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The minimal cell concept represents a pragmatic approach to the question of how few
genes are required to run a cell. This is a helpful way to build a parts-list, and has
been more successful than attempts to deduce a minimal gene set for life by inferring
the gene repertoire of the last universal common ancestor, as few genes trace back
to this hypothetical ancestral state. However, the study of minimal cellular systems is
the study of biological outliers where, by practical necessity, coevolutionary interactions
are minimized or ignored. In this paper, we consider the biological context from which
minimal genomes have been removed. For instance, some of the most reduced genomes
are from endosymbionts and are the result of coevolutionary interactions with a host;
few such organisms are “free-living.” As few, if any, biological systems exist in complete
isolation, we expect that, as with modern life, early biological systems were part of an
ecosystem, replete with organismal interactions. We favor refocusing discussions of the
evolution of cellular systems on processes rather than gene counts. We therefore draw
a distinction between a pragmatic minimal cell (an interesting engineering problem), a
distributed genome (a system resulting from an evolutionary transition involving more than
one cell) and the looser coevolutionary interactions that are ubiquitous in ecosystems.
Finally, we consider the distributed genome and coevolutionary interactions between
genomic entities in the context of early evolution.

Keywords: minimal genome, distributed genome, last universal common ancestor, coevolution, evolutionary
transitions, communal ancestor, levels of selection

INTRODUCTION

The minimal genome concept is a theoretical idea that has been considered in two different arenas.
One is synthetic biology, an area of biological engineering where there is interest in establishing
the minimal machinery for a cell (Peterson and Fraser, 2001; Dewall and Cheng, 2011; Juhas et al.,
2011; Acevedo-Rocha et al., 2013). The other is in cell origins, where there has been interest in
establishing the nature of early cellular systems (Mushegian, 1999; Koonin, 2003). Synthetic biology
has made strong technical advances, with key proof-of-principle results such as systematically
screening for essential genes (Hutchison et al., 1999; Glass et al., 2006), synthetic genome assembly
(Gibson et al., 2008), transformation of a cell with a chemical genome (Gibson et al., 2010),

Frontiers in Microbiology | www.frontiersin.org October 2015 | Volume 6 | Article 11441

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://dx.doi.org/10.3389/fmicb.2015.01144
https://creativecommons.org/licenses/by/4.0/
mailto:anthony.poole@canterbury.ac.nz
http://dx.doi.org/10.3389/fmicb.2015.01144
http://journal.frontiersin.org/article/10.3389/fmicb.2015.01144/abstract
http://journal.frontiersin.org/article/10.3389/fmicb.2015.01144/abstract
http://journal.frontiersin.org/article/10.3389/fmicb.2015.01144/abstract
http://loop.frontiersin.org/people/138728/overview
http://loop.frontiersin.org/people/225515/overview
http://loop.frontiersin.org/people/111843/overview
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2015.01144&domain=pdf&date_stamp=2015-10-19
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Poole et al. Early cellular systems and biological interactions

and the development of computational cellular models derived
from genomic knowledge (Karr et al., 2012).

The synthetic biology approach to minimal cells is pragmatic,
though of unclear value to evolutionary questions pertaining to
cellular origins. As an engineering project it is very productive
and has a straightforward definition: it is simply the microbe
with the smallest genome that is able to grow in axenic culture.
There may of course be numerous minimal genomes for growth
media, and hence there need not be a definitive minimal genome
(Smalley et al., 2003; Dewall and Cheng, 2011; Juhas et al., 2014).
On the criterion of growth in axenic culture, an organism can
be designated “free-living” if it can be cultured in the absence of
other organisms. Through this criterion, Mycoplasma genitalium
is a good candidate for a minimal genome (Hutchison et al.,
1999), though growing it in this way has the effect of removing
it completely from its natural context, where, as an obligate
intracellular pathogen, it is not in the least bit free-living (Dewall
and Cheng, 2011).

