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The Nernst–Planck–Poisson (NPP) model is used to numerically simulate electrochemical impedance
spectra (EIS) of ion-selective electrodes (ISEs). By using the Hierarchical Genetic Strategy with real num-
ber encoding (HGS(FP)) the reverse problem is solved. The NPP–HGS(FP) method allows estimation of
physicochemical parameters of ISEs with plastic membranes, which is illustrated here by using NPP–
HGS(FP) for obtaining the values of the diffusion coefficients of ions in the ISE membrane phase.

The NPP–HGS(FP) method allows calculation of the most accurate solution of the inverse problem and
can be effectively used to facilitate the process of finding the parameters for optimal ISE performance.

The method presented here not only allows for interpretation of the EIS spectra but also for accounting
for the mechanism of the processes occurring at the interface in terms of physicoelectrochemically valid
concepts.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Electrochemical Impedance Spectroscopy (EIS) is of great
importance in the analysis of electrochemical systems, e.g. elec-
trode kinetics, double-layer studies, batteries, corrosion, and
membranes in analytical chemistry [1,2]. This technique is based
on the disturbance of the electrochemical reaction from its stea-
dy state by applying a small perturbation to the system (e.g.
sinusoidal, step-function excitation signal) and allows the identi-
fication of electrochemical processes occurring in the analyzed
system. Quantitative analysis of impedance spectra is predomi-
nantly based on the equivalent circuits technique or its modifi-
cation, the electrical networks method used for instance in the
SPICE software [3].

In the equivalent circuits technique a circuit is constructed from
simple passive electrical elements (i.e. capacitors, resistors, con-
stant-phase elements, etc.). The main disadvantage of this method
is the lack of uniqueness of the equivalent circuit. This clearly sta-
ted by IUPAC: ‘‘It is definitely wrong to analyze experimental
impedance data by just fitting it to an equivalent circuit corre-
sponding to a trial and error. The reason for this is that the imped-
ance response of several equivalent circuits can follow exactly the
same function of frequency, only with different meanings of the
corresponding elements. In addition, a fit will always be successful
ll rights reserved.

i).
if an unlimited number of parameters is admitted. Without having
an a priori model, the meaning of these parameters is undefined.’’
[4]. The selected circuit represents an analogy to the system in
question and does not strictly derive from its physicochemical
properties as is the case for the non-equivalent circuit methods,
as was accurately emphasized by Macdonald [5].

A much less frequent and more complex approach is the use of
physically relevant models. Examples of such approaches were
presented for metal/solution electrochemistry using RTD and/or
LSV [6,7]. Using the electro-neutrality assumption, these authors
developed solutions of diffusion–migration equations coupled
with a description of electrochemical reactions occurring at the
surface of the metal electrode. Both models make it possible to cal-
culate the complex impedance of the solution/metal system. Tri-
bollet and Newman [6] compared their analytically derived
solution with experimental results. On the other hand, Dan et al.
[7] compared his analytically derived solutions with his own sim-
ulation results.

The aim of this work is to implement a modern inverse method
by combining the Nernst–Planck–Poisson (NPP) initial boundary-
value problem with the Hierarchical Genetic Strategy with real
number encoding (HGS(FP)) in order to obtain optimal parameters
(exemplified here by diffusion coefficients) for ion-selective elec-
trodes (ISEs).

This method (NPP–HGS(FP)) allows us to calculate the full time
response and impedance spectra of ISEs without approximate
assumptions, e.g. the linear dependence of the potential. The
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application of the NPP model directly relates the simulated imped-
ance spectra to the physicochemical parameters of the system.

The NPP model coupled with the HGS(FP) algorithm was suc-
cessfully used [8] for optimization of ISE parameters, e.g. diffusion
coefficients, concentrations of ions in the internal solution, and
measuring time in order to improve the detection limit of ion-
selective electrodes.

2. NPP model

There is a great number of papers devoted to the application of
the NPP system of equations in membrane electrochemistry. Most
of them present steady-state analytical solutions restricted to only
one type of system and/or fixed number of species, e.g. derived for
liquid ionic exchanger [9–13], or neutral carrier membranes
[14,15] where authors developed inter alia the analytical solution
for complex impedance of such membrane.

