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Abstract –Solar Proton Events (SPEs) are of great importance and significance for the study of Space
Weather and Heliophysics. These populations of protons are accelerated at high energies ranging from a
few MeVs to hundreds of MeVs and can pose a significant hazard both to equipment on board spacecrafts
as well as astronauts as they are ionizing radiation. The ongoing study of SPEs can help to understand their
characteristics, relative underlying physical mechanisms, and help in the design of forecasting and now-
casting systems which provide warnings and predictions. In this work, we present a study on the relation-
ships between the Peak Flux and Fluence spectra of SPEs. This study builds upon existing work and
provides further insights into the characteristics and the relationships of SPE Peak flux and Fluence spectra.
Moreover it is shown how these relationships can be quantified in a sound manner and exploited in a simple
methodology with which the Fluence spectrum of an SPE can be well predicted from its given Peak spec-
trum across two orders of magnitude of proton energies, from 5 MeV to 200 MeV. Finally it is discussed
how the methodology in this work can be easily applied to forecasting and nowcasting systems.
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1 Introduction

Solar Energetic Particle (SEP) events and their proton
component (Solar Proton Events, SPEs) are some of the most
hazardous phenomena of space weather, they contain popula-
tions of ionizing radiation and as such they can present dangers
for the increasingly complex electronics on board spacecrafts
such as those of commercial satellites and sensitive instruments
of scientific missions. This is even more important for missions
outside the Earth’s protective magnetosphere for satellites in the
Sun–Earth Lagrangian Points as well as missions to Mars since
SPEs can reach into the interplanetary space and still retain
much of their hazardous potential (Jiggens et al., 2019). More-
over, SPEs can cause harm to humans either through extreme
exposure, e.g., while in extravehicular activities, or through

accumulated exposure over the course of a mission; the latter
being increasingly important for manned missions to the Moon
and Mars as those envisioned by Space Agencies and private
organizations. At the same time SPEs offer a fascinating insight
into the complex heliospheric processes (Anastasiadis et al.,
2019) and while mechanisms such as the generation, accelera-
tion (Afanasiev et al., 2018) and propagation (Wijsen et al.,
2019) of solar energetic protons are not fully understood their
ongoing study can uncover characteristics that could help in
the in-depth analysis and potential physical modelling of such
mechanisms (e.g., Werner et al., 2019). Due to their hazardous
consequences the space weather scientific community has
engaged over the years in forecasting SPEs in various ways,
usually entailing at least partially a statistical or probabilistic
approach (Camporeale et al., 2019). State of the art forecasting
schemes include the University of Malaga Solar Energetic
Particle (UMASEP) system (Núñez, 2011, 2015), the
FORecasting Solar Particle Events and Flares (FORSPEF)
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system (Papaioannou et al., 2015, 2018), the Warning System
for Aviation Exposure to SEP (WASAVIES) (Kataoka et al.,
2014) and WASAVIES – Earth Orbit (WASAVIES-EO) (Sato
et al., 2019) systems, the Relativistic Electron Alert System for
Exploration (RELeASE) (Posner, 2007; Malandraki & Crosby,
2018), the Empirical model for Solar Proton Events Real
Time Alert (ESPERTA) (Laurenza et al., 2009; Alberti et al.,
2017) and the Proton Prediction System (PPS) (Smart & Shea,
1989, 1992; Kahler et al., 2007). UMASEP predicts both
when the integral proton flux intensity (E � 10 MeV) will reach
values of 10 p cm�2sr�1s�1 as well as the flux intensity-time
profile in the first few hours of an SPE occurrence. FORSPEF
provides forecasts for solar flares and Coronal Mass Ejections,
as well as the occurrence of SPEs. WASAVIES-EO outputs
nowcasts and forecasts for SEP fluxes in the magnetosphere
and ionosphere during Ground-Level Enhancements (GLE).
RELeASE uses measurements of relativistic electrons to pro-
vide short-term forecasting on the occurrence and intensity of
SPEs. The ESPERTA model uses as input parameters the
flare location, Soft X-Ray (SXR) fluence and �1 MHz radio
fluence to provide a warning following the SXR peak for
�M2 solar flares. PPS provides predictions of solar proton
intensities at 1 AU following solar flares based on average
observed SEP profiles, peak intensities, and event durations
using as input parameters the solar flare X-ray peak or fluence,
the time of onset and maximum, as well as the solar flare loca-
tion. Finally, the SOLar Particle ENvironment Code (SOLPEN-
CO; Aran et al., 2006, 2008) was the first tool developed to
provide a prediction of the shape of intensity-time profiles of
SEP events associated with interplanetary shocks. SOLPENCO
and its more recent version, SOLPENCO2, are derived from
physics-based models (e.g., Pomoell et al., 2015) and the latter
was used in the interplanetary statistical SEP model of SEPEM
(Crosby et al., 2015) to provide predictions away from 1 AU.
Overall, forecasting models and systems typically provide a
probability of Event occurrence, along with an accompanying
warning, and an estimation of important SPE characteristics,
usually the Peak flux over a range of proton energies.