In contrast, the use of comparative genomics to reconstruct
the hypothetical last universal common ancestor (LUCA) has
been less successful. A range of studies indicate that few genes
are common to all three domains of life (Bacteria, Archaea, and
Eukaryotes), and fewer still can be said to have an evolutionary
history consistent with placement in some hypothetical common
ancestor (Harris et al., 2003; Koonin, 2003; Hoeppner et al.,
2012; Goldman et al., 2013). Horizontal gene transfer (Koonin,
2003), secondary gene losses (Becerra et al., 1997), and loss of
evolutionary signal (Penny and Poole, 1999; Penny and Zhong,
2014) all obscure or erase early evolutionary history. It is not
clear how to establish which, if any, of the many processes for
extracting a living from the environment is the most ancient
(though opinions abound), and it seems there is little to be gained
from revisiting this question with ever larger genomic datasets.
Moreover, there is no reason to expect that the LUCA was in
any way a minimal cell, and it is difficult to equate the two,
other than to assess the core of processes common to known
biological systems (Goldman et al., 2013). The common ground
between these efforts is that both the LUCA and the minimal cell
concept focus on the internal parts-list of the genome: the gene
set.

The point of this piece is to begin thinking about early evolution
against the backdrop of biological interactions. We think that
this is helpful for several reasons. First, systems that exist in
isolation are probably the exception rather than the rule. Second,
evolutionary transitions theory has provided the means by which
to understand the emergence of complex systems, from replicators
to cells to eukaryote cells with organelles, and is prefaced on
interactions.

As a way to navigate this topic, we briefly summarize three
concepts:

1. The pragmatic minimal genome concept
2. The evolutionarily stable distributed genome
3. Coevolutionary ecosystem interactions

Wewill then consider howbiological interactionsmay help inform
our understanding of early evolution.

THE PRAGMATIC MINIMAL GENOME
CONCEPT

As mentioned above, the pragmatic minimal genome concept
has a straightforward definition. It is part of the wider question
in biology of establishing, for any system, what is essential and
what is functionally critical. “Essential” and “functionally critical”
sound identical, but are not. In transposon mutagenesis studies,
the definition of essential derives from whether a gene can be
knocked out. For instance, two paralogs may each be knocked out
individually, such that global transposon mutagenesis (Hutchison
et al., 1999) and related Tn-seq methods (Barquist et al., 2013)
would designate each a non-essential gene. However, if knocking
out both is lethal, then having at least one of these genes is
functionally critical: without one of these genes, the function is
not maintained. Hence the process is functionally critical, but the
individual genes are not essential. It is this combinatorics problem
(establishing howmany genes can be knocked out simultaneously)
that makes generating, rather than inferring, a minimal genome
such a challenge.

From the point of view of a minimal cellular system, growth
in axenic culture focuses enquiry on individual cells, in the
context of a controlled environment. However, it has been pointed
out that some model systems are neither naturally free-living
nor autotrophic, so are clearly dependent on other organisms
(Dewall and Cheng, 2011). In this view, free-living autotrophs
would constitute a more appropriate system, because they can
grow on a minimal medium composed of simple compounds
that may have an abiotic origin. That said, it is clear that
organismal and ecological interactions are not absent from
candidate minimal species such as Prochlorococcus (Coleman and
Chisholm, 2007; Lindell et al., 2007). Indeed,Prochlorococcus lacks
catalase and has been shown to be dependent upon the hydrogen
peroxide scavenging capacity of other microbes (Morris et al.,
2011). More generally, genomic streamlining may drive loss of
expensive, leaky traits as these can be derived through interactions
(Morris, 2015). There may well be cellular entities that have
few or no interactions with other biological systems—perhaps in
deep subsurface communitieswhere chemolithoautotrophs derive
resources directly frommineral sources, there are few interactions
because cell densities are low. A recent study estimates <1
cell/gram of sediment in samples from 2.5 km below the sea floor
(Inagaki et al., 2015). Such extremes aside, it seems likely thatmost
microbes do not exist in splendid isolation.

Against this backdrop of interactions, that genomes smaller
than that of M. genitalium derive from bacterial endosymbionts
indicates that, while genomes with fewer genes do exist, they do
so not in isolation, but in close interaction. In comparison to
the inferred minimal genome of M. genitalium, which carries an
estimated 382 genes (Glass et al., 2006), the genome sequence
of Carsonella, an endosymbiont of psyllids, is both smaller and
carries fewer genes (160 kb, 182 open reading frames (ORFs);
Nakabachi et al., 2006). However in this instance, it seems that
this endosymbiont has too few genes to perform all the processes
required for independent reproduction. Thus, endosymbionts
such as Carsonella fall outside the pragmatic minimal genome
concept. That said, if we ignore the biological context required
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for reproduction, replicating entities can carry much less
genetic information than Carsonella. The logical, though absurd,
endpoint is aminimal replicating element (Wegrzyn, 2001), which
at its extreme is a single nucleotide [see (Dawkins, 1982) who
noted this and labeled it “reductio ad absurdum,” andGriffiths and
coworkers for subsequent discussion (Griffiths and Neumann-
Held, 1999; Sterelny and Griffiths, 1999)].