The application of the time dependent NPP model to membrane
electrochemistry has been presented in a seminal paper [16]. The
authors developed an efficient finite difference scheme, totally im-
plicit in time. The resulting set of non-linear algebraic equations
was solved using the Newton–Raphson method.

An approach, based upon this idea and dedicated to the general
description of ISE behavior, was later developed [17–20].

The first extension of the NPP model for a two layer system was
presented in [21]. The first NPP model implementation where the
method of lines (MOL) [22] was used was presented in [23,24]. La-
ter on, MOL extensions of the NPP model for an arbitrary number of
layers were developed and implemented in C++ [25] in MathCad
[20] and in Matlab [26].

The method introduced in [16] and presented in this paper,
gives the opportunity to follow the changes of concentrations of
species and membrane potential in time and space for an unlim-
ited number of ionic and neutral species and for multilayer sys-
tems [27] and to calculate the complex impedance of such
systems [24,26]. Two last papers present the brief discussion of
the behavior of the NPP model, mainly the influence of the param-
eters of the systems on the shape of simulated impedance spectra.

The Nernst–Planck–Poisson model is an initial-boundary value
problem that for one dimension is given by the set of equations
briefly described below. Let us consider a flat, isotropic membrane
with a constant thickness d, bathed by two solutions, Fig. 1 [17,18].

The ionic fluxes are expressed by Nernst–Planck equation [28–
31]:

Jiðt; xÞ ¼ �Di
@ciðt; xÞ
@x

� ziciðt; xÞ
F

R � T Eðt; xÞ
� �

ð1Þ

where Ji(t, x) is the flux of the ith ion, Di is constant self diffusion
coefficient of the ith ion, ci(t, x) is concentration of the ith ion, zi is
valence of the ith ion, and E(t, x) is electric field strength. F is Fara-
day constant, R and T denote gas constant and absolute
temperature.

The evolution of the electric field is represented by the Poisson
equation, which combines the concentration of ions with the
resulting electric field strength. Assuming that e = const:
Left bathing
solution
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solutionMembrane
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Fig. 1. Schematic representation of the considered system.
@Eðt; xÞ
@x

¼ qðt; xÞ
e

ð2Þ

where qðt; xÞ ¼ F �
P

i
ziciðt; xÞ is the charge density and e is dielectric

permittivity.
The mass conservation law describes the concentration changes

in space and time:

@ciðt; xÞ
@t

¼ � @Jiðt; xÞ
@x

ð3Þ

Following [32], the Poisson equation is replaced by its equivalent
form, the total current equation

IðtÞ ¼ F �
Xr

i¼1

ziJiðt; xÞ þ e
@Eðt; xÞ
@t

ð4Þ

The presence of the displacement current (@E(t, x)/@t) term allows
us to employ the method of lines and to obtain a standard ODEs sys-
tem, as well as to use the Rosenbrock or Radau integration scheme.
The use of the Poisson equation leads to the system of differential–
algebraic equations and will force the employment of much more
sophisticated and complex numerical methods in order to solve this
problem. It is easier to implement the function that describes the
perturbation current signal as well (Eqs. (7) and (12) in the follow-
ing section of this paper).

Fluxes of ions at membrane interfaces are given by Chang–Jaffe
boundary conditions [33]:

Jiðt;0Þ ¼ kL
i

!
ci;L � kL

i

 
ciðt;0Þ

Jiðt;dÞ ¼ kR
i

�!
ciðt;dÞ � kR

i

 �
ci;R

ð5Þ

where kL
i

!
, kR

i

�!
;kL

i

 
; kR

i

 �
are heterogeneous rate constants at interfaces,

where subscript i denotes the component; arrows – direction of
ion permeation; L and R are the left and right boundary of the mem-
brane, respectively. ci,L, ci,R denotes concentrations of the ith ion in
the left and right bathing solutions. The concentrations of ions
and the electric field strength values at the boundaries of the mem-
brane change with time, but the ionic concentration values in both
left and right solutions remain constant. Initial concentrations obey
the electro-neutrality condition and, consequently, there is initially
no space charge in the membrane: cið0; xÞ ¼ c0

i ðxÞ, E(0, x) = 0 for
x e [0, d].The membrane potential, V, is given by:

VðtÞ ¼ �
Z d

0
Eðt; xÞdx ð6Þ

In the NPP model the potential is calculated across the entire
system and not divided arbitrarily into the boundary and diffusion
parts.