Recently Kahler & Ling (2018) studied the relationships of
SPE peak flux and fluence values using the data detailed in
Papaioannou et al. (2016). They were the first to show that lin-
ear fits in the log–log space (henceforth called log-linear fits)
can be made from SPE Peak flux values to Fluence values at
separate energy channels with varying degrees of scattering.
In this work, we have expanded upon these findings and show
that robust relationships exist between the whole differential
Peak and Fluence spectra of each individual SPE across a wide
range of proton energies, 5–200 MeV. Furthermore, it is shown
that when fitted with appropriate analytical functions the Peak
and Fluence spectra of each SPE show closely similar spectral
indexes as well as strongly correlated intensity factors. Addi-
tionally, the offsets from the analytical fitting exhibit similarities
and can be translated from the Peak spectrum to the Fluence
spectrum. To our knowledge, these are relationships not shown
or quantified before and offer further insights into two very
important characteristics of SPEs which can be valuable for
the analysis, categorization and modelling of such Events.
Furthermore, using these relationships we have devised a simple
yet robust methodology for the direct and accurate prediction of
the total Fluence spectrum from a known or forecasted Peak

spectrum of an SPE. Typically in systems such as those
discussed above, Peak flux spectra are forecasted and predicted
ahead of the actual SPE onset or before a detected SPE reaches
its Peak fluxes. With this methodology a forecasted Peak spec-
trum can be used to directly derive a self-consistent prediction
of a Fluence spectrum or conversely if both Peak and Fluence
spectra are forecasted our findings provide a way to check their
internal cross-consistency. Due to its simplicity, this method can
function as an easy to implement standalone module in existing
or future forecasting systems. Results are shown for Fluence
predictions and they are validated using two different Event
lists, the SEPEM Reference Event list and the Event list defined
within the context of the FORSPEF system in order to verify
that list-specific attributes do not influence the results. Finally,
we investigate and demonstrate the applicability of this
approach even in nowcasting applications as a way to obtain
a good prediction on the Fluence spectrum at the moment an
SPE reaches its maximum proton flux intensity.

2 Methodology

2.1 SEPEM Reference Event List and data

In this work, we present results using the SEPEM Reference
Event List (REL) http://sepem.eu/help/event_ref.html which
contains 266 SPEs from 1974 to 2015. In SEPEM REL a proton
enhancement is defined as an Event if the proton flux intensity
of the second channel (E = [7.23–10.46 MeV]) rises above
0.01 p cm�2sr�1s�1, remains for at least 24 h above this thresh-
old, and has a peak value of at least 0.5 p cm�2sr�1s�1. The
Event ends when the flux intensity drops below the 0.01 thresh-
old, and if two qualifying enhancements occur within 24 h they
are compounded into one Event, more details can be found in
http://sepem.eu/help/event_lists.html. Using the SEPEM REL
the corresponding events were extracted from the SEPEM
Reference Dataset v2.0 (RDSv2) http://sepem.eu/help/
SEPEM_RDS_v2-00.zip. SEPEM RDSv2 contains flux inten-
sity time-series based on NOAA GOES measurements. They
are continuous, cleaned, and cross-calibrated with IMP-8
(Sandberg et al., 2014) differential solar proton flux intensity
time-series at 5 min intervals with no missing values or time
gaps. The fluxes are rebinned at 10 energy bins exponentially
spaced within 5–200 MeV and we use the proton time-series
as provided at the 10 energy bins and their respective effective
energies as shown in Table 1. We note that integral products of
RDSv2 have also been validated using STEREO data
(Rodriguez et al., 2017).

2.2 Log-linear relationships of Event Peak Flux
and Fluence spectra

For each Event in the SEPEM REL we have derived the
Peak flux spectrum as the maximum values of the differential
proton flux intensity time-series at each energy bin and the Flu-
ence spectrum as the integrals of the differential proton flux
intensity time-series at each energy bin over the duration of
the Event. We note that the Peak flux times differ for each energy
bin. The resulting 266 pairs of Peak and Fluence spectra show
linear relationships in the logarithmic space. Figure 1a and b
shows two examples, one with a very strong log–linear
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Table 1. The effective energies and energy bins of the RDSv2.

