
October 9, 2017 Optimization Methods & Software karmitsa˙gaudioso˙joki

To appear in Optimization Methods & Software
Vol. 00, No. 00, Month 20XX, 1–20

Diagonal Bundle Method with Convex and Concave Updates for

Large-Scale Nonconvex and Nonsmooth Optimization

N. Karmitsaa∗ and M. Gaudiosob and K. Jokia

aDepartment of Mathematics and Statistics, University of Turku, FI-20014 Turku, Finland;
bDipartimento di Elettronica e Sistemistica, Universitá della Calabria, 87036, Rende (CS), Italy

(Submitted: April 2017)

Nonsmooth optimization is traditionally based on convex analysis and most solution methods
rely strongly on the convexity of the problem. In this paper, we propose an efficient diagonal
bundle method for nonconvex large-scale nonsmooth optimization. The novelty of the new
method is in different usage of metrics depending on the convex or concave behaviour of the
objective at the current iteration point. The usage of different metrics gives us a possibility
to better deal with the nonconvexity of the problem than the sole — the most commonly
used and quite arbitrary — downward shifting of the piecewise linear model does. The con-
vergence of the proposed method is proved for semismooth functions that are not necessarily
differentiable nor convex. The numerical experiments have been made using problems with
up to one million variables. The results to be presented confirm the usability of the new
method.

Keywords: Nondifferentiable optimization; nonconvex problems; bundle methods, diagonal
variable metric updates

AMS Subject Classification: 65K05; 90C06; 90C26; 90C53

1. Introduction

Nonsmooth optimization (NSO) refers to the general problem of minimizing (or max-
imizing) functions that have discontinuous gradients (see e.g., [5]). NSO problems are
encountered in many application areas: for instance, in economics [41], mechanics [39],
engineering [38], control theory [14], optimal shape design [24], machine learning [27], and
data mining [4, 9] including cluster analysis [6, 15, 30, 31] and classification [2, 3, 7, 12].
Most of these problems are large-scale and nonconvex.

In this paper, we are consider solving the problem of the form{
minimize f(x)

subject to x ∈ Rn,
(P)

where the objective function f : Rn → R is supposed to be semismooth and the number of
variables n is supposed to be large. Note that no differentiability or convexity assumptions
for the problem (P) are made.

NSO problems are in general difficult to solve even when the size of the problem is

∗Corresponding author. Email: napsu@karmitsa.fi

October 9, 2017 Optimization Methods & Software karmitsa˙gaudioso˙joki

small. In addition, besides problematics of nonsmoothness and the size of the problem,
nonconvexity adds another challenge; NSO is traditionally based on convex analysis and
most solution methods rely strongly on the convex model of the problem. Fortunately,
several nonconvex algorithms have been introduced only recently, for instance, in [1, 10,
17–20, 22, 23, 32, 40]. Nevertheless, most of these algorithms are developed only for
small-scale problems.

The convex model of the objective function is usually reasonably good for nonconvex
problems as well, except in some areas where there exists so-called concave behaviour in
the objective. In these cases the linearization error, used as a measure of the goodness
of the current piecewise linear model, has negative values and the model is no longer
an underestimate of the objective. The common way to deal with this difficulty is to do
some downward shifting (e.g. to use the so-called subgradient locality measures instead of
linearization errors), but the amount of this shifting may be more or less arbitrary. In [17,
20] the concave behaviour in the objective is somewhat better minded. The contribution
to the model of points characterized by positive or negative values of the linearization
error is kept separate, which results in the need to maintain two distinct “bundles” of
information.

In this paper, we introduce a new splitting metrics diagonal bundle algorithm (SMDB)
for solving general, nonconvex, large-scale NSO problems. The SMDB combines the ideas
of the diagonal bundle method (D-Bundle, [28]) to different usage of metrics depending
on the convex or concave behaviour of the objective at the current iteration point. The
D-Bundle, in turn, is developed for sparse large-scale nonsmooth, possible nonconvex,
optimization. It is a successor of the limited memory bundle method (LMBM, [21, 22])
and the variable metric bundle method (VMBM, [35, 42]) and better capable of handling
large dimensionality and sparsity of the objective. In the D-Bundle the nonconvexity
is taken into account by means of subgradient locality measures. The idea of splitting
the data with the SMDB comes from [17, 20]. However, instead of splitting the bundle
information (i.e. the subgradient information) we now compute different variable metric
approximations depending on the point.

The SMDB shares the good properties of the D-Bundle. That is, the time-consuming
quadratic direction finding problem appearing in standard bundle methods (see eq. [26,
33, 36]) need not be solved, nor does the number of stored subgradients need to grow
with the dimension of the problem. Furthermore, the method uses only a few vectors
to represent the diagonal variable metric approximation of the Hessian matrix. Thus,
it avoids storing and manipulating large matrices, as in the VMBM, and using dense
approximations to the Hessian, as in the LMBM. The usage of different metrics in the
SMDB gives us a possibility to better deal with the nonconvexity of the problem than
the sole usual subgradient locality measure used in the D-Bundle does.

This paper is organized as follows. In Section 2, we introduce our notation and recall
some basic definitions and results from nonsmooth analysis. In Section 3, we discuss the
basic ideas of the SMDB and, in Section 4, we prove its convergence. The results of the
numerical experiments are presented and discussed in Section 5 and Section 6 concludes
the paper.

2. Notations and Background

In this section, we give our notation and recall some basic definitions and results from
nonsmooth analysis.

We denote by ‖·‖ the Euclidean norm in Rn and by a>b the inner product of vectors

2

October 9, 2017 Optimization Methods & Software karmitsa˙gaudioso˙joki

a and b (bolded symbols are used for vectors). In addition, we denote by diag(a), for
a ∈ Rn, the diagonal matrix such that diag(a)i,i = ai. The Frobenius norm of a matrix
A ∈ Rn×n is denoted by ‖A‖F . That is, we define

‖A‖F =

√√√√ n∑
i=1

n∑
j=1

A2
i,j .

The subdifferential ∂f(x) [13] of a locally Lipschitz continuous function f : Rn → R at
any point x ∈ Rn is given by

∂f(x) = conv{ lim
i→∞
∇f(xi) | xi → x and ∇f(xi) exists },

where “conv” denotes the convex hull of a set. A vector ξ ∈ ∂f(x) is called a subgradient.
The point x∗ ∈ Rn is called stationary if 000 ∈ ∂f(x∗). Stationarity is a necessary

condition for local optimality and, in the convex case, it is also sufficient for global
optimality. An optimization method is said to be globally convergent if starting from any
arbitrary point x1 it generates a sequence {xk} that converges to a stationary point x∗,
that is, {xk} → x∗ whenever k →∞.

3. Splitting Metrics Diagonal Bundle Method

In this section, we introduce a new splitting metrics diagonal bundle algorithm SMDB
for solving general, nonconvex, large-scale NSO problems. We assume that at every point
x ∈ Rn we can evaluate the objective function f(x) and obtain one arbitrary subgradient
ξ from the subdifferential ∂f(x).

We start this section with a simplified flowchart of the new method (in Figure 1) to
point out the basic ideas. The SMDB is characterized by the usage of null steps together
with the aggregation of subgradients. Moreover, the search direction is calculated by using
diagonal variable metric updates. Two alternative update rules can be selected, according
to the “local convex” or “local concave” behaviour of the objective function identified by
the linearization error. Using null steps gives sufficient information about the nonsmooth
objective function in case the current seach direction is not good enough. On the other
hand, a simple aggregation of subgradients guarantees the convergence of the aggregate
subgradients to zero and makes it possible to evaluate a termination criterion.

