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Simulation of atherosclerotic 
plaque growth using computational 
biomechanics and patient‑specific 
data
Dimitrios S. Pleouras1, Antonis I. Sakellarios1, Panagiota Tsompou1,2, Vassiliki Kigka1,2, 
Savvas Kyriakidis1, Silvia Rocchiccioli3, Danilo Neglia4, Juhani Knuuti5, Gualtiero Pelosi3, 
Lampros K. Michalis6 & Dimitrios I. Fotiadis1,2*

Atherosclerosis is the one of the major causes of mortality worldwide, urging the need for prevention 
strategies. In this work, a novel computational model is developed, which is used for simulation of 
plaque growth to 94 realistic 3D reconstructed coronary arteries. This model considers several factors 
of the atherosclerotic process even mechanical factors such as the effect of endothelial shear stress, 
responsible for the initiation of atherosclerosis, and biological factors such as the accumulation of 
low and high density lipoproteins (LDL and HDL), monocytes, macrophages, cytokines, nitric oxide 
and formation of foams cells or proliferation of contractile and synthetic smooth muscle cells (SMCs). 
The model is validated using the serial imaging of CTCA comparing the simulated geometries with 
the real follow‑up arteries. Additionally, we examine the predictive capability of the model to identify 
regions prone of disease progression. The results presented good correlation between the simulated 
lumen area (P < 0.0001), plaque area (P < 0.0001) and plaque burden (P < 0.0001) with the realistic ones. 
Finally, disease progression is achieved with 80% accuracy with many of the computational results 
being independent predictors.

According to World Health Organization, coronary heart disease (CHD) is the leading cause of death globally 
with more than 60% of the global burden to be present in developing  countries1. The disease is characterized by 
the reduction of blood supply to the heart muscles by the arteries, which may cause heart failure or death. The 
biological process that underlies atherosclerotic disease formation is extremely complicated. Nonetheless, a sim-
plified description of this process initiates with the effect of blood rheology and especially the effect of endothelial 
shear stress (ESS) on the endothelial membrane. This effect may be translated to endothelial dysfunction and 
increased endothelial permeability to lipid components such as the low density lipoprotein (LDL) particles. 
LDL is accumulated into the arterial wall and starts being oxidized, triggering an inflammatory response by 
the accumulation of macrophages and monocytes. Endocytosis of oxidized LDL particles by the inflammatory 
cells forms foam cells and consequently fatty streaks. In next steps, the smooth muscle cells are proliferated and 
collagen is produced forming the atherosclerotic  plaque2.

The above mentioned mechanisms have been attempted to be simulated in several studies. The first published 
studies focused on the simulation of blood flow and the correlation of ESS with the disease progression, while 
more complex models simulate the LDL transport in coronary arteries. In recent years, several advanced models 
have been presented. Most of them are applied on idealized 2D arterial  geometries3,4, while only a few proof of 
concept studies are based on realistic human arterial  geometries5–8.

Nowadays, preventive strategies are considered as the best option to reduce the burden of CHD. These 
strategies include population based approaches e.g. quit of smoking, exercise, diet, etc. as well as individual 
based e.g. treatment of hypertension or hyperlipidemia. On the other hand, computational modeling could be 
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used potentially for the development of novel preventive strategies. In this work, we present a novel multi-level 
computational model for atherosclerotic plaque growth, incorporating the major mechanisms of atherosclerosis. 
Moreover, it is the first time that such a model has been employed to a dataset of 94 human coronary arteries for 
its validation. This dataset includes imaging data of computed tomography coronary angiography (CTCA) at 
two time points with interscan interval of 6.1 years, adequate to assess disease progression.

Results
We performed the plaque growth simulation at 94 coronary arteries, which resulted to 900 3 mm sub-segments. 
The simulations resulted to the deformed arterial geometries due to plaque growth. The simulation was per-
formed assuming a time period same with the interscan period of each patient applying timesteps of one months. 
A case example of an arterial segment with increased lumen reduction and plaque increase is shown in Fig. 1. 
Table 1 presents the mean and Standard Deviation of the lumen and wall area and plaque burden change for the 
simulated and real arteries as found in the CTCA images.