Eqs. (1)–(5) were converted into a finite difference scheme with
the space grid containing closely spaced points near the interfaces
and a distinctively wider spacing inside the membrane. The prob-
lem is further simplified by assuming constant diffusion coeffi-
cients and dielectric permittivity. The system of equations
presented above was converted into the system of ordinary differ-
ential equations by using the method of lines. This operation al-
lowed us to use an integration scheme in order to solve
numerically the NPP problem. Owing to the stiffness of the ob-
tained system of ODE, numerical integrators such as Rosenbrock
or Radau were used. The MOL numerical technique we used to
solve the NPP problem differs from the one used in the seminal pa-
per by Brumleve and Buck [16] in that it is faster and more effi-
cient. This difference is, however, of minor importance. The novel
approach is the combination of a relevant physicochemical model
(NPP) and a sophisticated search strategy (HGS-FPP) to solve the
inverse problem.
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3. Electrochemical Impedance Spectroscopy

The impedance of a system can be determined from the linear
response of the system to a small-current perturbation. In this pa-
per, two methods of calculation are used to obtain the real and
imaginary part of the complex impedance. In the first method,
based on the approach described in [16], a system which has
reached steady-state is disturbed by a current with a current den-
sity described by Heavyside’s function:

IðtÞ ¼
0 t < 0
DI t P 0

�
ð7Þ

In the next step, the potential-time response of the system is trans-
formed into a frequency domain with the use of the Fourier trans-
form and approximation of the integrals by the trapezoid rule:

V 0ðxÞ ¼
X

k

DV 0k

V 00ðxÞ ¼
X

k

DV 00k þ V1=x
ð8Þ

DV 0k ¼ ðVðtkþ1Þ � VðtkÞÞðcos xtkþ1 � cos xtkÞ=x2ðtkþ1 � tkÞ
þ ðVðtkþ1Þ � V1Þ sinxtkþ1 � ðVðtkÞ � V1Þ sin xtkÞ=x ð9Þ

DV 00k ¼ ðVðtkþ1Þ � VðtkÞÞðsinxtkþ1 � sin xtkÞ=x2ðtkþ1 � tkÞ
þ ðVðtkþ1Þ � V1Þ cos xtkþ1 � ðVðtkÞ � V1Þ cos xtkÞ=x ð10Þ

In this method, only one simulation is needed to calculate the imag-
inary and real parts of the complex impedance for a broad fre-
quency range.

Z0ðxÞ ¼ �V 00ðxÞ �x=DI

Z00ðxÞ ¼ V 0ðxÞ �x=DI
ð11Þ

Similar results can be obtained using the second method where the
system is perturbed by a sinusoidal excitation signal.

IðtÞ ¼
0 t < 0

DI þ I0 sinðxtÞ t P 0

�
ð12Þ

The potential-time response of the system is the sinus function gi-
ven by the following equation:

VðtÞ ¼ DV þ V0 sinðxt þ /Þ ð13Þ

In order to obtain the complex impedance of the system for a given
frequency (Eq. (14)), the amplitude of the potential response V0 and
the phase angle u must be calculated.

Z�ðxÞ ¼ Z0ðxÞ þ jZ00ðxÞ

Z0ðxÞ ¼ �V0

I0
cosð/Þ

Z00ðxÞ ¼ V0

I0
sinð/Þ

ð14Þ
4. HGS(FP)

The HGS(FP) is a genetic optimization technique. Optimization
methods are based on searching the best fit (‘‘the most useful’’
from the error function point of view) individuals from a given
population. In contrast, in fitting methods only one set of initial
parameters exists. In other words, optimization is a process of test-
ing the population (group) of individuals, which has been created
at the beginning of the algorithm (e.g. by the roulette wheel selec-
tion method) and what is very important are randomly distributed
in the solution’s space. This advantage, in contrast to fitting meth-
ods, allows all (global as well as local) minima (or maxima) of gi-
ven error function to be found. Of course, it is possible to control
the population and this can be realized with the use of genetic
algorithms. It is worth emphasizing that fitting methods are unable
to find all extrema of the error function and it happens very often
that the fitting algorithm is terminated in one of the local mini-
mum/maximum of the error function.