THE EVOLUTIONARILY STABLE
DISTRIBUTED GENOME

While the genome ofCarsonella is a stunning example of a highly-
reduced endosymbiont genome, the context of the endosymbiont
is clearly key—it is only possible to understand the genomewithin
the context of coevolution with its host. In a number of cases,
it seems that the host and endosymbiont have become so tightly
integrated that one cannot exist without the other.

Indeed, endosymbionts like Carsonella and Buchnera, the
maternally-inherited obligate endosymbiont of aphids, may well
be on their way to becoming organelles, owing to ongoing genome
reduction (Andersson, 2000, 2006). Taken in this light, their
genomes aremuchmore intact than genomes resulting frommuch
older endosymbiotic interactions, such as the mitochondrion
and chloroplast, and diminutive nucleomorph genomes resulting
from secondary endosymbiosis (Archibald, 2007). The logical
genomic endpoint of reductive evolution is an organelle without
genes. This is seen in hydrogenosomes, the majority of which
now completely lack DNA [though some carry genomes larger
than the human mitochondrial genome (de Graaf et al., 2011)].
In this instance, the process of genome integration is complete,
as all genes have relocated to a single compartment (the
nucleus). In most cases, this endpoint may not be possible:
the redox regulation of gene expression may necessitate the
retention of genes in both chloroplasts and mitochondria (Allen,
2015).

Thus, some endosymbiont genomes clearly derive from free-
living lineages, but may be difficult or impossible to grow in
axenic culture, as they are far too dependent upon their host.
In these instances, they may be well on the way to becoming
part of a distributed genome. By this, we mean that the set
of essential genes are distributed across multiple genomes in
the same cell (perhaps organism) and coevolve and operate as
a single evolutionary unit. In this respect distributed genomes
are an evolutionarily stable state deriving from what once were
individual entities (Maynard Smith, 1991; Kiers and West, 2015;
Szathmáry, 2015). The “minimal number” of genes retained in
one compartment is clearly less informative than this broader
evolutionary understanding of the process.

More generally, the distinction between the state immediately
prior to the evolutionary transition and directly after may be
difficult to assess, and, in terms of genetic events, a bit of
a holy grail: it may be futile to try to state which genetic
change—a specific instance of gene loss, compartmental transfer,
or coevolutionary molecular interaction—was the point at which
the transition occurred. There is nothing to say transitions require
one specific discrete change, though, viewed as a spectrum from
pre-transition to post-transition, there are states that are clearly

one or the other. Considered as a process, whether there is an exact
event becomes less important.

One final point requires us to return to the example of
Mycoplasma, where, because it is an obligate intracellular parasite,
there is an asymmetry to the dependency: the parasite can become
highly specialized and dependent upon its host, while the host
would be quite happy in the absence of the parasite, even if it may
have coevolved in its presence. Note that this kind of “extended
genome” is not an evolutionary unit, so does not fit the above
definition of a distributed genome.

THE ISOLATED MINIMAL GENOME
VERSUS COEVOLUTIONARY SYSTEMS

Distributed genomes are the product of an evolutionary
transition, where none of the parties can revert to the ancestral,
unintegrated state. Distributed genomes have clearly emerged
in the evolution of the eukaryote cell (Szathmáry, 2015), and
in secondary endosymbiosis (Curtis et al., 2012). This process
has clearly been repeated multiple times in eukaryote evolution,
and interactions between eukaryote hosts and their bacterial
endosymbionts may represent early stages in this process (Poole
and Penny, 2007). Thus, endosymbionts that are well on the
spectrum to becoming organelles are not minimal genomes, but
may be part of an emerging distributed genome, though it may
be difficult in practice to determine the tipping point at which a
set of closely interacting individuals becomes an evolutionarily
stable, distributed genome.