Among the results, all species’ distributions within the arterial wall were extracted in all time steps of the 
simulations, in order to further demonstrate each patient’s arterial wall composition over time. The compar-
ison of the simulated and the real follow-up arterial lumen area showed a statistical significant correlation 
(r = 0.608, P < 0.0001). Similar correlation is also found between the simulated wall area with the corresponding 

Figure 1.  A case example of a coronary artery. (A, B) show the reconstructed arteries (red: lumen, transparent 
blue: arterial wall) for baseline and follow-up time point, respectively. The lumen stenosis is presented clearly at 
the follow-up reconstruction (B). (C–F) Distribution of endothelial shear stress, oxidized LDL concentration 
accumulation in the arterial wall, macrophages concentration and plaque formation. Regions of low ESS present 
higher accumulation of oxidized LDL and inflammatory molecules. (G, H) Cross-section with plaque formation 
variable at the baseline (G) and the corresponding follow-up cross section (H). This cross section corresponds 
at the red dotted line of panel (A). (I, J) Cross-section with plaque formation variable at the baseline (I) and 
the corresponding follow-up cross section (J), where this cross section is located at the green dotted line of 
panel (A). (H, J) Cross-sections of increased plaque area and lumen area reduction as found realistically at the 
reconstructed arteries.

Table 1.  The mean and Standard Deviation of lumen and wall area and plaque burden change for the 
simulated and real arteries.

Real CTCA based 
change Simulated change

Mean Std. deviation Mean Std. deviation

Lumen area change − 0.72 2.58 − 1.16 2.21

Wall area change 1.13 3.59 2.21 2.37

Plaque burden change 0.94 16.95 4.79 13.21
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real follow-up area (r = 0.494, P < 0.0001). Finally, the simulated plaque burden is also associated with the real 
follow-up plaque burden, presenting, however, lower correlation coefficient (r = 0.332, P < 0.0001). These cor-
relations are also presented in Fig. 2 in the form of scatter plot.

Going one step further, we hypothesize that the plaque growth model and its variables could be further used 
for the prediction of disease progression. For this purpose, we estimate the disease progression between the fol-
low-up and the baseline for each 3 mm sub-segment. Initially, linear regression analysis was performed to identify 
correlations between the computational variables and the lumen area, plaque area and plaque burden change. We 
found a strong relation of ESS with disease progression, since regions of low ESS present increased lumen area 
reduction (P < 0.0001) and an increase of the plaque area and plaque burden at the follow-up (P < 0.0001). This 
is explained by the fact that in areas of high shear stress, blood velocity is increased preventing several species 
from entering in the arterial wall, as they drift along with blood. This mainly occurs in cells which due to their 
large size maintain their momentum, drifting along with blood. The arterial wall concentrations of foam cells, 

Figure 2.  Scatter dot plots between the simulated findings with the real follow-up for the lumen area, wall area 
and plaque burden.
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synthetic smooth muscle cells and collagen have a direct association to the plaque volume, as it is evaluated based 
on their volume. Figure 3 presents the relation of some computational variables with the change of lumen area, 
plaque area and plaque burden.

A multi-variate linear regression model was also built. Collinear variables (> 0.8 collinearity) were not 
included in the statistical model. Regarding the lumen area change, the included variables were the baseline 
plaque burden (B = 0.048, P < 0.0001), the collagen concentration (B = − 79.26, P < 0.0001) and the HDL con-
centration (B = 1538.00, P < 0.0001). The associated variables regarding the prediction of wall area change are 
the baseline lumen area (B = 0.16, P < 0.0001) and baseline wall area (B = − 0.52, P < 0.0001), the monocytes 
concentration (B = 1.99 × 10–9, P = 0.003), the macrophages concentration (B = − 1.07 × 10–11, P < 0.0001), the 
oxidized LDL concentration (B = 2441.94, P < 0.0001), the HDL concentration (B = − 3411.139, P < 0.0001) and 
the ESS (B = − 0.16, P = 0.014). Finally, regarding the plaque burden change, the associated variables are baseline 
plaque burden (B = − 0.45, P < 0.0001), the monocytes concentration (B = 2.48 × 10–8, P < 0.0001), the cytokines 
concentration (B = − 1.97, P < 0.0001), the oxidized LDL concentration (B = 11,967.47, P < 0.0001), the HDL 
concentration (B = − 0.11, P = 0.002), baseline lumen area (B = − 0.62, P = 0.001) and the collagen concentration 
(B = 195.03, P = 0.036).