Now, we first describe in more detail the different components of the method and then
introduce the entire algorithm.

Linearization error. As already stated, the SMDB uses the sign of the linearization
error to detect the “convex” or “concave” behaviour of the objective. The linearization
error αk+1 associated with point yk+1 is given by

αk+1 = f(xk)− f(yk+1) + ξ>k+1dk,

where xk is the current iteration point, yk+1 = xk + dk is a new auxiliary point, dk
is the current search direction and ξk+1 ∈ ∂f(yk+1). In particular, we say that point
yk+1 exhibits a “convex”or “concave” behaviour w.r.t. xk, according to the positive or
negative sign of αk+1, respectively.

3

October 9, 2017 Optimization Methods & Software karmitsa˙gaudioso˙joki

Splitting Metrics Diagonal Bundle Algoritm

Initialization:

Serious Step
Initialisation:

Set .

 Auxiliary Step:
 Evaluate

 and

Desired Accuracy?

Serious Step?

 Aggregation:
 Compute

Null Step?

 "Convex" Null Step:
 Update .

No

 "Concave" Null Step:
 Update .

 "Concave" Direction
 Finding: Compute
 and

"Convex" Direction
Finding: Compute

Stop

 ?

Yes

No

Yes

No

 Serious Step?

 Serious Step:
 If update
 Otherwise, update
 Set

Yes

No

Yes No

Yes

 Line Search:
 Evaluate
 and

Figure 1. Flowchart of the SMDB. Here, ξ̃ is an aggregate subgradient, D+ and D− are the convex and the

concave update matrices, respectively, α is the linearization error, and ε is the stopping tolerance.

4

October 9, 2017 Optimization Methods & Software karmitsa˙gaudioso˙joki

Matrix Updating and Splitting of Data. We use the diagonal update formula intro-
duced in [25] for updating the matrices in the SMDB, since for this formula it is easy
to check and guarantee the positive (negative) definiteness of generated matrices. More-
over, using a diagonal update matrix requires minimum amount of storage space and
computations.

A maximum number, say 2mc, of correction vectors is used by the SMDB to compute
updates for matrices. These correction vectors are quite similar to those in the classical
limited memory variable metric methods for smooth optimization (see, e.g. [11]). That
is, the correction vectors are given by sk = yk+1 − xk and uk = ξk+1 − ξm with ξk+1 ∈
∂f(yk+1) and ξm ∈ ∂f(xk). Note that, due to the fact that the gradient does not need to
exist for nonsmooth objective, the correction vectors are computed using subgradients.
In addition, due to usage of null steps we may have xk+1 = xk. Thus, we use here
the auxiliary point yk+1 instead of xk+1. Furthermore, instead of just one couple of
correction matrices Sk = [sk−mc+1 . . . sk] and Uk = [uk−mc+1 . . .uk] used in [11] and in
the D-Bundle [28], we now use different corrections matrices depending on the sign of
the linearization error. That is, we append sk and uk to S+

k and U+
k , if αk ≥ 0 and to

S−k and U−k , otherwise. This means that in each matrix S+
k (U+

k) and S−k (U−k) we have

(at most) mc correction vectors sî (uî) with indices î ∈ {1, 2, . . . , k}, and no î can be in

both S+
k (U+

k) and S−k (U−k). For simplicity, we will from now on denote these indices by

î ∈ {1̂, . . . , m̂c}. Note that m̂c may be smaller than mc and m̂c may be different for S+
k

(U+
k) and S−k (U−k).
The approximation of the Hessian B+

k+1 (B−k+1) is chosen to be a diagonal matrix and
the check of positive (negative) definiteness is included as a constraint into the problem.
Thus, the update matrix B+

k+1 is defined by
minimize ‖B+

k+1S
+
k − U

+
k ‖

2
F

subject to (B+
k+1)i,j = 0 for i 6= j

(B+
k+1)i,i ≥ µ, i = 1, 2, . . . , n,

(1)

for some µ > 0. This minimization problem has a solution

(
B+
k+1

)
i,i

=

{
bi/Qi,i, if bi/Qi,i > µ

µ, otherwise,

where b = 2
∑m̂c

i=1̂
diag(si)ui and Q = 2

∑m̂c

i=1̂
[diag(si)]

2 with si ∈ S+
k and ui ∈ U+

k .

In our computations, we use the inverse of this matrix, that is, D+
k =

(
B+
k

)−1
. We call

this approximation D+
k the “convex approximation”. The diagonal components of D+

k
are given by

(
D+
k+1

)
i,i

=

µmin, if Qi,i/bi < µmin

Qi,i/bi, if Qi,i/bi > µmin and Qi,i/bi < µmax

µmax, otherwise.

Note that in addition to the upper bound µmax = 1
µ , we also use the lower bound µmin

(0 < µmin < µmax) for the components of the matrix. The computation of the “concave
approximation” D−k is analogous.

5

October 9, 2017 Optimization Methods & Software karmitsa˙gaudioso˙joki

Direction Finding, Serious and Null Steps. The SMDB uses the above mentioned
diagonal approximations to compute the search direction. If the linearization error is
nonnegative or if the previous step was a serious step, we use directly the “convex ap-
proximation” of the Hessian. That is, the search direction is computed by the formula

dk = −D+
k ξ̃k, (2)

where ξ̃k is an aggregate subgradient of the objective (to be described later). In the case
of negative linearization error, we first compute the convex combination of the “convex
and concave approximations” such that the combination still remains positive definite
and then use this combination to compute the search direction. In other words, we
compute the smallest pk ∈ [0, 1] such that pkD

+
k + (1− pk)D−k is positive definite. Note

that, being the matrices involved both diagonal, this value is very easy to compute. The
search direction is then computed by the formula

dk = −(pkD
+
k + (1− pk)D−k)ξ̃k. (3)

When the search direction is computed, we next compute a new auxiliary point: yk+1 =
xk + dk. A necessary condition for a serious step to be taken is to have

f(yk+1) ≤ f(xk)− εLwk, (4)

where εL ∈ (0, 1/2) is a given descent parameter and wk > 0, which will be formally
defined later (Step 3 of Algorithm 3.1), represents the desirable amount of descent of f
at xk. If the condition (4) is satisfied, we set xk+1 = yk+1 and a serious step is taken.
Note that in the case of a serious step we consider the current “convex approximation”
to be good enough and we continue with this metric even if the linearization error is
negative.

If condition (4) is not satisfied, we first set t = 1 and check if ξtk+1 ∈ ∂f(xk + tdk)
satisfies the null step condition

−βtk+1 + d>k ξ
t
k+1 ≥ −εRwk, (5)

where εR ∈ (εL, 1) is a given parameter and βtk+1 is the subgradient locality measure [34,
37] similar to bundle methods. That is,

βtk+1 = max
{
|f(xk)− f(xk + tdk) + t(ξtk+1)>dk|, γ‖tdk‖2

}
, (6)

where γ ≥ 0 is a distance measure parameter supplied by the user. However, if condition
(5) does not hold for t = 1, then we search for a step size t ∈ (0, 1) such that either we
have a descent condition

f(xk + tdk) ≤ f(xk)− εLtwk (7)

fulfilled or ξtk+1 ∈ ∂f(xk + tdk) satisfies the null step condition (5). In practice, this step
size can be determined by using a line search procedure similar to the one intoroduced in
[42]. Whenever the null step condition holds we perform a null step by setting xk+1 = xk,
but information about the objective function is increased because we utilize the auxiliary
point ytk+1 = xk + tdk and the corresponding auxiliary subgradient ξtk+1 ∈ ∂f(ytk+1)

6

October 9, 2017 Optimization Methods & Software karmitsa˙gaudioso˙joki

in the computation of the next aggregate value. On the other hand, the fulfilment of
condition (7) during the line search leads to a serious step with xk+1 = xk + tdk as the
new iteration point.

