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1 Introduction

Sensor networks consist of sensors monitoring various places and connections between these places.
We model a sensor network as a simple and undirected graph G = (V (G), E(G)) = (V,E). In this
context, a sensor can be placed on a vertex v and its closed neighbourhood N [v] represents the set
of locations that the sensor monitors. Besides assuming that graphs are simple and undirected, we
also assume that they are connected and have cardinality at least two. In the following, we present
some terminology and notation. The closed neighbourhood of v is defined N [v] = N(v) ∪ {v},
where N(v) is the open neighbourhood of v, that is, the set of vertices adjacent to v. A code C
is a nonempty subset of V and its elements are codewords. The codeword c ∈ C covers a vertex
v ∈ V if v ∈ N [c]. We denote the set of codewords covering v in G by

I(G,C; v) = I(G; v) = I(C; v) = I(v) = N [v] ∩ C.

The set I(v) is called an identifying set or an I-set. We say that a code C ⊆ V is dominating
in G if I(C;u) 6= ∅ for all u ∈ V . If the sensors are placed at the locations corresponding to
the codewords, then each vertex is monitored by the sensors located in I(v). More explanation
regarding location detection in the sensor networks can be found in [1, 8, 12].

Let us now define identifying codes, which were first introduced by Karpovsky et al. in [7]. For
numerous papers regarding identifying codes and related topics, the interested reader is referred
to the online bibliography [9].

Definition 1. A code C ⊆ V is identifying in G if for all distinct u, v ∈ V we have I(C;u) 6= ∅
and

I(C;u) 6= I(C; v).

An identifying code C in a finite graph G with the smallest cardinality is called optimal and the
number of codewords in an optimal identifying code is denoted by γID(G).

Identifying codes require unique I-sets for codewords as well as for non-codewords. However,
if we omit the requirement of unique I-sets for codewords, then we obtain the following definition
of locating-dominating codes, which were first introduced by Slater in [10, 13, 14].

Definition 2. A code C ⊆ V is locating-dominating in G if for all distinct u, v ∈ V \ C we have
I(C;u) 6= ∅ and

I(C;u) 6= I(C; v).

Notice that an identifying code in G is also locating-dominating (by the definitions). In [4],
self-locating-dominating and solid-locating-dominating codes have been introduced and, in [5, 6],
they have been further studied. The definitions of these codes are given as follows.
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Definition 3. Let C ⊆ V be a code in G.

(i) We say that C ⊆ V is self-locating-dominating code in G if for all u ∈ V \ C we have
I(C;u) 6= ∅ and ⋂

c∈I(C;u)

N [c] = {u}.

(ii) We say that C ⊆ V is solid-locating-dominating code in G if for all distinct u, v ∈ V \ C we
have

I(C;u) \ I(C; v) 6= ∅.

Observe that since G is a connected graph on at least two vertices, a self-locating-dominating
and solid-locating-dominating code is always dominating. Analogously to identifying codes, in a
finite graph G, we say that dominating, locating-dominating, self-locating-dominating and solid-
locating-dominating codes with the smallest cardinalities are optimal and we denote the cardinality
of an optimal code by γ(G), γLD(G), γSLD(G) and γDLD(G), respectively.

In the following theorem, we offer characterizations of self-locating-dominating and solid-
dominating codes for easier comparison of them.

Theorem 4 ([4]). Let G = (V,E) be a connected graph on at least two vertices:

(i) A code C ⊆ V is self-locating-dominating if and only if for all distinct u ∈ V \C and v ∈ V
we have

I(C;u) \ I(C; v) 6= ∅.

(ii) A code C ⊆ V is solid-locating-dominating if and only if for all u ∈ V \C we have I(C;u) 6= ∅
and  ⋂

c∈I(C;u)

N [c]

 \ C = {u}.

Based on the previous theorem, we obtain the following corollary.

Corollary 5. If C is a self-locating-dominating or solid-locating-dominating code in G, then C is
also solid-locating-dominating or locating-dominating in G, respectively. Furthermore, for a finite
graph G, we have

γLD(G) ≤ γDLD(G) ≤ γSLD(G).