Finally, the prognostic value of the plaque growth model in identifying segments of disease progression was 
achieved performing binary logistic regression modeling. To this purpose, we first performed a receiver-operator 
characteristics analysis to identify cut-off points to make binary the associated variables identified in the linear 
multi-variate analysis. Lumen area change, plaque area change, and plaque burden change were transformed 
to binary assuming 20% change. The accuracy to predict lumen reduction, plaque increase, and plaque burden 
increase is 83%, 80% and 77%, respectively.

Discussion
In this work, we have developed a new plaque growth model which simulates the blood flow dynamics, the species 
transport in the arterial wall, the oxidation of LDL, the inflammation, the formation of foam cells and finally the 
development and growth of plaque consisted of smooth muscle cells, collagen and foam cells. Specifically, this 
model introduces each one of these features in one of its three modelling levels: (i) blood flow modelling and 
evaluation of ESS distribution, (ii) lipoprotein (LDL, and HDL) transport within the arterial wall, inflamma-
tion modelling and plaque volume evaluation, (iii) wall thickening modelling. It is the first time that a complex 
model has been applied to a population with serial imaging-based assessment to validate its outcomes. More 
interestingly, the selected population is considered low-risk, since no invasive angiography is available for these 
patients. Moreover, for the first time, prediction of disease progression is achieved with 80% accuracy using 
computational results other than the ESS and the LDL concentration.

A significant characteristic of this model is that the endothelial dysfunction was integrated in the endothe-
lial permeability model. Endothelial dysfunction is the culprit of atherosclerosis initiation, while some major 
influential factors leading to endothelial dysfunction are the ESS magnitude and the endothelial nitric oxide 
concentration level, where both of them are included in this model. More specifically, low ESS is experimen-
tally found to promote the endothelial fluxes of lipoproteins, a fact that is explained due to the increase of the 
endothelium intercellular space.

Increased lipoproteins accumulation within the arterial wall triggers the inflammatory process initiated with 
the oxidation of LDL caused by free radicals. Subsequently, the presence of OxLDL within the arterial wall causes 
cytokine production, which is an inflammatory signalling molecule for monocyte attraction. Therefore, mono-
cytes accumulate within the affected area and differentiate into macrophages to uptake the OxLDL. The presence 
of clusters with foam cells in areas containing abnormal lipoprotein concentrations was established by histological 
analyses, ultimately exposing type I lesions. Increased concentrations of lipid-laden smooth muscle cells were 
detected in advanced lesions, leading to the classification of type II lesions, namely fatty streaks. Extracellular 
lipid particles can be encountered in further advanced lesions, preventing the coherence of smooth muscle cells 

Figure 3.  Association between endothelial shear stress (ESS) and oxidized LDL concentration and plaque 
volume categories with the local change in lumen area (blue), wall area (green) and plaque burden (yellow) 
between the follow-up and the baseline.
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in the intima layer, eventually leading to type III and IV lesions, distinguished by the size of the extracellular 
lipid droplets. Type V lesions, distinguished by the existence of thick layers of fibrous connective tissues in the 
lesions, prevail due to additional advancement of the latter lesion classes, typically occurring during the fourth 
decade of life. Lastly, manifestation of fissure, hematoma or thrombus within the lesion, led to their referral type 
IV lesions. Our model considers the dynamics of LDL, foam cells and smooth muscle cells within the arterial wall 
and therefore it constitutes a mathematical tool for predicting type I and II lesions. A novelty of this work is that 
the wall thickening is enabled in the atherosclerotic areas and it is based on the total calculated plaque volume, 
which consists of foam cells, collagen and smooth muscle cells—the main components of the fatty streak plaques. 
These components that can identify both type I and II lesions, are used to evaluate the volumetric growth of the 
arterial wall, by considering the volumetric growth in each element of the arterial wall. This is important for 
development of prevention strategies. In fact, the selected population of SMARTool project consists of low-risk 
patients without events. For this reason, the developed plaque growth model can be used to predict the arterial 
progress of patients with at least 20% disease progression in a period of six years.

A major novelty of this work is the use of a low-risk population with a large follow-up. This enables the 
examination of disease progression to patients who are not susceptible to disease progression compared to 
interventional studies, which include high-risk patients. Similar models were presented  previously6,9, but only 
as proof-of-concept approaches or in ideal geometries. Our work, however, can be compared against other 
predictive studies of disease progression, which are mainly using ESS and LDL concentration accumulation as 
 predictors5,10,11. In fact, in these studies, maximum accuracy of previous studies to predict disease progression 
is less than 65%. Our results show that in our population we have about 80% accuracy of disease progression 
defined as lumen reduction, plaque increase or plaque burden increase. This contributes to the conclusion that 
this complex computational model may describe better the pathophysiology of atherosclerosis and worth applied 
to even larger populations.