As mentioned earlier, it seems difficult to imagine many
biological systems that exist in total isolation. In that respect,
most biological systems involve genome interactions at some level,
and many of the species with the most minimal genomes show
extensive genome-level dependencies. Consider the following
thought experiment:

“Try to imagine a plant that can survive and reproduce in
a real ecosystem without using, in addition to its nuclear
genome, most of the following: a mitochondrial genome
(to convert energy); a chloroplast genome (to regulate
photosynthesis); one or more mycorrhizal fungal genomes
(to improve nutrient and water uptake); the genomes of
pollinators (to assist in reproduction); and the genomes of
a few birds, mammals, or ants (to move seeds around the
ecosystem).” (Thompson, 2006)

This illustration at once indicates that few, if any, genomes exist
in genuine isolation from any other genome. In that respect, itmay
be tempting to state that the pragmatic minimal genome, by only
requiring growth in axenic culture, utterly divorces the genome
from its biology. In one respect, that is certainly the case: it is an
extreme that follows from isolating the organism from its lifestyle,
and which focuses on a very different research question than the
ecological one raised above. However, this ecological idea could
conceivably be taken to another extreme—that all life is a globally-
distributed genome. Indeed, there has been some debate along
these lines in ecological circles (Dagg, 2002, 2003). While few
would subscribe to a “genomic Gaia,” this point is relevant because
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this type of model has beenmooted inmodels of early cellular life,
where the ideas of a planetarymegaorganism (Mathieu and Sonea,
1995) or communal ancestor driven by global horizontal gene
transfer (Woese, 2002; Goldenfeld andWoese, 2007) have become
popular (Kim and Caetano-Anolles, 2011). There is every reason
to expect horizontal gene transfer to have played an important
role in early evolution, where it may have contributed to the
emergence of the modern genetic code (Vetsigian et al., 2006).
However, the difficulty for both some sort of genomic Gaia and
microbial planetary megaorganisms is that they both rely on
strong group selection and ignore the effect of selection at lower
levels (Dawkins, 1982; Williams, 1992; Dagg, 2003; Poole, 2009;
Szathmáry, 2015).

Difficulties with the communal ancestor model in light of
levels of selection has been discussed in detail elsewhere (Poole,
2009), but one general difficulty with this class of model is that
it is susceptible to parasites. Indeed, some simple systems such
as hypercycles (where each gene in the cycle replicates itself
and the next gene in the cycle) can be crashed by a parasite
(an element that prefers to replicate instead of the next gene in
the cycle; Maynard Smith, 1979). Such cycles are stable where
there are barriers to interaction (Boerlijst and Hogeweg, 1991),
which moves us away from a communal ancestor, where transfer
barriers do not exist and are in fact selected against (Woese, 1998).
Moreover, cellular membranes would in themselves represent a
natural barrier to gene transfer (thus requiring the evolution of
active transfer processes; Poole, 2009), suggesting a system where
gene transfer was dominant and vertical inheritance insignificant
would be difficult to explain on biophysical grounds. Finally,
mobile elements that spread effectively through horizontal gene
transfer have evolved to exclude competitors. A good example
of these are toxin-antitoxin systems, which, when coded on
a plasmid, will exclude other elements via a process of post-
segregational killing (Cooper and Heinemann, 2000, 2005). In
this process, competitor plasmids cannot invade the population
because loss of the incumbent—toxin-antitoxin bearing—plasmid
leads to cell death (because the toxin is longer-lived than the
antitoxin, so loss of both genes leads to toxin-induced death). As
a result, any displacement events are ultimately futile. One class
of toxin-antitoxin system that has a broader effect on transfer are
restriction-modification systems, which consist of a modification
methylase, that marks DNA at specific palindromic motifs, and
a restriction endonuclease, which cleaves at those same motifs,
but only if they are not methylated. This leads to the cleavage
of any DNA that comes into the cell from a foreign source
(viruses, plasmids and cells lacking the restriction-modification
system; Naito et al., 1995, 1998), so is a form of molecular
patch-protection by a horizontally-transmitted parasite. The net
effect is thus that all transfer events are reduced. Thus, we
conclude that all three of these effects (unhindered parasitic
spread, biophysical barriers, and reduction in transfer levels by
horizontal replicators) all speak against a communal ancestor
model.

In summary, the simple answer to why a globally-distributed
genome is not viable in the forms presented thus far is that
they confuse interactions between entities (be they mobile genes
interacting via co-occupancy of compartments or organisms

interacting in an ecosystem) and levels of selection (Poole, 2009).
The theoretical tools to resolve this are well developed—this is the
theory of evolutionary transitions (Szathmáry, 2015).