The structure of the paper is described as follows. First, in Section 2, we give optimal locating-
dominating, self-locating-dominating and solid-locating-dominating codes in the direct product
Kn×Km of complete graphs, where 2 ≤ n ≤ m as well as optimal solid-locating-dominating codes
for graphs Kq�Kq�Kq with q ≥ 2. Then, in Section 3, we obtain optimal self-locating-dominating
and solid-locating-dominating codes in infinite king and triangular grids, i.e., the smallest possible
codes regarding their density.

2 Products of complete graphs

A graph is called a complete graph on q vertices, denoted by Kq, if each pair of vertices of the
graph is adjacent. The vertex set V (Kq) is denoted by {1, 2, . . . , q}. The Cartesian product of
two graphs G1 = (V1, E1) and G2 = (V2, E2) is defined as G1�G2 = (V1 × V2, E), where E is a
set of edges such that (u1, u2)(v1, v2) ∈ E if and only if u1 = v1 and u2v2 ∈ E2, or u2 = v2 and
u1v1 ∈ E1. The direct product of two graphs G1 and G2 is defined as G1 × G2 = (V1 × V2, E),
where E = {(u1, u2)(vv, v2) | u1v1 ∈ E1 and u2v2 ∈ E2}. A complement of a graph G = (V,E) is
the graph G = (V,E′) with the edge set E′ being such that uv ∈ E′ if and only if uv /∈ E.

In this section, we first give optimal locating-dominating, self-locating-dominating and solid-
locating-dominating codes in the direct product Kn × Km, where 2 ≤ n ≤ m. For location-
domination and solid-location-domination, the results heavily depend on the exact values of
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γLD(Kn�Km) and γDLD(Kn�Km), which have been determined in [4]. In the graphs Kn ×Km

and Kn�Km, the jth row (of V (Kn) × V (Km)) is denoted by Rj and it consists of the vertices
(1, j), (2, j), . . . , (n, j). Analogously, the ith column is denoted by Pi and it consists of the vertices
(i, 1), (i, 2), . . . , (i,m). Now we are ready to present the following observations:

• In the Cartesian product Kn�Km, the closed neighbourhood N [(i, j)] = N [i, j] consists of
the row Rj and the column Pi. Therefore, as the closed neighbourhood of a vertex resembles
the movements of a rook in a chessboard, Kn�Km is also sometimes called the rook’s graph.

• In the direct product Kn ×Km, we have N((i, j)) = N(i, j) = V (Kn�Km) \ (Rj ∪ Pi).

Due to the previous observations, we know that Kn�Km = Kn ×Km.
Recall that identification is a topic closely related to the various location-domination type

problems. Previously, in [11], the identifying codes have been studied in the direct product Kn ×
Km of complete graphs by Goddard and Wash. More precisely, they determined the exact values
of γID(Kn ×Km) for all m and n.

In what follows, we determine the exact values of γLD(Kn × Km) for all m and n. For this
purpose, we first present the following result concerning location-domination in the Cartesian
product Kn�Km of complete graphs given in [4].

Theorem 6 ([4], Theorem 14). Let m and n be integers such that 2 ≤ n ≤ m. Now we have

γLD(Kn�Km) =

{
m− 1, 2n ≤ m,⌈
2n+2m

3

⌉
− 1, n ≤ m ≤ 2n− 1.

There is a strong connection between the values of γLD(Kn�Km) and γLD(Kn × Km) as
explained in the following. In [3], it has been shown that |γLD(G)− γLD(G)| ≤ 1. Therefore, as
Kn ×Km = Kn�Km, we obtain that γLD(Kn�Km)− 1 ≤ γLD(Kn ×Km) ≤ γLD(Kn�Km) + 1.
This result is further sharpened in the following lemma.

Lemma 7. For 2 ≤ n ≤ m and (n,m) 6= (2, 4), we have

γLD(Kn�Km)− 1 ≤ γLD(Kn ×Km) ≤ γLD(Kn�Km).