Remark 1 Whenever the condition (4) does not hold, we start with testing if we can
take a null step straight away without a line search. However, only the usage of the line
search guarantees that, eventually, we either find a serious step with condition (7) or a
null step with condition (5) occurs (see [42]). Nevertheless, in our numerical experiments
condition (5) was always satisfied with the value t = 1 and no line search was needed.

For simplicity of the presentation we drop out the index t from ytk, ξ
t
k, and βtk even if

t 6= 1, unless needed for clarity.
To ensure the global convergence of the SMDB, we have to assume that the sequences

of matrices (D+
k) and (D−k) are bounded. Due to the diagonal update formula this as-

sumption is trivially satisfied. In addition, the condition

ξ̃
>
kD

+
k ξ̃k ≤ ξ̃

>
kD

+
k−1ξ̃k (8)

has to be satisfied each time there occurs more than one consecutive null step. In the
SMDB this is guaranteed simply by skipping the convex updates if more than one con-
secutive null step occurs.

Aggregation. The aggregation procedure used in the SMDB is quite similar to that of
the original LMBM [21, 22]. That is, we determine multipliers λki ≥ 0 for all i ∈ {1, 2, 3},∑3

i=1 λ
k
i = 1 that minimize the function

ϕ(λ1, λ2, λ3) = (λ1ξm + λ2ξk+1 + λ3ξ̃k)
>D+

k (λ1ξm + λ2ξk+1 + λ3ξ̃k)

+ 2(λ2βk+1 + λ3β̃k), (9)

where m is the index after the latest serious step, and we set

ξ̃k+1 = λk1ξm + λk2ξk+1 + λk3 ξ̃k and (10)

β̃k+1 = λk2βk+1 + λk3β̃k. (11)

Algorithm. Now we give the detailed description of the SMDB.

Algorithm 3.1
Data: Select the positive line search parameters εL ∈ (0, 1/2) and εR ∈ (εL, 1), the

initial step size tI ∈ [0.5, 1), and the distance measure parameter γ ≥ 0 (with
γ = 0 if f is convex). Choose the final accuracy tolerance ε > 0, the safeguard
parameters µmax > µmin > 0, and the number of stored corrections m̂c ≥ 1.

Step 0: (Initialization) Choose a starting point x1 ∈ Rn. Set D+
1 = I, α1 = 0, β1 = 0

and y1 = x1. Compute f(x1) and ξ1 ∈ ∂f(x1). Set the iteration counter k = 1.
Step 1: (Serious Step Initialization) Set the aggregate subgradient ξ̃k = ξk and the

aggregate subgradient locality measure β̃k = 0. Set an index for the serious step
m = k.

Step 2: (Convex Direction) Compute

dk = −D+
k ξ̃k.

7

October 9, 2017 Optimization Methods & Software karmitsa˙gaudioso˙joki

Step 3: (Stopping Criterion) Calculate wk = ξ̃
>
kD

+
k ξ̃k + 2β̃k. If wk < ε, then stop with

xk as the final solution.
Step 4: (Auxiliary Step) Evaluate

yk+1 = xk + dk,

ξk+1 ∈ ∂f(yk+1), and

αk+1 = f(xk)− f(yk+1) + ξ>k+1dk.

Set uk = ξk+1 − ξm and sk = dk. If αk+1 ≥ 0 append these values to U+
k and

S+
k , respectively. Otherwise, append them to S−k and U−k .

Step 5 (Serious Step without Line Search) If

f(yk+1)− f(xk) ≤ −εLwk,

computeD+
k+1 using S+

k and U+
k , set xk+1 = yk+1, f(xk+1) = f(yk+1), αk+1 = 0,

βk+1 = 0, k = k + 1, and go to Step 1.
Step 6 (Null Step Test without Line Search) Set t = 1 and compute βk+1 as in (6). If

−βk+1 + d>ξk+1 ≥ −εRwk,

go to Step 8.
Step 7: (Line Search) Determine the step size t ∈ (0, tI] to take either a serious step or

a null step (i.e., find t ∈ (0, tI] for which either the condition (5) or (7) is valid).
Set the corresponding values

yk+1 = xk + tdk, and

ξk+1 ∈ ∂f(yk+1).

In the case of the serious step, compute D+
k+1 using S+

k and U+
k , set xk+1 = yk+1,

f(xk+1) = f(yk+1), αk+1 = 0, βk+1 = 0, k = k+ 1, and go to Step 1. Otherwise,
compute βk+1 as in (6).

Step 8: (Aggregation) Determine multipliers λki ≥ 0 for all i ∈ {1, 2, 3},
∑3

i=1 λ
k
i = 1 that

minimize the function ϕ(λ1, λ2, λ3) given in (9). Set

ξ̃k+1 = λk1ξm + λk2ξk+1 + λk3 ξ̃k and

β̃k+1 = λk2βk+1 + λk3β̃k.

Step 9: (Null Step) Three cases can occur:
Step 9a: αk+1 ≥ 0 and m = k (The First Convex Null Step) Compute D+

k+1 using

S+
k and U+

k . Set xk+1 = xk, k = k + 1 and go to Step 2.
Step 9b: αk+1 ≥ 0 and m < k (The Consecutive Convex Null Step) Set D+

k+1 =

D+
k , xk+1 = xk, and k = k + 1 and go to Step 2.

Step 9c: αk+1 < 0 (Concave Null Step) Compute D−k+1 using S−k and U−k and set

D+
k+1 = D+

k . Set xk+1 = xk, k = k + 1 and go to Step 10.

Step 10: (Concave Direction) Compute the smallest p ∈ (0, 1) such that the matrix pD+
k +

8

October 9, 2017 Optimization Methods & Software karmitsa˙gaudioso˙joki

(1− p)D−k remains positive definite. Compute

dk = −
(
pD+

k + (1− p)D−k
)
ξ̃k

and go to Step 3.

4. Global Convergence

We now study the convergence properties of the SMDB algorithm. First, we give the
assumptions needed.

Assumption 1 The objective function f : Rn → R is semismooth (see e.g. [8]), which
ensures

f ′(x, d) = lim
t↓0

g(x+ td)>d,

with g(x+ td) ∈ ∂f(x+ td).

Assumption 2 The level set {x ∈ Rn | f(x) ≤ f(x1) } is bounded for every starting
point x1 ∈ Rn.

Remark 2 Semismoothness assumption guarantees that Step 7 is well posed, that is for
small values of t one of the two conditions (5) and (7) is satisfied.

The optimality condition 000 ∈ ∂f(x) is sufficient if f is convex. However, the function f
is not supposed to be convex, thus, we can only prove that the SMDB either terminates
at a stationary point or generates an infinite sequence (xk) for which accumulation points
are stationary for f . In order to do this, we assume that the final accuracy tolerance ε is
equal to zero. As before, we drop out the index t from ytk, ξ

t
k and βtk even if t 6= 1.

Remark 3 The sequence (xk) generated by Algorithm 3.1 is bounded by Assumption 2
and the monotonicity of the sequence (fk). The monotonicity of (fk) is guaranteed since
either the condition (4) or (7) is satisfied for serious steps, while xk+1 = xk for null steps.