Channel 1 2 3 4 5 6 7 8 9 10

Eeff [MeV] 6.01 8.69 12.57 18.18 26.29 38.02 54.99 79.52 115 166.3
Energy bin [MeV] 5.00–7.23 7.23–10.46 10.46–15.12 15.12–21.87 21.87–31.62 31.62–45.73 45.73–66.13 66.13–95.64 95.64–138.3 138.3–200

Fig. 1. (a) Fluence-Peak pair showing strong log-linearity, (b) Fluence-Peak pair with larger residuals and (c) all Fluence-Peak pairs from the
SEPEM list.
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relationship and another with larger residuals. Figure 1c presents
all the Peak-Fluence pairs and as it can be seen the same trend
appears between Peaks and Fluences for all Events. In order to
quantify these observations linear fits y = kx + m were
performed fitting the natural logarithm of the Fluence spectrum
to the natural logarithm of the Peak spectrum for each Event,
using the least-squares method. It is found that the slopes k of
these log-linear fits are clustered close together having a very
small range around a mean value of 0.892 with a standard
deviation of 0.104 and few outliers. The main differences
exist in the constants m, which are dependent on the actual
values of the Fluences and Peaks. Figure 2 shows the values
of the slopes k versus the constants m derived from the log-
linear fits for all Events. The values are calculated at 95%
confidence intervals with resulting ±0.04 and ±0.167 mean
margins of error for k and m, respectively. We note the k and
m parameters show a weak anti-correlation of �0.281. Below
we discuss how this relationship can be quantified and used
for the prediction of the Fluence spectrum when the Peak spec-
trum is available, being measured either in near-real-time or
forecasted.

2.3 Spectral parameters of differential Fluence
and Peak spectra

The relationship between all pairs of Peak and Fluence
spectra as well the narrow range of slopes shown above implies
the existence of a global relationship of spectral indexes.
We therefore perform analytical fits of the Fluence and Peak
spectra separately in all 266 SPEs across the 10 differential
energy bins. Exponential cut-off power-law functions are used,
shown below in equation (1). We note the fits are performed in
the log-log space:

S Eð Þ ¼ eaEbecE ð1Þ
here S is the differential spectrum (Fluence or Peak flux), a is
the (logarithmic) intensity of the spectrum, b is the power-law
spectral index and c the exponential spectral index. An
example of analytical fits of the Peak and Fluence spectra of
an Event can be seen in Figure 3. While power-law, which
is typically used for SPE spectra fitting and is associated with
shock-acceleration (Ellison & Ramaty, 1985), can provide
adequate fits we have used the exponential cut-off power-
law function because it is more versatile. Due to the added
free parameter this analytical function can capture well
spectra with power-law behavior as well as those that diverge
from it showing exponential drop-off, especially in higher
energies. The use of exponential cut-off power-law analyti-
cal function for SPE spectra as introduced by Ellison &
Ramaty (1985) has been used with good fitting results
demonstrated in Grimani et al. (2013) and Adriani et al.
(2011) found SPE flux spectra which were exponential or
quasi-exponential.

The fittings of all the spectra result in 266 triplets of [a, b, c]
parameters for Peaks and the same for Fluences. The values are
calculated at 95% confidence intervals with resulting ±1.19,
±0.47 and ±0.01 mean margins of error in [a, b, c] respectively
for Peak spectra and ±1.04, ±0.41 and ±0.009 for Fluence spec-
tra. Figure 4 shows cross-plots between the respective spectral
parameters of Fluences and Peaks where it is evident there
are strong one-to-one relations (see Table 2).

Furthermore, the spectral parameters, a, b, c, show interde-
pendencies among them for both Peak and Fluence spectra
separately. The strongest correlations appear for the a–b and
b–c pairs. Figure 5 shows plots for these two pairs of parameters
from Peak spectra with anti-correlations of �0.75 and �0.81,
respectively.

Since the parameters exhibit one-to-one (Peak to Fluence)
relationships as well as internal interdependencies it stands to
reason that the relations of all Peak parameters to all Fluence
parameters can have statistical significance as well. Indeed, as
shown in Table 2 the correlations are statistically non-
negligible. As expected, the highest correlations appear for the
counterpart parameters in the diagonal of the table (as demon-
strated in Fig 4); however, non-negligible values appear for
all pairs except for [cP aF].