However, the main outcome of this work is the dynamics of this proof of concept study. Compared to ESS 
based predictive models, where only blood flow modeling is implemented, using a plaque growth model the 
pathophysiology of the disease is simulated. In this concept, it is possible to increase the complexity of the model 
by the inclusion of additional biological pathways. Considering large initiatives for data collection including 
omics data, a plaque growth model can be improved considerably adding the effect of genetic phenotype or 
implementing machine learning approaches for the prediction of disease progression.

The current work has however some limitations. First, the population even if it is the largest population used 
for the validation of such models, it is considered still small to make safe conclusions. However, the results dem-
onstrate the trend that this model should be applied to larger populations and potentially can be used as a preven-
tive tool. Also, the different stiffness of the plaque regions was neglected, since almost all patients presented low 
disease progression and small plaque regions. Finally, in this work, we didn’t consider the plaque composition and 
the relation of the computational variables with specific plaque types. This task requires the use of intravascular 
imaging either ultrasound or optical coherence tomography. We aim to utilize such datasets in a future work.

Conclusions
We have developed and validated a multi-level plaque growth model using serial CTCA imaging from 94 patients. 
The plaque growth model simulates the main mechanisms of disease progression. The results show that the simu-
lated and generated arterial geometries are correlated well with the real follow-up geometries. Additionally, we 
investigated the role of the plaque growth model to predict disease progression. Our results show that prediction 
of lumen area reduction and plaque area increase can be achieved with 80% accuracy.

Methods
Population, CTCA analysis and 3D reconstruction. CTCA imaging was acquired from the SMARTool 
clinical study, which is a multi-center EU funded (GA number: 689068) project aiming to the development of 
decision support systems for the management of CHD in terms of risk stratification, diagnosis and prognosis. 
Each patient’s dataset included baseline clinical and biohumoral data and CTCA imaging at two time points. 
In the current analysis, we have used only the LDL and HDL concentration as boundary condition, the blood 
pressure applied in the equations and the interscan period of each patient to define the maximum simulation 
period. The clinical characteristics of our population is presented in Table 2. For the present analysis 94 patients 
were selected. More specifically, a population of 275 patients was created in SMARTool project, from which 12 
patients did not perform follow-up CTCA and 76 were excluded due to stenting after the baseline examination 
or low image quality. This results at 187 patients, from which we randomly selected 50% of them (94 patients) 
from various clinical centers. Full explanation of the investigational nature of the study was provided to all par-
ticipants and written consensus obtained. Ethical approval was provided by each participating center (National 
Research Council, University of Turku, University of Zurich, Fondazione Toscana Gabriele Monasterio, Warsaw 
National Institute of Cardiology) through the approval of the clinical study by the Ethics Committee Vast Area 
Northwest of Tuscany (CEAVNO), Pisa, Italy, and all subjects gave written informed consent. Our clinical study 
follows the declaration of Helsinki.

3D reconstruction of the coronary lumen and outer vessel wall was performed using an in-house software, 
which provided measurements of lumen area, plaque volume and plaque burden as previously described and 
 validated12,13. Finally, baseline and follow-up CTCA scans were co-registered using landmarks such as the bifur-
cations and calcified objects.

Multi‑level plaque growth model. The developed plaque growth model consists of three modeling lev-
els: (i) the steady stae simulation of blood flow, (ii) the transient simulation of the LDL, HDL and monocytes 
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accumulation within the arterial wall and the atherosclerotic plaque generation, resulting in the estimation of 
plaque volume and (iii) the simulation of plaque growth in time. The simulation of the blood flow results in 
the evaluation of the endothelial shear stress distribution, which is necessary for the evaluation of the trans-
endothelial flow rates. Even though the arterial wall thickens over time due to atherosclerosis, we assume that 
the transient change of the lumen geometry does not affect the wall shear stress distribution significantly. The 
transient simulation of the atherosclerotic process results in the evaluation of the plaque density distribution. 
The resulted plaque density distribution of the last timestep is then used to evaluate the volumetric strain and 
enable the simulation of the arterial wall thickening. The mathematical formulation is based on differential equa-
tions, which are presented in detail in the Appendix.