The main advantages of genetic algorithms are: (1) The ability
to search for the most optimal solutions of error functions with
multiple extrema. Non-stochastic (deterministic) methods usually
fail to find global minimum/maximum of such an error function.
(2) Due to the random distribution of individuals in the solution’s
space it is possible to scan a vast interval of values of optimized
parameters. (3) Genetics operations allow new individuals (cross-
over) to be created, as well as moving them (mutation) into new
points of the solution’s space and scanning new areas. (4) The
method allows all minima/maxima of a given error function– glo-
bal and local optima of this function to be found. (5) They are inde-
pendent of the shape of the error plane. For example the Simplex
method is most efficient when the shape of error function mimics
a ‘‘well’’. (6) In contrast to gradient methods, there is no need to
use derivatives of the goal/error function. This advantage allows
searching extrema of the discontinuous functions.

Such algorithms are of interest in many areas. Genetic algo-
rithms are highly efficient when solving problems with many opti-
ma [34,35]. The Hierarchical Genetic Strategy introduced in 2000
[36], and further generalized [37] by the introduction of the float-
ing point encoding, is one such efficient algorithm. The introduc-
tion of the genetic operators, mutation and crossover, in floating
point representation improves the efficiency of the optimization
strategy. The HGS accuracy and low computational cost for multi-
modal benchmarks was shown in [37].

The efficiency, i.e. the low computational cost and effectiveness
of HGS(FP) in finding global optima (maxima or minima), results
from the concurrent search in the optimization space by many
small populations of individuals (solutions) [35,38]. The creation
of these populations is governed by genetic processes with low
complexity [37]. Unlike the majority of genetic algorithms, the
main engine of the HGS(FP) is based on real-number encoding.
The genetic operators are: (1) mutation (i.e. the genotype perturba-
tion of the ‘‘parent’’ individual) which allows random relocation of
the individuals in the environment (optimization space), and (2)
the arithmetic crossover, which is quasi-deterministic. The result-
ing genotype is a combination of the ‘‘parent’’ genotypes. The real
number encoding used in HGS(FP) is much more efficient than the
binary encodings (0, 1 codes) which are usually used. Its efficiency
is due to the conservation of the natural (topological) space where
all variables are real numbers.

The main engine of the Hierarchical Genetic Strategy with real
number encoding runs a set of evolutionary processes [39,40]. In
each evolving step, the algorithm creates a new population which
is searched for optima with higher precision. The two genetic oper-
ators for floating point representation are given by:

(1) crossover (generation of a new individual between two
already existing ones):

Yi ¼ X1
i þNðmean;rÞðX2

i � X1
i Þ; i ¼ 1; :::;N ð15Þ

(2) mutation (generation of a new individual based on already
existing ones):

Yi ¼ X1
i þ ðNð0;rÞÞi; i ¼ 1; :::;N ð16Þ

where Yi denotes a new individual generated by a crossover or
mutation operation, X1

i and X2
i are parent individuals, N(mean, r)



Fig. 2. The example results obtained with the HGS(FP) strategy for the 2-dimensional
test function f ðx; yÞ ¼ cosð5pxÞ þ cosð5pyÞ þ x2 þ y2; x; y 2 ½�0;7; 0;7�. Points
denote the phenotypes of the population.

Table 2
The reference and approximated diffusion coefficients by the NPP–HGS(FP) method.

Diffusion coefficients Di (m2 s�1)

Reference value NPP–HGS(FP) approximation

First run Second run

A2+ 10�11 1.006 � 10�11 0.954 � 10�11

B+ 0.7 � 10�11 0.75 � 10�11 0.715 � 10�11

X� 0.5 � 10�11 0.499 � 10�11 0.595 � 10�11
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denotes the normally distributed random variable, where mean is a
random number and r its variation, respectively.

In order to generate a new population, the classical roulette
selection is used. The probability, Pr (X), of obtaining an individual
X from the population P, (X e P) is:

PrðXÞ ¼ fitnessðXÞP
Y2P

fitnessðYÞ ; 8 X 2 P ð17Þ

where fitness(X) is an estimation of the adaptation of the Xth indi-
vidual (the value of the goal function).

As an example, the results obtained with the HGS(FP) method for
a 2-dimensional test function ðf ðx; yÞ ¼ cosð5 p xÞ þ cosð5 p yÞ þ
x2 þ y2; x; y 2 ½�0;7; 0;7�Þ are shown in Fig. 2. This function is a
generally accepted test function used to compare and evaluate dif-
ferent algorithms. The objective was to find all of the function
maxima.