2.4 Estimation methodology of Fluence spectral
parameters

2.4.1 Parameters of analytical Fluence spectrum

Based on the findings and analysis discussed above we
employ the [aP, bP, cP] parameters of the Peak spectrum as
estimators for the three [aF, bF, cF] parameters of the Fluence
spectrum. This is done by deriving three fitting curves, one
for each Fluence parameter. These three curves serve as the
estimating functions; they are quadratic hypersurfaces in the
4-dimensional space defined by the three estimators [aP, bP,
cP] and one predicted Fluence parameter. The quadratic form
of the hypersurfaces is shown in equation (2):

y ¼ m1aP þ m2bP þ m3cP þ m4a
2
P þ m5b

2
P þ m6c

2
P þ d ð2Þ

where mj j = 1:6 are constant terms, d is the intercept and y is
1 of the 3 Fluence parameters [aF, bF, cF], where each one is
separately resolved. We use the three fitted curves to estimate
(reconstruct) the Fluence parameters [aF, bF, cF] for each

Fig. 2. Slopes k versus constants m of the y = kx + m log-linear fits
from all pairs of Peak and Fluence spectra.

S. Aminalragia-Giamini et al.: J. Space Weather Space Clim. 2020, 10, 1

Page 4 of 16



Peak flux spectrum in the REL. Figure 6 shows these estima-
tions where the real fluence spectral values (fitted from the
data) are plotted against the values recovered from the curves.
The estimated (reconstructed) parameters agree well with the
values from the data falling along the y = x equality lines with
small scattering and few outliers.

Using these hypersurfaces the Fluence intensity and spectral
indexes can be directly estimated and thus a full spectrum can
be calculated assuming an exponential cut-off power-law
(cf. Eq. (1)). The estimated Fluence spectrum can be calculated
for an arbitrary binning within the 5–200 MeV range used in the
SEPEM RDS. Additionally, using the analytical function it can
be also estimated for energies outside this range. We note that
for extrapolations beyond the data energy range, special care
needs to be taken when the spectral index c is estimated to be
positive. Such positive values are almost certainly due to the
effect of background in the flux intensity time-series which
skew the spectra at higher proton energies and locally change
the slope. However, background removal is not necessarily a
straight-forward task and we have opted to use the time-series
as they are provided. Therefore, we note that since at higher
proton energies the exponential term tends to overwhelm the
power-law behavior, positive exponential terms can lead to

Fig. 3. (a) Peak spectrum derived from SEPEM RDS for an SPE Event and the analytical fit made with exponential cut-off power-law.
(b) Same for respective Fluence spectrum. The fitted spectral parameters can be seen in the bottom left corners.

Fig. 4. Cross-plots of the spectral parameters of Fluences and Peaks showing the relationships between them. (a) Spectrum intensity a,
(b) power-law index b and (c) exponential index c.

Table 2. Correlation values between spectral parameters of peak and
fluences.

Fluences

aF bF cF

aP 0.9147 �0.7413 0.3095
Peaks bP �0.558 0.9022 �0.8064

cP 0.0832 �0.663 0.9114
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unphysical estimations outside the fitted 5–200 MeV range.
Despite this, in many Fluence spectra positive c values do pro-
vide a much better fit to the data and therefore can offer good
estimations inside the used energy range.

2.4.2 Residuals from analytical function fitting

Following the Fluence spectral parameter estimation, an
additional step can be implemented that is based on the Peak
values but limited to the 10 energy bins. As is the case for every
type of analytical fitting, the use of the exponential cut-off
power-law function to fit the Peak and Fluence spectra is bound
to result in residuals from the actual data values. These residuals
are just positive or negative logarithmic offsets from the strict
analytical form. The residuals are calculated according to
equation (3):

Res Eið Þ ¼ log S Eið Þð Þ � log AS Eið Þð Þ; i ¼ 1 :10 ð3Þ

where S is the data spectrum (Peak or Fluence), AS is the
analytical spectrum calculated from the fitted spectral
parameters, E is the energy and i is the index of the energy
bin. We show that the residuals from the Peak spectrum can
also be used to estimate the respective expected residuals
for the estimated Fluence spectrum. The estimation of these
residuals offers added precision and can adjust the estimated
Fluence spectrum to match even more closely the data.
The residuals from the Peak fits (DPeaks) show strong
correlations or anticorrelations with the residuals from the
Fluence fits (DFluences) across all energies. This is not very
surprising given the shown similarities in the spectral indexes
between Peaks and Fluences, as one would expect similar
deviations from the analytical form between spectra with clo-
sely similar profiles. We note that this of course means that
the residuals across energies within Peaks and Fluences
separately also show correlations among them. Figure 7a
and b shows cross-plots of the DPeaks and respective

Fig. 5. Cross-plots of Peak spectral parameters for all 266 Events. (a) Spectrum intensity aP with power-law index bP and (b) power-law index
bP with exponential index cP.