If γLD(Kn×Km) = γLD(Kn�Km)−1, then the optimal locating-dominating code C in Kn×Km

has a non-codeword v such that I(v) = C.

Proof. First denote G = Kn�Km and H = Kn×Km. The lower bound of the claim is immediate
by the result preceding the lemma. For the upper bound, let C be an optimal locating-dominating
code in G. The code C can also be viewed as a code in H. If we have I(H;u) = I(H; v) for some
non-codewords u and v, then a contradiction follows since I(G;u) = C \ I(H;u) = C \ I(H; v) =
I(G; v). Hence, we have I(H;u) 6= I(H; v) for all distinct non-codewords u and v. Moreover, if
I(G; v) 6= C for each non-codeword v, then we also have I(H; v) 6= ∅, and the upper bound follows
since C is a locating-dominating code in H.

Hence, we may assume that I(G; v) = C for some non-codeword v. This implies that C ⊆
Pi ∪Rj for some i, j. There exists at most one non-codeword in Pi \ {v} since otherwise there are
at least two non-codewords with the same I-set. Similarly, there exists at most one non-codeword
in Rj \ {v}. Furthermore, if both Pi \ {v} and Rj \ {v} contain a non-codeword, then there exists
a vertex with an empty I-set. Thus, in conclusion, there exists at most two non-codewords in
Pi ∪ Rj and, hence, we have |C| ≥ n + m − 3. Dividing into the following cases depending on n
and m, we next show that |C| ≥ n+m− 3 > γLD(G) in majority of the cases of the lemma:

• If n ≥ 3 and m ≥ 2n, then we have γLD(G) = m− 1 < n+m− 3 ≤ |C| (by Theorem 6).

• If n ≥ 4, n ≤ m ≤ 2n−1 and (n,m) 6= (4, 4), then γLD(G) = d2(n+m)/3e−1 < n+m−3 ≤
|C| (by Theorem 6).
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Figure 1: Optimal locating-dominating code for K10 ×K10. Dark boxes are codewords.

Thus, if n ≥ 3 and m ≥ 2n, or n ≥ 4, n ≤ m ≤ 2n − 1 and (n,m) 6= (4, 4), then a contradiction
with the optimality of C follows. Hence, in these cases, we have γLD(H) ≤ γLD(G). The rest of
the cases are mostly small special cases which can be verified one by one (the details are omitted).

Let then C ′ be a locating-dominating code in H. Similarly as above, we get that if I(H; v) 6= C ′

for each non-codeword v, then C ′ is also a locating-dominating code in G. Therefore, if γLD(H) =
γLD(G) − 1, then there exist a non-codeword v such that I(H; v) = C ′. Thus, the last claim of
the lemma follows.

Now with the help of the previous lemma and Theorem 6, we determine the exact values of
γLD(Km ×Kn) in the following theorem. The rather long and technical proof is omitted.

Theorem 8. For 2 ≤ n ≤ m we have

γLD(Kn ×Km) =


m− 1, 2n ≤ m and (n,m) 6= (2, 4),⌈
2n+2m−1

3

⌉
− 1, 2 < n ≤ m < 2n and (m,n) 6= (4, 4),

m, n = 2,m ≤ 4,

5, n = 4,m = 4.

Let us next briefly consider solid-location-domination. The following result has been shown
in [4].

Theorem 9 ([4]). For all integers m and n such that m ≥ n ≥ 1, we have

γDLD(Kn�Km) =


m, 4 ≤ 2n ≤ m or n = 2,

2n, 2 < n < m < 2n,

2n− 1, 2 < m = n.

In the following theorem, we show that the cardinalities of optimal solid-locating-dominating
codes are same for Kn ×Km and Kn�Km.

Theorem 10. For all integers m and n such that m ≥ n ≥ 2, we have

γDLD(Kn ×Km) = γDLD(Kn�Km).

Proof. By [6, Theorem 21], we have γDLD(G) = γDLD(G) if G is not a discrete or a com-
plete graph. Therefore, as this is the case for G = Kn × Km, we have γDLD(Kn × Km) =
γDLD(Kn ×Km) = γDLD(Kn�Km).