By the local boundedness and the upper semi-continuity of the subdifferential, we
obtain the boundedness of subgradients ξk and their convex combinations [13]. The
matrix D+ (D−) is bounded due to the fact that all its components are in the closed
interval [µmin, µmax] ([−µmax,−µmin]). Thus, the set of the search directions dk and the
sequence yk are also bounded.

We start the convergence analysis by giving three technical results (Lemmas 4.1, 4.2,
and 4.3). After that, we prove (in Theorem 4.4) that having the value wk = 0 implies that
the corresponding point xk is a stationary point for the objective function. For an infinite
sequence (xk), we first show (in Lemma 4.5) that if (xk)k∈K → x̄ and (wk)k∈K → 0 for
some subset K ⊂ {1, 2, . . .}, then the accumulation point x̄ is a stationary point for the
objective function. Furthermore, using the fact that the sequence (wk) is nonincreasing
in the consecutive null steps (see Lemma 4.6), we prove that the indefinite sequence
of consecutive null steps with xk = xm implies 000 ∈ ∂f(xm) (in Lemma 4.7). Finally,
in Theorem 4.8 we combine all the results obtained and show that every accumulation
point of (xk) is stationary for the objective function.

9

October 9, 2017 Optimization Methods & Software karmitsa˙gaudioso˙joki

Lemma 4.1 At the kth iteration of Algorithm 3.1, we have

wk = ξ̃
>
kD

+
k ξ̃k + 2β̃k, wk ≥ 2β̃k, wk ≥ µmin‖ξ̃k‖2,

and

βk+1 ≥ γ‖yk+1 − xk+1‖2. (12)

Proof. We point out first that β̃k ≥ 0 for all k by equations (6), (11), and Step 1 in
Algorithm 3.1. The relations

wk = ξ̃
>
kD

+
k ξ̃k + 2β̃k, wk ≥ 2β̃k, wk ≥ µmin‖ξ̃k‖2

follow immediately from (1), Step 3 in Algorithm 3.1 and the lower bound µmin used for
the matrices.

By (6) and since we have βk+1 = 0 and ‖yk+1 − xk+1‖ = 0 for serious steps and
xk+1 = xk for null steps, condition (12) always holds for some γ ≥ 0.

�

Lemma 4.2 Suppose that Algorithm 3.1 is not terminated before the kth iteration. Then,
there exist numbers λk,j ≥ 0 for j = 1, . . . , k and σ̃k ≥ 0 such that

(ξ̃k, σ̃k) =
k∑
j=1

λk,j(ξj , ‖yj − xk‖),
k∑
j=1

λk,j = 1, and β̃k ≥ γσ̃2
k.

Proof. See the proof of Lemma 3.2 in [42]. �

Lemma 4.3 Let x̄ ∈ Rn be given and suppose that there exist vectors ḡ, ξ̄i, ȳi, and
numbers λ̄i ≥ 0 for i = 1, . . . , l, l ≥ 1, such that

(ḡ, 0) =

l∑
i=1

λ̄i(ξ̄i, ‖ȳi − x̄‖),

ξ̄i ∈ ∂f(ȳi), i = 1, . . . , l, and

l∑
i=1

λ̄i = 1.

Then ḡ ∈ ∂f(x̄).

Proof. See the proof of Lemma 3.3 in [42]. �

In the following theorem we assume ε = 0.

Theorem 4.4 If Algorithm 3.1 terminates at the kth iteration, then the point xk is
stationary for f .

Proof. If Algorithm 3.1 terminates at Step 3, then the fact ε = 0 implies that wk = 0.
Thus, ξ̃k = 000 and β̃k = σ̃k = 0 by Lemma 4.1 and Lemma 4.2.

10

October 9, 2017 Optimization Methods & Software karmitsa˙gaudioso˙joki

Now, by Lemma 4.2 and by using Lemma 4.3 with

x̄ = xk, l = k, ḡ = ξ̃k,

ξ̄i = ξi, ȳi = yi, λ̄i = λk,i for i ≤ k,

we obtain 000 = ξ̃k ∈ ∂f(xk) and, thus, xk is stationary for f . �

From now on, we suppose that Algorithm 3.1 does not terminate, that is, wk > 0 for
all k.

Lemma 4.5 Suppose that the level set {x ∈ Rn | f(x) ≤ f(x1) } is bounded. If there
exist a point x̄ ∈ Rn and an infinite set K ⊂ {1, 2, . . .} such that (xk)k∈K → x̄ and
(wk)k∈K → 0, then 000 ∈ ∂f(x̄).

Proof. The proof is similar to the proof of Lemma 3.4 in [42]. �

Lemma 4.6 Suppose that the level set {x ∈ Rn | f(x) ≤ f(x1) } is bounded, the number
of serious steps is finite, and the last serious step occurred at the iteration m− 1. Then

ξ̃
>
k+1D

+
k+1ξ̃k+1 = ξ̃

>
k+1D

+
k ξ̃k+1 and (13)

tr(D+
k) ≤ µmaxn (14)

for all k > m, where tr(D+
k) denotes the trace of matrix D+

k .

Proof. For all k > m we have D+
k+1 = D+

k due to fact that we use either Step 9b or Step
9c of Algorithm 3.1 at null steps. Thus, condition (13) is valid.

Furthermore, we have

tr(D+
k)− µmaxn = tr(D+

k)− µmax tr(I)

= tr(D+
k)− tr(µmaxI)

= tr(D+
k − µmaxI)

≤ 0

for all k, since D+
k is a diagonal matrix with the largest diagonal element less than or

equal to µmax. Therefore, condition (14) is valid for all k > m. �

Lemma 4.7 Suppose that the level set {x ∈ Rn | f(x) ≤ f(x1) } is bounded, the number
of serious steps is finite, and the last serious step occurred at the iteration m− 1. Then,
the point xm is stationary for f .

11

October 9, 2017 Optimization Methods & Software karmitsa˙gaudioso˙joki

Proof. From (9), (10), (11), Lemma 4.1, and Lemma 4.6 we obtain

wk+1 = ξ̃
>
k+1D

+
k+1ξ̃k+1 + 2β̃k+1

= ξ̃
>
k+1D

+
k ξ̃k+1 + 2β̃k+1

= ϕ(λk1, λ
k
2, λ

k
3) (15)

≤ ϕ(0, 0, 1)

= ξ̃
>
kD

+
k ξ̃k + 2β̃k

= wk

for k > m.
Let us denote D+

k = W>k Wk. Then, the function ϕ (see (9)) can be given in the form

ϕ(λk1, λ
k
2, λ

k
3) = ‖λk1Wkξm + λk2Wkξk+1 + λk3Wkξ̃k‖2 + 2(λk2βk+1 + λk3β̃k).

From (15) we obtain the boundedness of the sequences (wk), (Wkξ̃k), and (β̃k). Further-
more, Lemma 4.6 and Remark 3 assures the boundedness of (Dk), (Wk), (yk), (ξk), and
(Wkξk+1).

Now, the last part of the proof proceeds similarly to the proof (part (ii)) of Lemma
3.6 in [42]. �

Theorem 4.8 Suppose that the level set {x ∈ Rn | f(x) ≤ f(x1) } is bounded. Then,
every accumulation point of the sequence (xk) is stationary for f .

Proof. Let x̄ be an accumulation point of (xk), and let K ⊂ {1, 2, . . .} be an infinite set
such that (xk)k∈K → x̄. In view of Lemma 4.7, we can restrict our consideration to the
case where the number of serious steps is infinite. We denote

K′ = { k | xk+1 = xk + tdk with t > 0 and

there exists i ∈ K, i ≤ k such that xi = xk}.