Fig. 6. Cross-plots of Fluence spectral parameters derived from data and estimated from the estimator hypersurfaces, y = x equality lines are in
blue. (a) Fluence spectrum intensity aF, (b) Fluence power-law index bF and (c) Fluence exponential index cF.
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DFluences from all Events at 6 MeV and 115 MeV. Both
show strong correlations above 0.8. Figure 7c presents a
mapping of the correlation coefficients between DPeaks and
DFluences at all energies. In total 100 values were derived

by calculating the correlation coefficients between all 10 Peak
residuals and all 10 Fluence residuals. The map is character-
ized mainly by high correlations (light copper color) transi-
tioning into areas of high anticorrelations (black and dark

Fig. 7. (a) and (b) cross-plots of fitting residuals of all Peak and Fluence spectra at 6 MeV and 115 MeV respectively, and (c) mapping of the
correlation coefficients of all Peak residuals to all Fluence residuals at all energies.
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brown colors), in total 65 of the 100 pairs show correlations
with absolute values above 0.5.

The estimation of the DFluences is based solely on the
fitting residuals of the Peak spectrum and the approach
employed here is similar as before for the spectral parameters.
Specifically, the DPeaks are used to calculate 10 quadratic
hypersurfaces, one for the estimation of each of the DFluences
at the 10 energy bins. Only the DPeaks at energies with absolute
correlation values above 0.5 are used for the estimation of the
DFluence at each energy bin. The form of the hypersurfaces
is shown in equation (4):

y ¼
XN

i¼1

mixi þ kix2i þ d ð4Þ

where y is the estimated Fluence residual at a specific energy
bin, xi are the Peak residuals, N is the number of energy bins

where the Peak residuals have absolute correlations above 0.5
with the Fluence residuals at that specific energy bin, m and k
are constants and d the intercept. The hypersurface for each
energy is resolved separately. Figure 8 shows cross-plots of
the data DFluences and the estimated DFluences at the first,
third, sixth and ninth energy bins at 6 MeV, 12.6 MeV, 38
MeV and 115 MeV respectively. Figures for all energies
can be seen in the Supplementary materials.

As mentioned above, the estimated residuals adjust the
initial Fluence spectrum derived from the estimated spectral
parameters [aF, bF, cF]. This is done by using below equation (5):

eFS Eið Þ ¼ exp log eAS Eið Þð Þ þ eRes Eið Þð Þ i ¼ 1 :10 ð5Þ
where eFS is the estimated final fluence spectrum, eAS is the
estimated analytical fluence spectrum, eRes is the estimated
fluence residual, E is the energy and i is the energy bin index.

Fig. 8. Cross-plots of Fluence residuals derived from data and estimated from the hypersurfaces using the Peak residuals, y = x equality lines
are in blue. (a) 6 MeV, (b) 12.6 MeV, (c) 38 MeV and (d) 115 MeV.
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Figure 9 shows such an example comparing the Fluence spec-
trum derived from the data, the Fluence spectrum calculated
from the estimated [aF, bF, cF] spectral parameters as well
as the latter adjusted with the estimated residuals. It is seen
how the addition of the residuals can improve the final profile
of the spectrum estimation so that it shows better agreement
with the actual values from the data.

These results illustrate that the Fluence spectral parameters
as well as the fitting residuals can be well reproduced using
as estimators the respective Peak spectral parameters and fitting
residuals. However, these results do not guarantee that apart
from estimation, this approach can be used for actual predic-
tions, i.e., to provide reliable results from the parameters of Peak
spectra that have not been included in the calculations of the
hypersurfaces if they are used as predictive functions. Below,
we validate our approach and demonstrate that it is indeed
applicable for the actual prediction of Fluence spectra. Finally,
we also note that very similar relationships where found for inte-
gral Peak fluxes and Fluences meaning that the methodology
described here can also be applied to integral proton flux data.

3 Results

3.1 Fluence prediction and validation

The 266 Events in the SEPEM REL with their respective
Peaks and Fluences are used to validate our approach. An
iterative “leave-one-out” validation process is employed in
which the Peak and Fluence parameters of the Event whose
Fluence is to be predicted are not taken into account in the
calculation of the predictive hypersurfaces. The process is
detailed below and depicted in Figure 10.

1. The Peak and Fluence spectra of the 266 Events are fitted
with the analytical functions to derive the [a b c] triplets
along with the respective fitting residuals.