Let us then consider self-location-domination. Unlike location-domination [3, Theorem 7] and
solid-location-domination [6, Theorem 21], the optimal cardinality of a self-locating-dominating
code in G does not depend on the one of the complement graph G. In the following theorem, we
first give the result presented in [4] regarding γSLD(Kn�Km).
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Theorem 11 ([4]). For all integers m and n such that m ≥ n ≥ 2, we have

γSLD(Kn�Km) =


m, 2n ≤ m,
2n, 2 ≤ n < m < 2n,

2n− 1, 2 < m = n,

4, n = m = 2.

In the following theorem, we determine the exact values of γSLD(Kn ×Km) for all values of
m and n. Notice that γSLD(Kn�Km) = γSLD(Kn ×Km) if and only if n = m, m = n + 1 > 3,
or n = 2 and m ≥ 4 (the proof is omitted).

Theorem 12. For all integers m and n such that m ≥ n ≥ 2, we have

γSLD(Kn ×Km) =


m+ n− 1, n > 2,

m, n = 2,m > 2,

4, n = m = 2.

Previously, in [5], an optimal self-locating-dominating code in Kq�Kq�Kq has been presented
as well as some upper and lower bounds for γID(Kq�Kq�Kq). In the following theorem, we
present the optimal value for γDLD(Kq�Kq�Kq), the proof is omitted.

Theorem 13. We have for q ≥ 2

γDLD(Kq�Kq�Kq) = q2.

3 Grids

In this section, we consider solid-location-domination and self-location-domination in the so called
infinite king and triangular grids. Previously, for finite graphs, the optimality of a code has been
defined using the minimum cardinality. However, this method is not valid for the infinite graphs
of this section. Hence, we need to define the concept of density of a code. Let us first consider the
infinite king grid.

Definition 14. Let G = (V,E) be a graph with V = Z2 and for the vertices v = (v1, v2) ∈ V
and u = (u1, u2) ∈ V we have vu ∈ E if and only if |v1 − u1| ≤ 1 and |v2 − u2| ≤ 1. The
obtained graph G is called the infinite king grid. Further let Vn be a subset of V such that
Vn = {(x, y) | |x| ≤ n, |y| ≤ n}. The density of a code C ⊆ V = Z2 is now defined as

D(C) = lim sup
n→∞

|C ∩ Vn|
|Vn|

.

We say that a code is optimal if there exists no other code with smaller density.

In what follows, we first consider solid-location-domination in the king grid. In the following
theorem, we present a solid-locating-dominating code in the king grid with density 1/3. The code
is illustrated in Figure 2. Later, in Theorem 17, it is shown that the code is optimal.

Theorem 15. Let G = (V,E) be the king grid. The code

C =
{

(x, y) ∈ Z2 | |x|+ |y| ≡ 0 (mod 3)
}

is solid-locating-dominating in G and its density is 1/3.
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Figure 2: Solid-locating-dominating code of density 1
3 in the king grid. The darkened squares are

codewords.

In order to prove that the solid-locating-dominating code of the previous theorem is optimal,
we first present the following lemma on forbidden patterns of non-codewords.

Lemma 16. Let G = (V,E) be the king grid and C ⊆ V be a solid-locating-dominating code in
G. Then T = {(i, j), (i, j + 1), (i, j + 2), (i + 1, j + 2), (i − 1, j + 2)} and any formation obtained
from T by a rotation of π/2, π or 3π/2 radians around the origo contains a codeword of C.

In the following theorem, we prove that the solid-locating-dominating code of Theorem 15 is
optimal, i.e., there is no code with density smaller than 1/3.

Theorem 17. If G = (V,E) is the king grid and C ⊆ V is a solid-locating-dominating code in G,
then the density D(C) ≥ 1

3 .