Obviously, K′ is infinite and (xk)k∈K′ → x̄. The continuity of f implies that
(f(xk))k∈K′ → f(x̄), thus, f(xk) ↓ f(x̄) by the monotonicity of the sequence (f(xk))
obtained due to the descent step conditions (4) and (7). Using conditions (4) and (7)
and the fact that xk+1 = xk in null steps, we obtain

0 ≤ tεLwk ≤ f(xk)− f(xk+1)→ 0 for k ≥ 1. (16)

Thus, if the set K1 = { k ∈ K′ | t ≥ tmin} is infinite for some bound tmin > 0 then
(wk)k∈K′ → 0 and (xk)k∈K′ → x̄ by (16). Hence, by Lemma 4.5 we have 000 ∈ ∂f(x̄).

In the other case, where the set K1 is finite, the result is obtained the same way as in
the proof of Theorem 3.2 in [42]. �

Note that, if we choose ε > 0, Algorithm 3.1 terminates in a finite number of steps.

12

October 9, 2017 Optimization Methods & Software karmitsa˙gaudioso˙joki

5. Numerical Experiments

In this section, we compare the SMDB with the LMBM and the D-Bundle. The test
set used in our experiments consists of large-scale nonsmooth minimization problems first
introduced in [21]. These problems can be formulated with any number of variables. We
have tested these problems with 1000, 10000, 100000 and one million variables. Problems
1 – 5 are convex while problems 6 – 10 are nonconvex. We ran each problem 10 times:
first with fixed starting point x̄1 given in [21] and then the remaining nine times using
a starting point generated randomly from a ball centered at x̄1 with a radius ‖x̄1‖/n.
Other numerical experiments comparing different NSO solvers including the LMBM and
the D-Bundle can be found for instance in [5, 28, 29].

Solvers and Parameters. We now give a brief description of each software, the pa-
rameters used, and the references from which the code can be downloaded.

LMBM is an implementation of the LMBM [21, 22] specifically developed for large-scale
NSO. The solver uses the modified weak Wolfe-type line search for finding suitable step
sizes (see, [22]). In our experiments, we used the adaptive version of the code with the
initial number of stored correction pairs used to form the variable metric update equal
to seven and the maximum number of stored correction pairs equal to 15. Moreover,
the maximum size of the bundle was set to two since previous tests have shown that
with extremely large problems this is the only practical option (see [28]). Otherwise, the
default parameters of the code were used.

The Fortran 77 source code and the mex-driver (for MatLab users) are available for
download from http://napsu.karmitsa.fi/lmbm/.

D-Bundle is a diagonal bundle solver developed specially for sparse nonsmooth minimiza-
tion [28]. Similarly to LMBM, the solver uses the modified weak Wolfe-type line search to
find suitable step sizes (see, [22]). With D-Bundle we used the maximum number of
stored correction pairs equal to seven. In addition, the maximum size of the bundle was
set to two. For all other parameters we have used the default settings of the code.

The Fortran 95 source code is available for downloading from
http://napsu.karmitsa.fi/dbundle/.

SMDB is an implementation of the splitting metrics diagonal bundle method introduced
in this paper. The parameters used with SMDB are

µmin = 10−10, µmax = 1.0,

εL = 10−4, εR = 0.25,

and

γ =

{
0.0 for convex f,

10−4 for nonconvex f.

Similarly to D-Bundle the number of stored correction pairs was set to seven and the
maximum size of the bundle was set to two.

As already mentioned the line search was never needed with SMDB but the step size
t = 1 was always accepted either as a serious or null step. In addition to the basic code

13

October 9, 2017 Optimization Methods & Software karmitsa˙gaudioso˙joki

SMDB, we implemented the codes using the Armijo-type line search and the nonmonotonic
Armijo-type line search. We denote these codes by SMDBA and SMDBNM, respectively. The
idea here is to seek for a suitable step size such that a serious step would occur. That is,
we perform at most some predetermined number of line searches and we check condition
(7) (or the modified serious step condition (17) given below) and only if none of the step
sizes gives us a serious step we do a null step. Note that no theoretical guarantee of the
satisfaction of the null step condition (5) after these Armijo-type line searches is given
but, in our numerical experiments it was always satisfied.

The parameters used with SMDBA and SMDBNM are the same as with SMDB. With SMDBA

the maximum number of Armijo search was set to two. With SMDBNM we used at most
ten previous function values obtained at serious steps to test the modified serious step
condition

f(yk+1) ≤ max
0≤j≤m(k)

f(xi−j)− εLwk, (17)

where i ∈ K = {l | xl+1 = xl + tldl} and m(k) = min{m(k − 1) + 1, 10} if i = k and
m(k) = min{m(k−1), 10} otherwise (i.e. at null steps). The maximum number of Armijo
searches was set to 20.

The Fortran 95 source code of SMDB is available for downloading from
http://napsu.karmitsa.fi/smdb/ and it includes the codes SMDBA and SMDBNM.

The experiments were performed on an IntelR© Core
TM

i5, 1.60GHz. To compile the codes,
we used gfortran, the GNU Fortran compiler.

We say that a solver finds the solution with respect to a tolerance ε > 0 if

fbest − fopt
1 + |fopt|

≤ ε,

where fbest is a solution obtained with the solver and fopt is the best known (or optimal)
solution. We have accepted the results with respect to the tolerance ε = 10−3. In addition,
we say that the result is inaccurate, if a solver finds the solution with respect to a tolerance
ε = 10−2. Otherwise, we say that a solver fails. In addition to the usual stopping criteria
of the solvers, we terminated the experiments if the elapsed CPU time exceeded two
hours.

Results. The results are summarized in Tables 1 – 4 and in Figures 2 – 9. We have
compared the efficiency of the solvers both in terms of the computational time (cpu)
and the number of function and subgradient evaluations (nfg, evaluations for short). In
Tables 1 – 4, the results are given for problems with the original starting points given in
[21]. These results show quite well the overall performance of the solvers. We have used
bold-face text to emphasize the best results. An asterix after a result means that the result
obtained was inaccurate. Note that with the nonconvex problems it was not always easy
to say whether the solution obtained was a local solution (or a stationary point) or not.
Thus, we have only accepted the results that converge to the global minimum. In addition,
the results are analyzed using the performance profiles (Figures 2 – 9) introduced in [16].
In Figures 2 – 9 we first give the results for all problems with given n (figures a). Then we
separate the convex (figures b) from the nonconvex (figures c) problems. In performance
profiles the value of ρs(τ) at τ = 0 gives the percentage of test problems for which the
corresponding solver is the best; that is, it uses least computational time or evaluations.

14

October 9, 2017 Optimization Methods & Software karmitsa˙gaudioso˙joki

On the other hand, the value of ρs(τ) at the rightmost abscissa gives the percentage of
test problems that the corresponding solver can solve; in other words, the reliability of
the solver. In addition, the relative efficiency of each solver can be directly seen from
the performance profiles: the higher the particular curve, the better the corresponding
solver. In performance profiles inaccurate results were considered as failures.

Table 1. Summary of the results with 1000 variables.