The points on the mesh show the phenotypes of the popula-
tions. As can be seen, all of the maxima (local and global) are found.

Incidentally, the parallel version of HGS provides for a decrease
in the computation time [39].
5. NPP–HGS(FP) method

The presented work is not the first one devoted to applications
of genetic algorithms in electrochemistry. In contrast to other pa-
pers [41–44], we use basic physical laws and well known electro-
chemical expressions, and solve them numerically in the time and
space domain. In [42] the authors use the simplest form of genetic
algorithm (SGA) in order to create a population of initial parame-
ters of elements of equivalent circuits for further calculations with
the use of the non-linear regression procedure. The method we use
Table 1
Initial concentrations, diffusion coefficients and heterogeneous rate constants used in th
concentration of the ith ion in the membrane phase.

ciL (M) ciM (M) ciR (M) Di (m2 s�1)

A2+ 10�2 5 � 10�4 1 10�11

B+ 0.15 0 0 0.7 � 10�11

X� 0 10�3 0 0.5 � 10�11
allows us to omit the necessity of deriving an analytical function
that describes the complex impedance of the system under consid-
eration, as well as the analysis of equivalent circuits and the use of
a parameter related to equivalent circuits (e.g. charge transfer
resistance, double layer capacitance, etc.). Instead, the NPP–
HGS(FP) method shows the direct relation between the physico-
chemical parameters (e.g. diffusion coefficients, concentrations of
species, membrane thickness) of the system with the ISE and the
responses of this kind of electrode (e.g. calibration curve [8], poten-
tial-time response), as well as the influence of these quantities on
the shape of the impedance spectrum and on the impedance
values.

Using the HGS(FP) strategy to find the optimal parameters, we
reformulate the NPP problem into the optimization one (finding
extremes). The problem is now to find the NPP parameters which
minimize the difference between the reference (experimental)
and calculated (NPP) impedance spectra i.e. to minimize the metric
sum, Eq. (18).

Erf ¼
X

j

gj Re Zj
calc

� �
� Re Zj

exp

� ���� ���
þ
X

j

hj Im Zj
calc

� �
� Im Zj

exp

� ���� ��� ð18Þ

where gj, hj are weight functions, Zj
calc , Zj

exp are calculated and exper-
imental complex impedance values at the jth frequency.

The presented method allows us to find parameters such as
membrane thickness, dielectric permittivity, diffusion coefficients
and concentrations (in the internal reference solution and in the
sample) of all components, as well as the heterogeneous rate
constants.

All the results presented here were obtained with the use of the
NPP model implemented in Matlab coupled with the HGS(FP)
method implemented in C++.

6. Numerical experiments and results

In order to investigate the behavior of the employed algorithm
(NPP–HGS(FP)) we used a well defined system described by the
physicochemical parameters given in Tables 1 and 3. The EIS
spectra for this system were calculated using the NPP model and
the excitation signals given by Eqs. (7) and (12). To these spectra,
different levels of noise (0%, 7%, 15%, 30%) were added according
to the following equations:
e first numerical experiment. er = 4, d = 2 � 10�4 m. ciM denotes the initial uniform

kL
i

!
(m s�1) kL

i

 
(m s�1) kR

i

�!
(m s�1) kR

i

 �
(m s�1)

10�3 10�3 10�3 10�3

4.472 � 10�7 10�3 10�3 4.472 � 10�7

0 0 0 0



Fig. 3. The results of NPP–HGS(FP) compared with the reference spectrum calculated for different values of diffusion coefficients for each ion.

Table 3
Initial concentrations, diffusion coefficients and heterogeneous rate constants used in the second numerical experiment. er = 4, d = 2 � 10�4 m. ciM denotes the initial
concentration of the ith ion in the membrane phase. ciM denotes the initial uniform concentration of the ith ion in the membrane phase.

ciL (M) ciM (M) ciR (M) Di (m2 s�1)
kL

i

!
(m s�1) kL

i

 
(m s�1) kR

i

�!
(m s�1) kR

i

 �
(m s�1)