Blood flow dynamics. Our model considers blood flow in the lumen domain and a plasma flow in the arterial 
wall domain. Blood is considered as an incompressible Newtonian fluid that presents a density value of 1060 [kg/
m3]14 and a dynamic viscosity value of 0.0035 [Pa  s]15. The fluid dynamics of blood is based on the Navier–Stokes 
equations for laminar, incompressible and Newtonian flows, that account for momentum and continuity conser-
vation, respectively. A steady blood flow was assumed, since this model considers a time duration of years and 
therefore a steady flow profile is assumed that does not affect the plaque growth (1–3).

ρ is the blood density, U is the blood velocity, P is the pressure, τ is the shear stress, μblood is the blood’s dynamic 
viscosity and SM accounts for momentum sources.

Plasma is considered as an incompressible Newtonian fluid that presents a density value of 1000 [kg/m3]14 
and a dynamic viscosity value of 0.001 [Pa  s]15. Plasma flow in the arterial wall is governed by the modified 

(1)∇ · (ρU) = 0,

(2)∇ · (ρU ⊗ U) = −∇p+∇ · τ,

(3)where, τ = −µblood

(

∇U + (∇U)T −
2

3
δ∇ · U

)

.

Table 2.  Clinical characteristics of our population. LDL low density lipoprotein, HDL high density 
lipoprotein, ARB Angiotensin II Receptor Blockers, ACE Angiotensin-converting enzyme.

All patients (N = 94)

Age at follow-up (years) 60.30 ± 8.54

Interscan period (years) 6.11 ± 1.34

Gender (male) 57 (60.64%)

Current smoker 13 (13.83%)

Family history of CAD 49 (52.13%)

Co-morbidities

Diabetes mellitus 14 (14.89%)

Hypertension 116 (58.29%)

Dyslipidemia 68 (72.34%)

Obesity 20 (21.28%)

Biochemical

Triglycerides mg/dL 113.81 ± 62.92

Total cholesterol mg/dL 185.55 ± 45.63

LDL mg/dL 108.16 ± 38.08

HDL mg/dL 55.96 ± 15.51

Medications at discharge

Aspirin 51 (54.26%)

ARB 13 (13.83%)

Beta-blocker 37 (39.36%)

ACE inhibitors 23 (24.47%)

Statin 44 (46.81%)

Stenosis at baseline

No stenosis 17 (18.09%)

< 30% 17 (36.17%)

30–50% 21 (22.34%)

50–70% 13 (13.83%)

70–90% 6 (6.38%)

> 90% 3 (3.19%)
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Navier–Stokes equations laminar, incompressible and Newtonian flows inside a porous media, since the arte-
rial wall can be characterized as such, with a porosity coefficient 0.9616. These equations derive from the 
Navier–Stokes and continuity equations, in which the reduced flow space is considered using the area porosity 
tensor K while the momentum losses are considered in a source term SM. In a material of porosity γ, the area 
porosity tensor is calculated by (4). The momentum losses SM are formulated using the permeability Kperm and 
loss coefficient Kloss, but in our case of a low plasma velocity within the arterial wall, the term including the loss 
coefficient Kloss is neglected as it includes a second degree of the velocity that is tiddley (8). Using the porosity γ 
and the area porosity tensor K, the equations for the conservation of mass (5) and momentum (6) account for 
the decreased flow space and the momentum  losses17,18.

μplasma is the plasma viscosity, Kperm is the Darcian permeability, γ is the volume porosity and K is the area poros-
ity tensor, which is a symmetric second rank tensor. Momentum losses, SM, account for the losses due to the 
permeability decrease and the velocity direction  changes17,18.

Dynamics of the atherosclerotic process. In lumen, blood flows along with LDL, HDL and monocytes. The blood 
concentration of LDL, HDL and monocytes are patient specific and therefore are used as boundary conditions. 
However, after their infiltration in the arterial wall, their concentrations within the arterial wall are calculated 
using the convection–diffusion-reaction Eq. (9), which is also modified to account for flow in porous media as 
presented  previously18,19.

The first term accounts for time-dependent concentration changes, while the second is the advection term 
and accounts for concentration changes due to velocity drift. The third one is the diffusion term, where D is the 
diffusivity. The last term accounts for concentration sources or sinks.