Proof. Let Sj be a subgraph of G induced by the vertex set V ′j = {(x, y) | 1 ≤ x ≤ 3, 1 ≤ y ≤ j}.
Recall first the definition Vn = {(x, y) | |x| ≤ n, |y| ≤ n}. Observe now that we may fit into the
first quadrant {(x, y) | 1 ≤ x ≤ n, 1 ≤ y ≤ n} of Vn bn/3c graphs isomorphic to Sn. Similarly,
the other three quadrants of Vn can each contain bn/3c graphs isomorphic to Sn. Thus, in total,
4bn/3c graphs isomorphic to Sn can be fitted into Vn.

Let C be a solid-locating-dominating code in G. In the final part of the proof, which is omitted,
we show that any subgraph of G isomorphic to Sn contains at least n − 3 codewords. Assuming
this is the case, the density of C can be estimated as follows:

D(C) = lim sup
n→∞

|C ∩ Vn|
|Vn|

≥ lim sup
n→∞

4bn3 c · (n− 3)

(2n+ 1)2
≥ lim sup

n→∞

4(n− 3)2

3(2n+ 1)2
=

1

3
.

It remains to be shown that any subgraph of G isomorphic to Sn contains at least n − 3
codewords. By symmetry, it is enough to show that |C ∩ V ′n| ≥ n− 3.

Above, we have shown that the density of an optimal solid-locating-dominating code in the
king grid is 1/3. Recall that a self-locating-dominating code is always solid-locating-dominating.
Hence, by the previous lower bound, we also know that there exists no self-locating-dominating
code in the king grid with density smaller than 1/3. However, the construction given for the solid-
location-domination does not work for self-location-domination. For example, we have I(2, 0) =
{(2,−1), (2, 1), (3, 0)} and N [(2,−1)]∩N [(2, 1)]∩N [(3, 0)] = {(2, 0), (3, 0)} contradicting with the
definition of self-locating-dominating codes (see Figure 2). In the following theorem, we present a
self-locating-dominating code in the king grid with the density 1/3. Notice that this code is also
solid-locating-dominating.

6



Theorem 18. Let G = (V,E) be the king grid. The code

C =
{

(x, y) ∈ Z2 | x− y ≡ 0 (mod 3)
}

is self-locating-dominating in G and its density is 1/3.

Proof. The density D(C) = 1/3 since in each row every third vertex is a codeword. Furthermore,
C is a self-locating-dominating code since each non-codeword v is covered either by the set of three
codewords {v + (1, 0), v + (0,−1), v + (−1, 1)} or {v + (−1, 0), v + (0, 1), v + (1,−1)}, and in both
cases the closed neighbourhoods of the codewords intersect uniquely in the vertex v.

In conclusion, we have shown that the density of an optimal self-locating-dominating code
in the king grid is 1/3. Next we consider self-locating-dominating and solid-locating-dominating
codes in the infinite triangular grid.

Definition 19. Let G = (V,E) be a graph with the vertex set

V =

{
i(1, 0) + j

(
1

2
,

√
3

2

)
| i, j ∈ Z

}

and two vertices are defined to be adjacent if their Euclidean distance is equal to one. The
obtained graph G is called the infinite triangular grid and it is illustrated in Figure 3. We further

denote v(i, j) = i(1, 0) + j
(

1
2 ,
√
3
2

)
. Let Rn be the subgraph of G induced by the vertex set

Vn = {v(i, j) | |i|, |j| ≤ n}. The density of a code in G is now defined as follows:

D(C) = lim sup
n→∞

|C ∩ Vn|
|Vn|

We say that a code is optimal if there exists no other code with smaller density.

u

v

w

Figure 3: Triangular grid with the vertices v = v(0, 0), u = v(1,−1) and w = v(1, 1).

In the following theorem, optimal self-locating-dominating and solid-locating-dominating codes
are given in the triangular grid. We omit the proof.

Theorem 20. Let G = (V,E) be the triangular grid. The code

C = {v(i, j) | i, j ≡ 0 (mod 2)}

is self-locating-dominating in G and, therefore, also solid-locating-dominating. The density of the
code C is equal to 1/4 and there exists no self-locating-dominating or solid-locating-dominating
code with smaller density, i.e., the code is optimal in both cases.
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