P LMBM D-Bundle SMDB SMDBA SMDBNS

nfg/cpu nfg/cpu nfg/cpu nfg/cpu nfg/cpu

1 37 728/0.97∗ 6 136/0.09 63 858/1.69 3 002/0.07 5999/0.06
2 fail fail fail fail fail
3 3 292/0.03 3 751/0.03 61 436/2.87 222/0.01 918/0.02
4 3 450/0.04 6 917/0.08 81 449/4.68 240/0.01 627/0.02
5 326/0.01 1 388/0.01 fail 223/0.01 719/0.03
6 1 138/0.01 1 075/0.02 1 719/0.06 710/0.02 983/0.04
7 5 690/0.45 13 319/0.84 246/0.04 663/0.05 1225/0.14
8 6 020/0.05 7 617/0.05 1 000 166/42.78 1 999 991/55.89 192 513/2.74
9 1 128/0.01 1 106/0.01 fail 112/0.00 fail
10 11 282/0.10 17 377/0.11 454/0.02 338/0.01 1 302/0.04

With 1000 variables, the new solver SMDBA with few rounds of Armijo line search was
clearly the best when compared with the other methods (see Table 1 and Figures 2 and
6). In nonconvex settings (see Figures 2(c) and 6(c)), we can say that it was superior: it
was the most efficient method in 40% of the problems and succeeded in solving 94% of
them. In addition, the overall performance of SMDBNM with nonmonotone line search was
very good: in convex problems it was the most reliable solver, although, D-Bundle did
not fall far behind (see Figures 2(b) and 6(b)).

While SMDBA and SMDBNM seem to be efficient both in convex and nonconvex setting, the
solver SMDB without the line search solved more efficiently the nonconvex problems using
quite a large number of evaluations in the convex cases. On the other hand, D-Bundle
was clearly more reliable in convex settings.

With 10 000 variables, the superiority of SMDBA is not at all clear anymore (see Table
2 and Figures 3 and 7). In fact, here all the other solvers but D-Bundle were usually
both more efficient and more reliable than SMDBA when only nonconvex problems are
considered (see Figures 3(c) and 7(c)). Moreover, the overall performance of SMDBA was
not very convincing in the convex case, either (see Figures 3(b) and 7(b)). In convex
problems D-Bundle and SMDBNM seem to be the best performing solvers while SMDB again
used lots of evaluations and failed in solving more than 50% of these problems. However,
in nonconvex settings SMDB was among the most reliable solvers together with SMDBNM

and LMBM. Here, SMDBNM was also the most efficient solver.
A problem with 100 000 variables can be considered as an extremely large nonsmooth

problem. Here, D-Bundle was the most efficient solver both in convex (44%) and in
nonconvex (30%) settings (see Table 3, and Figures 4 and 8). Nevertheless, the overall
performances of LMBM, D-Bundle and SMDNNM were quite similar.

None of the solvers succeeded in solving more than 65% of problems with 100 000
variables with the desired accuracy. In convex case (see Problems 1–5 in Table 3 and
Figures 4(b) and 8(b)) all the solvers but SMDBNM failed to solve Problems 1 and 2 from
all starting points. SMDBNM solved Problem 1 in two cases out of ten but also SMDBNM

always failed in solving Problem 2. We will analyse these failures later. With nonconvex
problems (see Problems 6–10 in Table 3 and Figures 4(c) and 8(c)) there was quite a
big variation in the performance of the solvers with different problems, there was no

15

October 9, 2017 Optimization Methods & Software karmitsa˙gaudioso˙joki

Table 2. Summary of the results with 10 000 variables.

P LMBM D-Bundle SMDB SMDBA SMDBNM

nfg/cpu nfg/cpu nfg/cpu nfg/cpu nfg/cpu

1 fail 179 502/26.41 913 677/242.30 30 014/5.92 60003/6.40
2 fail fail fail fail fail
3 6 082/0.52 3 669/0.27 31 482/12.89 311/0.08 1 059/0.30
4 7 080/0.81 5 144/0.58 1 000 104/515.11 528 300/206.16 9 007/2.68
5 244/0.04 307/0.04 fail 5 643/1.99 792/0.27
6 10 108/1.55 10 104/2.03 15 197/4.42 6 421/1.64 1 175/0.31
7 8 888/6.26 49 823/32.95 360/0.51 1 186/1.47 895/1.14
8 6 232/0.61 11 261/0.88 1 000 182/372.28 1 999 992/526.40 361 347/48.87
9 fail 474/0.06∗ fail fail fail
10 fail fail 3 232/1.44 113 090/37.47 1 197/0.39

systematic failure in any of the problems, and we can not say that one solver was clearly
better than another, although, quite surprisingly, D-Bundle was the most reliable method
tested in nonconvex settings followed by SMDBNM and SMDB. In addition, as said before,
with the nonconvex problems it is not always easy to say whether the solution obtained
is a local solution (or a stationary point) or not.

Table 3. Summary of the results with 100 000 variables.

P LMBM D-Bundle SMDB SMDBA SMDBNM

nfg/cpu nfg/cpu nfg/cpu nfg/cpu nfg/cpu

1 fail fail fail fail 396 980/578.91
2 fail fail fail fail fail
3 5 796/5.59 144/0.13 1 000 106/4 598.92 5 145/13.91 1 270/3.58
4 10 424/12.77 584/0.82 1 000 062/5 499.51 1 877 517/7 200.00 5 125/16.35
5 438/1.09 816/0.84 fail 8 475/29.15 772/2.71
6 100 142/166.46 100 100/237.49 fail fail fail
7 fail 53 905/339.49 310/5.00 7 188/91.92 2 251/25.18
8 2 100/4.05 5 141/5.18 1 000 131/4 129.34 1 999 993/5033.66 779 804/1 059.88
9 1 400/3.87 1 086/2.30∗ fail fail fail
10 34 630/34.55∗ fail 14 755/69.18 5 034/15.81 1 757/5.78

With one million variables SMDBNM succeed in solving 60 % of problems, hence, it was
the most robust of the solvers (see Table 4 and Figures 5 and 9). All the other solvers
succeed in solving about 50 % problems, although, the solvers usually converged to the
same (stationary?) point also in Problem 6. One could say that solving only about 50 or
60 percentages of problems is not very convincing, but it is better than most nonsmooth
algorithms can do [5, 28, 29]. With convex problems, D-Bundle was superior in efficiency
and it was also the most robust solver together with LMBM and SMDBNM. However, with
nonconvex problems it failed to solve 70% of problems. Here, the new solvers were the
most robust ones.

We will now consider more closely some problems that caused biggest failures in our
experiments. In Problem 1, LMBM is known to have difficulties due to sparse structure of
the problem and the dense approximation of Hessian used in LMBM [21, 22]. Indeed, LMBM
always failed to solve Problem 1 with the desired accuracy. All the other algorithms use
only a diagonal approximation to Hessian and they did a little better: they succeeded
in solving this problem with 1 000 and 10 000 variables and SMDBNM also two times with
100 000 variables. Moreover, it has been noted in [5] that the piecewise linear problem 2 is
very difficult to most NSO algorithms already in rather small dimensions. The proximal
bundle method [36] that uses piecewise linear model was superior in this problem (see

16

October 9, 2017 Optimization Methods & Software karmitsa˙gaudioso˙joki

Table 4. Summary of the results with one million variables.