IMPLICATIONS FOR EARLY EVOLUTION

It is our view that the pragmatic approach to minimal genomes
works completely adequately for synthetic biology. Though the
combinatoric problem of shaving genes from the parts list may
be difficult in practice, an approximate answer can be arrived at
and incrementally improved. A completely different approach is
building a cell completely from scratch, as per Gánti’s chemoton
model (Gánti, 2003). Though at present a theoretical conception,
it has value for both origins and as an alternative approach to
the genome design question owing to its generalization of the
problem. The area where we think that the minimal genome
concept is less pragmatic, and more in need of discussion, is
with regard to early evolution. We therefore end with a brief
consideration of the three concepts described in this paper:
pragmatic minimal, distributed genome, and coevolutionary
interaction.

In the case of the pragmatic minimal genome, the genome is
studied in complete isolation. Under a model where cells emerge
from an abiotic environment, minimal cellular systems would be
autotrophs of some kind with a minimal set of environmental
interactions. This is possible, but ignores how cells evolved in
the first place. It is clear that early pre-cellular systems are the
product of gene-level interactions. The emergence of entities such
as chromosomes and cells are still best understood in terms of
evolutionary transitions following on from interactions between
individual entities (Szathmáry, 2015), and there is emerging
experimental support for cooperative behavior as a feature of
RNA-based systems (Vaidya et al., 2012; Higgs and Lehman,
2015). Second, it suggests that our view of LUCA has been
far too skewed toward a parts-list, and removes the cell from
its surrounds. In that regard, the ideas of Forterre, who has
championed coevolutionary interactions between viruses and
cells as an important feature of early evolution (Forterre, 2006;
Forterre and Prangishvili, 2009), help us in appreciating that
cells probably never existed in isolation. As nicely explained
by Gogarten and colleagues (Fullmer et al., 2015), both Black
Queen evolution, where interdependencies emerge following loss
from some individuals of a leaky common good gene (it is
leaky because producers cannot monopolize the product), and
horizontal transfer of pan-genome genes between individuals
both involve coevolutionary interactions.

We also need to be careful not to overextend the reach
of biological interactions. As discussed above, this has been
done repeatedly in other areas of biology, mostly because
of a misunderstanding of which levels selection operates. In
this regard, a communal ancestor or megaorganism model is
problematic because, from the perspective of levels of selection,
the megaorganism is no different from the unworkable Gaia
hypothesis. In its form of a single, interconnected communal
system, it can only work if there are multiple communal ancestors
interacting and competing for a common resource. This point
is no different from the point Dawkins made in regard to Gaia
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requiring earth-like planets in competition for the same resource
(Dawkins, 1982). The important point here is that, theoretically,
both can work—Gaia works if multiple planets are competing(!),
and a communal ancestor/megaorganism only ifmultiple separate
communal ancestors are in direct competition. That seems
difficult, and, importantly, is unnecessary, if the main point of
the communal ancestor is to highlight the potential for horizontal
gene transfer to contribute to early evolution: it is possible to have
gene transfer without invoking this extreme. Thus, the lesson of
past errors of interpretation is clear: in refocusing on interactions,
we need to keep levels of selection front and centre.

Thus, in the world before eukaryote cells, which were the first
entities with distributed genomes (an evolutionary transition),
interactions between cells were effectively a set of ecological
interactions (akin to the mycorrhizal fungi, pollinators and seed
dispersers in the scenario quoted from Thompson, above). The
real difficulty is that metabolic interactions between early cells are
completely invisible to us. It may therefore be most productive
to study processes such as the emergence and evolutionary

stability of ecological interactions (Foster and Wenseleers, 2006;
Morris et al., 2014; Oliveira et al., 2014; Morris, 2015) rather
than searching for historical interactions. In that regard, it is
worth noting that simple ecological interactions can be described
as hypercycles (Maynard Smith and Szathmáry, 1995). More
practically, minimal ecosystems (Guerrero et al., 2002), modeling
(Oliveira et al., 2014), and experimental study of Black Queen
evolution (Morris et al., 2014) and syntrophic interactions (Mee
et al., 2014) all suggest a productive way forward for the study of
the evolution of early cellular life, as these place both genome and
organism in a biological context.
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