A2+ 10�2 5 � 10�4 1 10�11 10�3 10�3 10�3 10�3

B+ 0.15 0 0 10�11 4.472 � 10�7 10�3 10�3 4.472 � 10�7

X� 0 10�3 0 10�11 0 0 0 0

Fig. 4. The results of NPP–HGS(FP) compared with the reference spectrum calculated for equal values of diffusion coefficients for each ion. Reference spectrum with no added
noise.
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ReðZÞ� ¼ ReðZÞ þ a � N � ReðZÞ
ImðZÞ� ¼ ImðZÞ þ b � N � ImðZÞ
a 2 ½0;1�
b 2 ½0;1�
N 2 f0;0:07;0:15;0:30g

ð19Þ

where a and b are random numbers from [0, 1] interval. N denotes
the level of added noise.The resulting impedance spectra, with the
added noise, were used as virtual experiment data (reference spec-
tra) to test the NPP–HGS(FP) algorithm. The aim was to obtain the
original physicochemical parameters used to generate the spectra.

In the first virtual experiment, based on the reference spectrum
obtained with the data presented in Table 1, we tried to reproduce
diffusion coefficient values. In this system, every ion has a different
diffusion coefficient. For all diffusion coefficients, a search range
between 10�13 and 10�9 m2 s�1 was used.
The simulations show that the diffusion coefficient of B+ has lit-
tle effect on the shape of the impedance spectrum. The results of
the NPP–HGS(FP) simulations are presented in Table 2 and Fig. 3.
They demonstrate clearly, that HGS(FP) method is the stochastic
one. Diffusion coefficients calculated during two successive runs
have different values, but still remain close to the reference values.

The aim of the second numerical experiment was to mimic the
real experimental conditions, i.e. different levels of noise (0%, 7%,
15% and 30%) were artificially added to the reference spectrum
(Eq. (19)). In this system, the diffusion coefficients of all the ions
are equal (Table 3).

The basic reference spectrum, the spectra with the added noise
and the best fits obtained using the NPP–HGS(FP) method are
shown in Figs 4–7. The values of the approximated diffusion coef-
ficients are shown in Table 4.

The obtained results show good agreement between the ref-
erence values (obtained with the use of virtual experiment)



Fig. 5. The results of NPP–HGS(FP) compared with the reference spectrum with 7% of noise.

Fig. 6. The results of NPP–HGS(FP) compared with the reference spectrum with 15% of noise.

Fig. 7. The results of NPP–HGS(FP) compared with the reference spectrum with 30% of noise.

Table 4
The reference and approximated diffusion coefficients by the NPP–HGS(FP) method.

Diffusion coefficients Di (m2 s�1)

Reference value 0% of noise 7% of noise 15% of noise 30% of noise

A2+ 10�11 0.9 (99) � 10�11 0.989 � 10�11 0.9 (99) � 10�11 0.9 (99) � 10�11

B+ 10�11 1.0096 � 10�11 0.9 (99) � 10�11 0.99998 � 10�11 0.9804 � 10�11

X� 10�11 1.0059 � 10�11 0.9 (99) � 10�11 0.9 (99) � 10�11 0.9 (99) � 10�11
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and the calculated values (NPP–HGS(FP) method) of the diffusion
coefficients. Even for the reference spectra calculated for a sys-
tem with different diffusion coefficients for each ion, as well as
with a high level of noise, the NPP–HGS(FP) method found the
expected solution. In all cases, the deviation from the expected
result was less than 1%.
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The ultimate challenge for the NPP–HGS(FP) method will be to
find the correct values in the case where all ions have different dif-
fusion coefficients and the spectrum contains a high level of noise.

7. Conclusions

It is shown that by applying the NPP and HGS the EIS spectra
could be a source for physicochemical characteristic of ISEs. This
gives a new possibility to assess the physicochemical properties
of the ISEs used and to access their response mechanism.

Two methods for generating impedance spectra using the NPP–
HGS(FP) method were presented. The results obtained by these
methods are in the good agreement.

Calculating the ISE parameters from the EIS spectra, both
without noise and in the presence of an increasing amount of
experimental noise, gave approximately the same results. The
NPP–HGS(FP) method can be used to obtain meaningful values of
diffusion coefficients in the ISE membrane even in experimental
conditions where the noise level is high.

The methods of EIS spectra interpretation based on physical
models are superior to the methods based on equivalent circuits
in the sense that they not only aim at reproducing the phenome-
non of interest but also at accounting for the mechanism of the
processes occurring at the interface in terms of physico-electro-
chemically valid concepts.
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