LDL macromolecules react with the free radicals in the arterial wall, forming oxidized LDL and therefore 
their concentration  reduces20. However, HDL macromolecules, that infiltrate to the arterial wall, also react with 
the free radicals and reduce the free radical concentration, leading to a decrease of the LDL oxidation rate. An 
HDL-dependent oxidation rate of LDL was implemented as it was presented by Sakellarios et al.6 which was 
based on the experimental results of Esterbauer et al.20, and it is referred as HDLprotection.

In the LDL sink term, rLDL (= 1.4 × 10–4 s−120) is the LDL oxidation rate, in the absence of HDL macromol-
ecules, while HDLprotection (= − 3 × 10−5cLDL

2 + 5 × 10–4  cLDL + 1.00566) corresponds to the relative decrease of the 
LDL oxidation rate due to the presence of HDL macromolecule.

The presence of oxidized LDL (OxLDL) within the arterial wall sets an inflammatory signalling to monocytes, 
which are accumulated within the arterial wall and differentiate into macrophages to uptake OxLDL, forming 
foam cells.

k2 is the OxLDL uptake rate from monocytes, (= 12 × 10−19m3  cells−1 s−121) and depends on both OxLDL and 
macrophage concentration.

Each equation describing a cells’ dynamics has a zero term for advection, due to the cell’s large size in respect 
to the porous dimension. In most of them the diffusion term is also neglected for the same reason. However, the 
diffusion terms of monocyte and macrophage dynamics are considered, as we assume that these immune cells 
can move according to diffusion forces as previously presented by Cilla et al.9.

(4)Kij
= γδij,

(5)
∂

∂t
γρ +∇ · (ρK · U) = 0,

(6)
∂

∂t
(ργU)+∇(ρ(K · U)⊗ U)−∇ · τ = −γ∇p+ γSM,

(7)where, τ = −µplasmaK

(

∇U + (∇U)T −
2

3
δ∇ · U

)

,

(8)SM,i = −
µ

Kperm
Ui.

(9)
∂

∂t
(γ c)+∇ · (K · Uc) = ∇ · (DK · ∇c)+ Sc.

(10)
∂

∂t
(γ cLDL)+∇ · (K · UcLDL) = ∇ · (DLDLK · ∇cLDL)− γHDLprotectionrLDLcLDL,

(11)
∂

∂t
(γ cHDL)+∇ · (K · UcHDL) = ∇ · (DLDLK · ∇cHDL)− γHDLprotectionrHDLcHDL.

(12)
∂

∂t
(γ cOxLDL)+∇ · (K · UcOxLDL) = ∇ · (DOxLDLK · ∇cOxLDL)+ γ rLDLcLDL − γ k2cOxLDLcM .
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Monocyte apoptosis rate is md (= 2.572 cells  s−1), while dm (= 1.15 × 10–6 s−122) is the monocyte differentiation 
rate to macrophages.

The macrophages differentiation rate to foam cells is k1 (= 3.671 × 10–6  m3mol−1 s−19) and it depends on both 
the OxLDL and macrophage concentration.

Cytokines are produced due to the presence of macrophages and OxLDL within the arterial wall and cause 
the differentiation of contractile smooth muscle cells (SMCs) into synthetic SMCs.

The cytokine degradation rate is dc (= 2.3148 × 10–5 s−123) and its production rate is dr that depends on the 
OxLDL and macrophage concentration. The contractile SMCs differentiation rate into synthetic SMCs has been 
found experimentally to be equal to (1 + exp(− Sr ccytokines/ccytokines,max)), where Sr = 4.16 × 10–8 s−124, showing its 
explicit dependence to the cytokine concentration.

Synthetic SMCs secrete collagen as connective tissue, further increasing plaque volume.

The collagen production rate from synthetic SMCs is gr (= 2.157 × 10–11 g  cells−1 s−125) while its degradation 
rate is dg (= 3.85 × 10–7 s−126).