2. All the variables of the Event whose Fluence is consid-
ered unknown are set apart and the variables from the rest
265 Events are used to calculate the hypersurfaces. Three
hypersurfaces are calculated for the prediction of each of
the Fluence spectral parameters [aF bF cF] from the Peak
spectral parameters, and 10 for the prediction of each of
the Fluence residuals from the Peak residuals.

3. After the hypersurface calculation, the Peak parameters
and Peak residuals of the Event that was set apart (with
the unknown Fluence) are input to the hypersurfaces
and a Fluence spectrum is predicted.

4. The process repeats iteratively for all 266 Events and in
each iteration a different Event is set apart and its Fluence
is considered unknown.

This process goes through the whole list and allows predic-
tions to be made for each and every one Event. Since in every
iteration the parameters from the Event under consideration do
not participate in the hypersurface calculations the final Fluence
outputs are true predictions, essentially as if the Event was the
next one to occur. The Peak values are given only as input to the
pre-derived hypersurfaces (they do not participate in their
calculation) to predict the Fluence [aF bF cF] parameters and
residuals. Thus, the Peak spectrum is treated as if it was known
or accurately predicted by some other means. Finally, the
predicted Fluence spectra are compared to the actual measured
Fluences. Figure 11 shows the mean and geometric mean
Fluence spectrum from all the Events in the SEPEM REL along
with the predictions in this work where the overall good
agreement can be seen. The insets show the percentage error
for the mean spectrum which is below 25% while the geometric
mean spectra are virtually indistinguishable with the error being
below 0.2%.

In more detailed comparisons, Figure 12 shows cross-plots
of measured and predicted Fluences at the first, fifth and ninth
energy bins at 6 MeV, 26.3 MeV and 115 MeV, respectively.
Additionally, the bar plots show the distribution of multiplica-
tive factors by which the predictions differ from the measure-
ments, being either higher or lower. Figures for all energies
can be seen in the Supplementary materials.

The cross-plots show the predicted Fluences agree well with
the data mostly clustering along the y = x equality lines in blue
and remaining almost always within a factor of 4 (red lines
above and below). The bar plots show the distribution of the
fraction of Fluences over predictions where 70% or more of
the predictions are within a factor of 2 of the data at all energies
and more than 95% are within a factor of 4. Table 3 shows the
percentages for the 10 energy bins. These results demonstrate
this methodology can reliably predict Fluence spectra from Peak
spectra across the whole 5–200 MeV energy range. Addition-
ally, the distributions shown in the bar plots can be treated as
probability density functions (PDFs) of the Fluence predictions.
Such PDFs can be calculated with a dense binning and
implemented directly, or even fitted analytically, e.g., with
Gaussians, in order to additionally derive confidence levels
for the predictions.

Finally, the methodology and process described was also
applied using the FORSPEF Event list with the RDSv2 dataset.

Fig. 9. Comparison of Fluence spectra, derived from data in black,
calculated from the estimated spectral parameters in blue (analytical
spectrum) and in red is the final estimation which is the analytical
spectrum adjusted with the estimated residuals.
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This Event list contains 314 Events from 1984 to 2013 and it
was defined from the cross-calibrated (with IMP-8) GOES pro-
ton data on the channel with effective energy of Eeff = 10 MeV.
The 314 Peak and Fluence spectra were fitted, with the respec-
tive [a b c] triplets and residuals calculation, as well as the
hypersurfaces derivation. We applied the methodology to an
additional, and quite different, Event list in order to verify
and demonstrate that no list specific characteristics affect the
process or introduce some bias due to the way that Events are
defined. Indeed, the results using the FORSPEF Event list are

very similar to those using the SEPEM REL. This strongly indi-
cates that our results are not list-specific and the Peak-Fluence
relationships shown and used here are intrinsic and robust,
meaning this approach can be employed regardless of the Event
list used. All figures using the FORSPEF list with the same
comparisons between predicted and measured Fluences with
cross-plots and bar-plots, as in Figure 12, can be seen in the
Supplementary materials. In Table 4 the percentages of predic-
tions within a factor of 2 and 4 with the FORSPEF list are
shown. We note that a key difference in the FORSPEF list is

Fig. 10. The process used for the “leave-one-out” validation of the Fluence predictions.

Fig. 11. Comparison of (a) mean spectra and (b) geometric mean spectra of Fluences from all Events in the SEPEM REL and all predicted
Fluences in this work. Insets show percentage error at all energy bins.

Table 3. Percentages of predictions within a factor of 2 and 4 of the data with the SEPEM list.