P LMBM D-Bundle SMDB SMDBA SMDBNM

nfg/cpu nfg/cpu nfg/cpu nfg/cpu nfg/cpu

1 fail fail fail fail fail
2 fail fail fail fail fail
3 1 698/25.42 367/4.67 169 205/7 200.07 254 334/7 200.00 103 873/1 666.90
4 14 302/216.11 28 099/349.38 129 821/7 200.06 177 304/7 200.12 3 698/64.92
5 1 580/45.39 772/9.08 fail 70 024/2 518.19 11 204/141.74
6 fail fail fail fail fail
7 fail fail 317/52.16 fail 2 789/313.38
8 2 632/93.27 19 727/195.34 174 037/7 200.08 279 626/7 200.04 119 455/1 765.93
9 2748/107.13 3 569/79.64∗ fail fail fail
10 fail 14 521/173.89∗ 41 301/1 948.28 222 599/7 200.07 349 915/7 200.22

[5]). In the current settings none of the solvers (which, on the other hand, do not have
piecewise linear model as the proximal bundle method) could solve the problem. Note,
however, that we use here extra large dimensions. Solver SMDB without any line search
tends to take many steps (especially in convex settings) and, thus, it sometimes failed
due to maximum number of evaluations used. In practice, this means that the model
used is not accurate enough to provide a good search direction that can be accepted
as a serious step with step length one. In addition, SMDB almost always failed to solve
convex Problem 5, probably due to numerical difficulties with floating point numbers. In
addition to the above mentioned problems, there were no problems where one or more
of the algorithms would have systematically failed. However, Problem 8 was somewhat
difficult for new solvers SMDB and SMDBA: they always needed the maximum number of
iterations to solve the problem. Note that with all the solvers, some of the failures and
inefficiencies could have been avoided if suitable parameters would have been chosen.
However, we ran all our test cases with the same sets of parameters.

From performance profiles (see Figures Figures 2 – 9) we can conclude that the new
splitting metrics procedure used in SMDB, SMDBA, and SMDBNM does give some advantage
over the traditional subgradient locality measures in nonconvex cases. In addition, in
convex case, already two rounds of Armijo-like line search made a big difference both
in efficiency and in reliability of solvers (cf. SMDB and SMDBA), while the nonmonotonic
Armijo-type line search (i.e. SMDBNM) gave even more advantage. Nevertheless, the differ-
ence between no line search and two rounds Armijo line search were opposite in nonconvex
settings and SMDB was, in fact, the most robust solver together with SMDBNM.

6. Conclusions

In this paper, we have described a new splitting metrics diagonal bundle method (SMDB)
for unconstrained nonsmooth optimization. We have proved the global convergence of
the method for locally Lipschitz continuous semismooth objective functions, which are
not necessarily differentiable nor convex.

The numerical experiments were made using three different versions of the new method:
one with no line search in serious steps, second with few rounds of Armijo-type line search
and the third with nonmonotone Armijo-type line search. The results reported show
that the new splitting metrics procedure does give some advantage over the traditional
subgradient locality measures in nonconvex settings. With large nonconvex problems
(n = 1 000) SMDB with few rounds of Armijo line search was superior to other solvers
including LMBM and D-Bundle used as benchmarks. However, with larger number of

17

October 9, 2017 Optimization Methods & Software karmitsa˙gaudioso˙joki

variables it needed more function and subgradient evaluations than those other solvers.
On the other hand, with one million variables SMDB with nonmonotone line search was
the most robust of the solvers tested and SMDB without any line search was the most
efficient together with LMBM on nonconvex problems.

We can conclude that SMDB is a good alternative to existing nonsmooth optimization
algorithms for large scale optimization and it can be used to solve extremely large-scale
nonsmooth problems.

Acknowledgments and Funding

The work was financially supported by the Academy of Finland (Project No. 289500
and 294002), Universitá della Calabria, the Jenny and Antti Wihuri Foundation and the
University of Turku Graduate School UTUGS Matti Programme. A part of the work
was accomplished while the corresponding author was visiting Faculty of Science and
Technology, Federation University Australia.

References

[1] Apkarian, P., Noll, D., and Prot, O. A trust region spectral bundle method for non-convex
eigenvalue optimization. SIAM Journal on Optimization 19, 1 (2008), 281–306.

[2] Astorino, A., and Fuduli, A. Nonsmooth optimization techniques for semi-supervised classifica-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 12 (2007), 2135–2142.

[3] Astorino, A., Fuduli, A., and Gorgone, E. Nonsmoothness in classification problems. Opti-
mization Methods and Software 23, 5 (2008), 675–688.

[4] Äyrämö, S. Knowledge Mining Using Robust Clustering. PhD thesis, University of Jyväskylä,
Department of Mathematical Information Technology, 2006.

[5] Bagirov, A., Karmitsa, N., and Mäkelä, M. M. Introduction to Nonsmooth Optimization:
Theory, Practice and Software. Springer, 2014.

[6] Bagirov, A., Taheri, S., and Ugon, J. Nonsmooth DC programming approach to the minimum
sum-of-squares clustering problems. Pattern Recognition 53 (2016), 12–24.

[7] Bergeron, C., Moore, G., Zaretzki, J., Breneman, C., and Bennett, K. Fast bundle algo-
rithm for multiple instance learning. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 34, 6 (2012), 1068–1079.

[8] Bihain, A. Optimization of upper semidifferentiable functions. Journal of Optimization Theory
and Applications 4 (1984), 545–568.

[9] Bradley, P. S., Fayyad, U. M., and Mangasarian, O. L. Mathematical programming for data
mining: Formulations and challenges. INFORMS Journal on Computing 11 (1999), 217–238.

[10] Burke, J. V., Lewis, A. S., and Overton, M. L. A robust gradient sampling algorithm for
nonsmooth, nonconvex optimization. SIAM Journal on Optimization 15 (2005), 751–779.

[11] Byrd, R. H., Nocedal, J., and Schnabel, R. B. Representations of quasi-Newton matrices and
their use in limited memory methods. Mathematical Programming 63 (1994), 129–156.

[12] Carrizosa, E., and Romero Morales, D. Supervised classification and mathematical optimiza-
tion. Computers and Operations Research 40, 1 (2013), 150–165.

[13] Clarke, F. H. Optimization and Nonsmooth Analysis. Wiley-Interscience, New York, 1983.
[14] Clarke, F. H., Ledyaev, Y. S., Stern, R. J., and Wolenski, P. R. Nonsmooth Analysis and

Control Theory. Springer, New York, 1998.
[15] Demyanov, V. F., Bagirov, A., and Rubinov, A. A method of truncated codifferential with

application to some problems of cluster analysis. Journal of Global Optimization 23, 1 (2002), 63–80.
[16] Dolan, E. D., and Moré, J. J. Benchmarking optimization software with perforance profiles.

Mathematical Programming 91, (2002), 201–213.
[17] Fuduli, A., Gaudioso, M., and Giallombardo, G. A DC piecewise affine model and a bundling

technique in nonconvex nonsmooth minimization. Optimization Methods and Software 19, 1 (2004),
89–102.

18

October 9, 2017 Optimization Methods & Software karmitsa˙gaudioso˙joki

[18] Fuduli, A., Gaudioso, M., and Giallombardo, G. Minimizing nonconvex nonsmooth functions
via cutting planes and proximity control. SIAM Journal on Optimization 14, 3 (2004), 743–756.

[19] Fuduli, A., Gaudioso, M., and Nurminski, E. A. A splitting bundle approach for non-smooth
non-convex minimization. Optimization: A Journal of Mathematical Programming and Operations
Research 64, 5 (2015), 1131–1151.

[20] Gaudioso, M., and Gorgone, E. Gradient set splitting in nonconvex nonsmooth numerical
optimization. Optimization Methods and Software 25 (2010), 59–74.

[21] Haarala, M., Miettinen, K., and Mäkelä, M. M. New limited memory bundle method for
large-scale nonsmooth optimization. Optimization Methods and Software 19, 6 (2004), 673–692.