Endothelial flow rates. The infiltration of species and cells through the endothelium layer can be performed by 
three different pathways. These are the vesicular transcytosis pathway and the pathways through leaky and nor-
mal junctions. The first one accounts for intercellular transport, which is only active in the presence of endothe-
lial cell  receptors27. The other two, account for transport between the endothelium cells, which are regulated only 
by mechanical and diffusion factors, such as pressure and concentration differences across the endothelium. The 
volume fluxes of vesicular transcytosis are negligible in relation to the other two, which allows the application 
of the Kedem–Katchalsky equations that calculate fluxes based on pressure and concentration differences across 
biological  membranes28. The endothelial monocyte fluxes initiate after inflammatory signalling and are defined 
by an experimental equation using both the OxLDL concentration and the blood monocyte concentration, but 
also the endothelial ESS. In particular, high ESS retain monocyte from infiltration.

Nitric oxide concentration is considered implicitly in the LDL and HDL diffusive permeability. It is a chemical 
product of the endothelial nitric oxide synthases (eNOS) and its concentration depends on the partial pressure 
of oxygen and the eNOS  concentration29. Following, eNOS concentration dependence of the applied endothelial 
WSS has been proven  experimentally30.

Equation (21) accounts for plasma velocity through the endothelium, while Eqs. (22–24) account for LDL, 
HDL and monocyte fluxes, respectively. The second term of the plasma velocity equation, which corresponds 
to the decrease of velocity due to osmotic pressure differences, is neglected. Lp is the hydraulic conductivity of 
the endothelium and it is a function of the endothelial ESS developed from blood flow. DPLDL and DPHDL are the 
LDL and HDL diffusive permeability respectively, and are a function of the endothelial nitric oxide concentration 

(13)
∂

∂t

(

γcmonocytes

)

= ∇ ·
(

DmK · ∇cmonocytes

)

− γmdcmonocytes − γ d
m
cmonocytes.

(14)
∂

∂t

(

γ cMacrophages

)

= ∇ ·
(

DMK · ∇cMacrophages

)

+ γ dmcmonocytes − γ k1cOxLDLcMacrophages ,

(15)
∂

∂t
(γ cFoamcells) = γ k1cOxLDLcMacrophages

(16)
∂

∂t

(

γ ccytokines
)

= −γ dcccytokines + γ drcOxLDLcMacrophages,
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cContractileSMCs ,
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)
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∂
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ργ ccollagen
)

= γ grcSyntheticSMCs − γ dg ccollagen.
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−
c,
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(NO)4. In the equation of monocyte flux, mr (= 5.5 × 10–4  m4  mol−1 day−19,31) and ESS0 (= 1 Pa) are constant values, 
that derive from experimental data.

Endothelial NO concentration depends on the partial pressure of oxygen and the endothelial nitric oxide 
synthase concentration (eNOS), which is a function of the mean applied endothelial shear  stresses30.

Wall thickening. To simulate the arterial wall thickening, the arterial wall is treated as a solid domain, which 
expands due to the volumetric strain that is caused by the generation of plaque. More specifically, the volumetric 
strain is calculated based on the simulated plaque volume, which enables a strain-based arterial wall thickening. 
Volumetric strain is defined as the change in volume divided by the original  volume32. Although, the most used 
stress–strain relationship of the arterial wall is a 6-parameter Mooney–Rivlin material  model33,34, we imple-
mented a linear elastic material model, since the volumetric strains that are caused due to plaque growth are 
relatively small. According to that the arterial wall presents a young modulus of 1.06 MPa and a Poisson ratio 
of 0.457.

Due to the low plaque progression rate of our population, we assumed that a one-way interaction between the 
CFD analysis of the atherosclerotic process and the structural analysis of the wall thickening is adequate. There-
fore, in our analysis, the volume change of each finite element is equal to the total volume of the foam cells, col-
lagen and synthetic muscle cells, because their initial concentration inside the arterial wall was considered zero.

where, in (11), cFoam cells, cSynthetic SMC and ccollagen are the concentrations of foam cells (cells/m3), synthetic SMCs 
(cells/m3) and collagen (g/m3) respectively, while VFoam cells, VSynthetic SMC and vcollagen are the cellular volume of foam 
cells and the cellular volume of synthetic SMCs and the specific volume of collagen respectively. Sequentially, 
in (30), V is the volume of a cubic finite element and ε is the resulted strain after a change in volume ∂V. In our 
model, we consider a constrained arterial wall thickening that is available only to the direction of the centerline 
and therefore the directional volumetric strain εdirectional can result from the function:

Numerical implementation. The simulations were conducted using the ANSYS software (ANSYS, Canonsburg, 
PA) which integrate among other finite element and finite volume analysis solvers. Specifically, fluid dynamics 
are performed using the ANSYS CFX software, while the wall thickening is performed in ANSYS mechanical 
module.