Eeff (MeV) 6 8.7 12.6 18.2 26.3 38 55 79.5 115 166.3

% 2 1
2 ;

2
1

� �
75.93 77.06 76.31 70.67 69.92 70.30 70.67 70.67 72.55 74.43

% 2 1
4 ;

4
1

� �
97.44 98.49 97.74 96.24 96.99 95.11 95.86 96.61 96.99 97.74
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Table 4. Percentages of predictions within a factor of 2 and 4 of the data with the FORSPEF list.

Eeff (MeV) 6 8.7 12.6 18.2 26.3 38 55 79.5 115 166.3

% 2 1
2 ;

2
1

� �
78.02 79.29 76.11 74.84 77.07 76.75 75.79 74.84 74.52 76.11

% 2 1
4 ;

4
1

� �
97.45 98.08 96.81 97.77 97.13 97.13 97.45 96.81 97.13 97.77

(a) (b)

Fig. 12. (a) Cross-plots of measured and predicted Event Fluences at 6 MeV, 26.3 MeV and 115 MeV, y = x equality lines are in blue and
y = 4x and y = 0.25x lines are in red above and below respectively. (b) Distributions of the fraction of Fluence over predictions at the same
energies.
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that, unlike in the SEPEM REL, multiple proton enhancements
(sub-Events) are not compounded into a single Event, even if a
new enhancement partially overlaps with a previous one. In this
regard the FORSPEF list offers better statistics in terms of
Peak-Fluence correlations at all energies (see Supplementary

materials) as well as absolute number or Events with which to
derive the predictive hypersurfaces. The deficiency of non-
compounding Event definition is that the Fluence of a previous
enhancement will be somewhat lower due to overlap. However,
this is mitigated by the fact that in such cases the new

Fig. 13. (a) Flux time-series of SPE, (b) Fluence prediction time-series are in solid lines and SPE data Fluences are shown in dashed lines for
comparison and (c) time-series of Fluence over prediction ratio.
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enhancement usually occurs in the decay phase of the previ-
ous so less information is lost about the Fluence. These
characteristics of the FORSPEF Event list are factors for the
slightly higher prediction percentages yielded, especially in
the 1

2 ;
2
1

� �
interval.

As mentioned, an important aspect of these findings and this
approach is that it can be used as an easy to implement addi-
tional tool or module in systems and models with methodolo-
gies that forecast SPE Peak fluxes. The only requirement is
the calculation of the Peak-to-Fluence hypersurfaces from the
SPE Event list used in each system. The hypersurfaces can then
directly provide predictions and even confidence levels can be
calculated from the resulting distributions such as those shown
in the bar-plots in Figure 12.

3.2 Nowcasting of SPE Fluences

As discussed this approach can be applied in forecasting
systems where a Peak spectrum is predicted ahead of the
SPE. However, for nowcasting applications and systems the
time window for a parameter prediction is of paramount impor-
tance, even excellent predictions are of little use if they come
too late. In this regard, we investigate the applicability of our
approach for SPE Fluence nowcasting, i.e., after an Event has
been detected and near-real-time measurements are incoming,
and we show that there is indeed practical potential. The process
is similar to the validation process described above but it incor-
porates a per-measurement mode to account for the evolution of
an SPE in time. The steps are analytically described below. For
simplicity we consider a process where no peak forecast is
available.

1. The fluence prediction process is initiated as soon as an
SPE starts and proton flux intensity measurements
become available.

2. At each time step the new flux intensity measurements are
stored and the (so far) maximum values from all energy
bins are considered as the (current) Peak spectrum.

3. At each time step when a new measurement becomes
available the current Peak spectrum is fit with an expo-
nential-cut-off power-law and its spectral parameters
[aP, bP, cP] are derived as well as the 10 residuals. The
Peak spectrum is taken as the maximum flux at each
energy channel (not necessarily coincident in time).

4. The Peak parameters and residuals are input in the pre-
fitted hypersurfaces and the Fluence parameters and
residuals are predicted. As in the previously described
“leave-one-out” validation scheme, the hypersurfaces are
pre-calculated without any of the variables of the “new”
Event currently under consideration.

5. The Fluence spectrum is calculated and the current predic-
tion at each time step is given.

As described the process is repeated with each new incom-
ing measurement and this results in time-series of predictions
for the Event Fluences. Figure 13 shows an example of the out-
puts of this process, Figure 13a shows the Event’s proton flux
intensity time-series, Figure 13b shows the Fluence prediction
time-series compared to the actual Fluences of the Event
(dashed lines), and Figure 13c shows the calculated time-series

of the ratio of Fluence over prediction. It can be seen that the
prediction process starts with a big error as the initial measure-
ments are quite far from the Peak values. However as the proton
fluxes rise the prediction gets closer and closer to the actual
Fluence values of the Event. After the SPE reaches peak values
the prediction remains the same and is static, while the same is
true for the ratio of Fluence over prediction. Finally, in Figure 14
the final predicted spectrum obtained at ~33 h after onset is
shown for the sample Event in Figure 13.