[22] Haarala, N., Miettinen, K., and Mäkelä, M. M. Globally convergent limited memory bundle
method for large-scale nonsmooth optimization. Mathematical Programming 109, 1 (2007), 181–205.

[23] Hare, W., and Sagastizábal, C. A redistributed proximal bundle method for nonconvex opti-
mization. SIAM Journal on Optimization 20, 5 (2010), 2442–2473.

[24] Haslinger, J., and Neittaanmäki, P. Finite Element Approximation for Optimal Shape, Material
and Topology Design, 2nd edition ed. John Wiley & Sons, Chichester, 1996.

[25] Herskovits, J., and Goulart, E. Sparse quasi-Newton matrices for large scale nonlinear opti-
mization. In Proceedings of the 6th Word Congress on Structurla and Multidisciplinary Optimization
(2005).

[26] Hiriart-Urruty, J.-B., and Lemaréchal, C. Convex Analysis and Minimization Algorithms II.
Springer-Verlag, Berlin, 1993.

[27] Kärkkäinen, T., and Heikkola, E. Robust formulations for training multilayer perceptrons.
Neural Computation 16 (2004), 837–862.

[28] Karmitsa, N. Diagonal bundle method for nonsmooth sparse optimization. Journal of Optimization
Theory and Applications 166, 3 (2015), 889–905. DOI 10.1007/s10957-014-0666-8.

[29] Karmitsa, N., Bagirov, A., and Mäkelä, M. M. Comparing different nonsmooth optimization
methods and software. Optimization Methods and Software 27, 1 (2012), 131–153.

[30] Karmitsa, N., Bagirov, A., and Taheri, S. Diagonal bundle method for solving
the minimum sum-of-squares clustering problems. TUCS Technical Report, No. 1156,
Turku Centre for Computer Science, Turku, 2016. The report is available online at
http://tucs.fi/publications/view/?pub id=tKaBaTa16a.

[31] Karmitsa, N., Bagirov, A., and Taheri, S. Mssc clustering of large data using the limited mem-
ory bundle method. TUCS Technical Report, No. 1164, Turku Centre for Computer Science, Turku,
2016. The report is available online at http://tucs.fi/publications/view/?pub id=tKaBaTa16b.

[32] Karmitsa, N., Tanaka Filho, M., and Herskovits, J. Globally convergent cutting plane method
for nonconvex nonsmooth minimization. Journal of Optimization Theory and Applications 148, 3
(2011), 528–549.

[33] Kiwiel, K. C. Methods of Descent for Nondifferentiable Optimization. Lecture Notes in Mathe-
matics 1133. Springer-Verlag, Berlin, 1985.

[34] Lemaréchal, C., Strodiot, J.-J., and Bihain, A. On a bundle algorithm for nonsmooth opti-
mization. In Nonlinear Programming, O. L. Mangasarian, R. R. Mayer, and S. M. Robinson, Eds.
Academic Press, New York, 1981, pp. 245–281.

[35] Lukšan, L., and Vlček, J. Globally convergent variable metric method for convex nonsmooth
unconstrained minimization. Journal of Optimization Theory and Applications 102, 3 (1999), 593–
613.

[36] Mäkelä, M. M., and Neittaanmäki, P. Nonsmooth Optimization: Analysis and Algorithms with
Applications to Optimal Control. World Scientific Publishing Co., Singapore, 1992.

[37] Mifflin, R. A modification and an extension of Lemaréchal’s algorithm for nonsmooth minimiza-
tion. Matematical Programming Study 17 (1982), 77–90.

[38] Mistakidis, E. S., and Stavroulakis, G. E. Nonconvex Optimization in Mechanics. Smooth and
Nonsmooth Algorithms, Heuristics and Engineering Applications by the F.E.M. Kluwert Academic
Publishers, Dordrecht, 1998.

[39] Moreau, J., Panagiotopoulos, P. D., and Strang, G., Eds. Topics in Nonsmooth Mechanics.
Birkhäuser Verlag, Basel, 1988.

[40] Noll, D., Prot, O., and Rondepierre, A. A proximity control algorithm to minimize nonsmooth
and nonconvex functions. Pacific Journal of Optimization 4, 3 (2008), 571–604.

[41] Outrata, J., Kočvara, M., and Zowe, J. Nonsmooth Approach to Optimization Problems With
Equilibrium Constraints. Theory, Applications and Numerical Results. Kluwert Academic Publisher,
Dordrecht, 1998.

[42] Vlček, J., and Lukšan, L. Globally convergent variable metric method for nonconvex nondif-

19

October 9, 2017 Optimization Methods & Software karmitsa˙gaudioso˙joki

ferentiable unconstrained minimization. Journal of Optimization Theory and Applications 111, 2
(2001), 407–430.

20

October 9, 2017 Optimization Methods & Software karmitsa˙gaudioso˙joki

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

LMBM

D−bundle

SMDB

SMDBA

SMDBNM

(a) All

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

LMBM

D−bundle

SMDB

SMDBA

SMDBNM

(b) Convex

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

LMBM

D−bundle

SMDB

SMDBA

SMDBNM

(c) Nonconvex

Figure 2. Evaluations with 1 000 variables.

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

LMBM

D−bundle

SMDB

SMDBA

SMDBNM

(a) All

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

LMBM

D−bundle

SMDB

SMDBA

SMDBNM

(b) Convex

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

LMBM

D−bundle

SMDB

SMDBA

SMDBNM

(c) Nonconvex

Figure 3. Evaluations with 10 000 variables.

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

LMBM

D−bundle

SMDB

SMDBA

SMDBNM

(a) All

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

LMBM

D−bundle

SMDB

SMDBA

SMDBNM

(b) Convex

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

LMBM

D−bundle

SMDB

SMDBA

SMDBNM

(c) Nonconvex

Figure 4. Evaluations with 100 000 variables.

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

LMBM

D−bundle

SMDB

SMDBA

SMDBNM

(a) All

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

LMBM

D−bundle

SMDB

SMDBA

SMDBNM

(b) Convex

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

LMBM

D−bundle

SMDB

SMDBA

SMDBNM

(c) Nonconvex

Figure 5. Evaluations with 1000 000 variables.

21

October 9, 2017 Optimization Methods & Software karmitsa˙gaudioso˙joki

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

LMBM

D−bundle

SMDB

SMDBA

SMDBNM

(a) All

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

LMBM

D−bundle

SMDB

SMDBA

SMDBNM

(b) Convex

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

LMBM

D−bundle

SMDB

SMDBA

SMDBNM

(c) Nonconvex

Figure 6. CPU-time with 1 000 variables.

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

LMBM

D−bundle

SMDB

SMDBA

SMDBNM

(a) All

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

LMBM

D−bundle

SMDB

SMDBA

SMDBNM

(b) Convex

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

LMBM

D−bundle

SMDB

SMDBA

SMDBNM

(c) Nonconvex

Figure 7. CPU-times with 10 000 variables.

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

LMBM

D−bundle

SMDB

SMDBA

SMDBNM

(a) All

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

LMBM

D−bundle

SMDB

SMDBA

SMDBNM

(b) Convex

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

LMBM

D−bundle

SMDB

SMDBA

SMDBNM

(c) Nonconvex

Figure 8. CPU-times with 100 000 variables.

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

LMBM

D−bundle

SMDB

SMDBA

SMDBNM

(a) All

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

LMBM

D−bundle

SMDB

SMDBA

SMDBNM

(b) Convex

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
s
(τ

)

LMBM

D−bundle

SMDB

SMDBA

SMDBNM

(c) Nonconvex

Figure 9. CPU-times with 1000 000 variables.

22

