015.

	Obfuscation and Diversification for Securing Cloud Computing
	Introduction
	Security and privacy in cloud computing
	Application security in cloud computing

	Obfuscation and diversification for securing cloud computing
	Related work on security of cloud through obfuscation and diversification

	Enhancing the security of cloud computing using obfuscation and diversification
	Motivation behind our idea
	Threat model
	Our proposed approach
	Choice of application
	Implementation
	Limitations of the approach

	Conclusion
	References