Both lumen and the arterial wall domain of each patient were meshed using tetrahedral elements of 0.15 mm 
edges. Several methods were used to improve the mesh quality, such as the patch-independent technique and the 
inflation. Specifically, these parameters were evaluated after monitoring of the element quality statistics. Moreo-
ver, a sensitivity analysis of a normal/typical patient arterial segment was performed based on the tetrahedral 
element size, to further validate the mesh quality (Fig. 4).

Boundary conditions. Fluid domain of lumen. To simulate the blood flow in lumen, inlet is conditioned 
by the patient blood velocity, outlet is conditioned by the patient blood pressure and the endothelium layer is 
considered as an impenetrable and no-slip wall, since endothelial fluxes are too small to affect the blood flow.

Fluid domain of arterial wall. Plasma flow in the arterial wall is constrained with a zero-velocity to the vertical 
sides of the arterial wall, a standard pressure to the adventitia layer and a Kedem-Katchalsky derived velocity at 
endothelium. The arterial wall vertical sides are impenetrable to any substance and species, while at the adven-
titia layer all substances can pass through. The adventitia layer is also constrained with patient-specific LDL and 
HDL concentration values.

(24)LP =
(

0.2077x10−12ln(WSS+ 0.015)+ 3.1588x10−12
)

,

(25)DPLDL = DPHDL = (−6cNO + 0.34)

(26)cNO = cNO,max

(

pO2

pO2 + kM

)

,

(27)cNO,max = 1.26ceNOS,

(28)ceNOS = (0.0033ln(WSS)+ 0.0322).

(29)Ratio Plaquevolume
FiniteVolume

=
∂V

V
= cFoamcells ∗ VFoamcell + cSyntheticSMC ∗ VSyntheticSMC + ccollagen ∗ vcollagen,

(30)
∂V

V
= (1+ εxx)

(

1+ εyy
)

(1+ εzz)− 1 ⇒
∂V

V
≈ εxx + εyy + εzz.

(31)∂V

V
=

(l + dl)l2 − l3

l3
=

dl

l
= εdirectional.
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Figure 4.  (A) Mesh refinement study for the blood flow analysis, (B) Mesh refinement study for the analysis of 
the atherosclerotic process, (C) Mesh refinement study for the wall thickening analysis.
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Solid domain of arterial wall. Regarding the arterial wall thickening, endothelium’s displacement is enabled 
only in the direction towards the arterial centerline, while in the adventitia and the arterial wall sides are condi-
tioned with a frictionless support.

Validation. Plaque growth simulations were performed at the baseline reconstructed arteries and we com-
pared the simulated results with the realistic follow-up examination. The validation approach is based on the 
rationale that the plaque growth model enables the arterial wall deformation in a way that reaches the follow-up 
geometry as this has been assessed by the CTCA. The validation approach requires the extraction of 0.5 mm—
distanced cross-sections of both the baseline and follow-up coronary arteries as shown in Fig. 5. Considering 
that CTCA has also a mean slice thickness of 0.5 mm, we implemented an approach, proposed by Stone et al.35, 
which is considered good approach for the comparison of computational results with morphological findings 
from the imaging data or 3D reconstructed arteries. In particular, to eliminate possible registration errors, the 
rationale is to generate 3 mm segments by combining six sequential 0.5 mm—distanced cross-sections for all 
geometries (baseline, simulated and follow-up) (Fig. 5).

Parameters of the plaque growth model. The plaque growth model simulates the major mechanisms 
of atherosclerosis by employing many differential equations. The equations require some parameters, which 
in majority are found in literature in experimental studies. All the parameters of the plaque growth model are 
shown in Table 3.

Statistical analysis. All continuous variables are presented as mean ± standard deviation. Wilcoxon, 
Fisher’s exact and chi-squared tests were used for the comparison of characteristics within group and between 
groups. Initially, linear regression analysis was performed between all computational variables and the mor-
phological characteristics (lumen area, plaque area, plaque burden and their changes between the baseline and 
follow-up examination). In the next step, a step-wise multivariate regression model was employed, in which only 
the associated variables (P < 0.1) were entered.

Figure 5.  Division of the coronary arteries into 0.5 mm and the combination of six cross sections of 0.5 mm 
provides 3 mm sub-segments of the artery.
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