Naturally, for the application of this methodology in now-
casting the sooner an SPE reaches its maximum flux values
the sooner a good prediction for the Fluence can be made.
Therefore, we have performed a statistical analysis on the time
occurrence of the Peaks in the SEPEMREL used here. Figure 15
shows the binned cumulative distributions of the time of Peak
occurrence in hours, and as a fraction of the total Event duration
at 6 MeV, 26.3 MeV and 115 MeV. More than 70% of the
Events reach their Peak values at all energies within the first
30–50 h from the SPE onset and respectively more than 70%
reach Peak values at all energies within the first 35%–50% of
the total Event duration. However, we note here that this is a
list-specific characteristic and it is dependent on the Event
definition used. As previously discussed, the SEPEM REL
contains multiple Events that are comprised of more than one
enhancements, i.e., more than one overlapping sub-Events
considered as one due to concurrency. They are not differenti-
ated or separated, resulting in a number of Events having their
Peak flux later in their duration, even though a sub-Event may
have peaked earlier. In this sense, the SEPEM list is a worst-
case scenario for this application. Contrary to this, since the
FORSPEF list separates such multiple Events the statistics on
the time of Fluence prediction are further improved. Figures
with the distributions of Peak occurrence in hours, and as a
fraction of the total Event duration after onset at all energies

Fig. 14. Final Fluence prediction for the SPE shown in Figure 13
acquired at ~33 h after onset, compared to the actual SPE Fluence of
the measured flux time-series.
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for the SEPEM REL and FORSPEF list can be seen in the
Supplementary materials.

These statistics show that our approach can indeed also be
applied for nowcasting as it can provide accurate predictions
of SPE Fluences within a reasonable timeframe, providing good
predictions of Fluence for the majority of Events many hours or
days before their end.

4 Summary

We have investigated in depth the relationships of Peak and
Fluence spectra in SPEs using the SEPEM RDS v2.0 differential
proton flux intensity dataset and two SPE Events lists, the
SEPEM Reference Event List and the Event list used in the
FORSPEF system. It is shown that within each Event the Peak
spectrum exhibits a log-linear relationship with the respective
Fluence spectrum across the range of proton energies of
5–200 MeV. By fitting the Peak and Fluence spectra with
analytical exponential cut-off power-law functions it is found that
this relationship is directly reflected in the close similarity of the
spectral indexes and the scaling relationship between the spectral
intensities. Also, it is shown that the spectral parameters are
interdependent and exhibit high correlations among them.
Furthermore the residuals from the analytical fitting are found

to also exhibit high correlations/anticorrelations, meaning the
Peak and Fluence spectra diverge from the strict analytical
functions in similar ways. Based on these findings an approach
is devised to predict a Fluence spectrum for a given Peak spec-
trum of an Event. This is done by predicting the Fluence spectral
parameters as well as the residuals of the analytical fitting from
the respective Peak spectral parameters and residuals. The
approach is validated for all Events in a sound and consistent
way and the prediction results are shown to agree well with the
data across all energy bins. The predicted Fluences remain within
a factor of 4 of the measured Fluences in more than 95% of all
cases and at least 70% of the predictions are within a factor of
2 at all energies. Very similar results were also obtained using
the FORSPEF Event list which strongly indicates that the results
are not list-specific but based on intrinsic properties of the SPEs.
This approach can be directly implemented in forecasting
systems that already provide a prediction of the Peaks for an
Event prior to its occurrence, or onset, in order to additionally
derive a good Fluence prediction. Finally, we study the applica-
bility of this approach for nowcasting systems which use real-
time or near-real-time measurements of SPEs that are ongoing.
It is shown that since the majority of the Events, more than
70%, reach their Peak values within 30–50 h from their onset
our approach has application even in nowcasting systems as it
can derive a reliable total Fluence spectrum prediction many

(a)

(b)

Fig. 15. (a) Cumulative distributions of Peak occurrence in hours after onset at 6 MeV, 26.3 MeV and 115 MeV. (b) Cumulative distributions
of Peak occurrence relative to total Event duration at the same energies. Red dashed lines denote the 70% limit.
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hours or days before the end of the Event providing thus poten-
tially useful and valuable information.
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