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ABSTRACT: Protein engineering has been used to remodel pores for applications in
biotechnology. For example, the heptameric α-hemolysin pore (αHL) has been
engineered to form a nanoreactor to study covalent chemistry at the single-molecule
level. Previous work has been confined largely to the chemistry of cysteine side chains
or, in one instance, to an irreversible reaction of an unnatural amino acid side chain
bearing a terminal alkyne. Here, we present four different αHL pores obtained by
coupling either two or three fragments by native chemical ligation (NCL). The
synthetic αHL monomers were folded and incorporated into heptameric pores. The
functionality of the pores was validated by hemolysis assays and by single-channel
current recording. By using NCL to introduce a ketone amino acid, the nanoreactor
approach was extended to an investigation of reversible covalent chemistry on an
unnatural side chain at the single-molecule level.

KEYWORDS: nanoreactor, single-molecule chemistry, membrane protein, native chemical ligation, unnatural amino acid,
protein semisynthesis

α-Hemolysin (αHL) is a pore-forming toxin secreted by
Staphylococcus aureus. The pore contains seven subunits, and
each subunit comprises 293 amino acids.1 Use of the
heptameric αHL protein pore as a nanoreactor has proved
profitable in studies of covalent chemistry at the single-
molecule level.2−5 For example, the nanoreactor approach is
advantageous because large, potentially interfering, fluorescent
probes are not required. When a molecule undergoes a
chemical reaction on the inner wall of the transmembrane β
barrel of the αHL pore, the current carried by ions flowing
through the pore is perturbed. Hence, individual reaction steps,
including those that are not rate-limiting and therefore not
detectable at the ensemble level, are visualized in the
microsecond time domain, and the kinetics of each step can
be determined.2−5 Recently, complex reaction networks4 and
the motion of individual molecular walkers5 have been
examined by this means. However, the chemistry carried out
within engineered αHL nanoreactors has until recently been
confined to the reactions of thiolates2−8 and derivatives of the
side chains of cysteine residues.9,10 Lately, we expanded the
range of chemistry that can be approached by introducing
unnatural amino acid side chains into the αHL polypeptide by
using native chemical ligation (NCL).11 By this means, an
irreversible reaction of a side chain bearing a terminal alkyne

was examined. In the present work, we advance the unnatural
amino acid approach by introducing a ketone side chain which
allows for observation of reversible chemistry. We also describe
truncated pores made by the NCL approach.

RESULTS
General Approach to Two-Fragment Ligation. Two-

fragment ligations involved the reaction of an N-terminal
fragment (NTF) containing a C-terminal αthioester with a C-
terminal fragment (CTF) bearing an N-terminal cysteine (N-
Cys). The NTF coding sequence was fused in-frame with DNA
encoding a Mycobacterium xenopi DNA gyrase A (Mxe GyrA)
intein−chitin binding domain (CBD), that is, NTF−intein−
CBD, in the pTXB3 plasmid (New England Biolabs).12 After
expression of the protein in Escherichia coli, the NTF-αthioester
was cleaved from the intein−CBD with sodium 2-mercapto-
ethanesulfonate (MESNa), while the rest of the chimera
remained bound to chitin beads.13,14 A CTF with an N-Cys can
be generated by cleavage of a precursor fusion protein with a
site-specific protease.15,16 However, this method may not work
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efficiently with proteins of poor solubility or proteins from
inclusion bodies. In the latter case, the protease can be
inactivated by denaturants used to solubilize a target protein,
and even if cleavage is successful, an additional purification step
may be required to separate the product from the protease and
unwanted fragments. An alternative approach to generate N-
Cys, which was taken here, is to express the polypeptide
initiated by fMet-Cys. Following expression, formylmethionine
(fMet) is removed by endogenous deformylation and
methionine aminopeptidase activity, and the N-Cys residue
undergoes condensation with pyruvic acid, an abundant
metabolite, to form a thiazolidine.17 This strategy is protease-
free and allows rapid overexpression of the target polypeptide
(4 h) at 37 °C. The polypeptide accumulated in inclusion
bodies is subsequently purified under denaturing conditions (8
M urea or 6 M guanidine hydrochloride (Gu·HCl)), and the N-
Cys is unmasked with hydroxylamine or a hydroxylamine
derivative.18 The use of denaturants enables the purification of
polypeptides containing transmembrane regions, which are
often insoluble and obtained in very low yields when processed
under nondenaturing conditions (unpublished work).
Preparation of Polypeptides for Two-Fragment

Ligation. We targeted three αHL polypeptides for semisyn-
thesis by two-fragment coupling (Figure 1A): a full-length αHL
monomer and two different truncated barrel mutants
(TBMΔ6) (Figure S1A−C). TBMΔ6 forms an αHL heptamer
in which amino acids have been removed in pairwise fashion
from both of the two β strands contributed by each subunit,

resulting in a β barrel shortened by 6 amino acids.19 TBMΔ6
forms conductive pores despite the short length of the barrel,
presumably by inducing the formation of toroidal lipid pores
that span the bilayer.19 Two TBMΔ6s bearing a different amino
acid at residue 113 (Met, Phe) were chosen, as it has been
shown that the mutation Met-113→Phe significantly alters the
binding kinetics of cyclodextrin adaptors to the pore.20

Three different NTFs (NTF126 [Ala
1-Gly126], NTF113M [Ala1-

Met113], and NTF113F [Ala
1-Phe113]) each bearing an αthioester

at the C-terminus were obtained by thiolysis of the
corresponding intein−CBD fusion proteins after expression in
E. coli. The pTXB3−NTF126 and pTXB3−NTF113M plasmids
were prepared by cloning PCR-amplified DNA, encoding
residues 1−126 and 1−113 of αHL, upstream of the intein−
CBD codons (Figure S2A,B). pTXB3−NTF113F was prepared
by mutagenesis of pTXB3−NTF113M by homologous recombi-
nation (Figure S2C).21 Fusion proteins were produced in E. coli
(BL21(DE3), NEB) and solubilized from inclusion bodies
under denaturing conditions (8 M urea). The NTF-αthioesters
were obtained by on-column thiolysis of the fusion proteins
bound to chitin columns with MESNa (Figure S3). The
purified NTF-αthioesters were characterized by LC-MS (Figure
S4, NTF126: [M + H]+ = 14 150 (obs), 14 150 Da (calcd);
NTF113M: [M + H]+ = 12 838 (obs), 12 838 Da (calcd);
NTF113F: [M + H]+ = 12 853 (obs), 12 854 Da (calcd)).
The pT7-SC1-CTF127 plasmid was prepared by replacing

plasmid DNA encoding residues 1−127 with the codons for
Met-Cys as previously reported.11 To produce CTFΔ114, pT7-

Figure 1. Preparation of αHL pores. (A) αHL monomers were synthesized by native chemical ligation from two fragments (NTF and CTF)
expressed in E. coli. Folding was performed by reducing the concentration of the denaturant (8 M urea) present during the purification of the
synthetic monomers (SM). (B−D) Characterization of the synthetic αHL monomers by LC-MS. (B) SMf: [M + H]+ = 34 983 (observed mass,
obs), 34 981 (calculated mass, calcd). (C) SMΔ6‑113M: [M + H]+ = 33 908 (obs), 33 907 (calcd). (D) SMΔ6‑113F: [M + H]+ = 33 924 (obs),
33 923 (calcd). (E) Hemolysis assays (see Supporting Information, Experimental procedures). The decrease in light scattering over time was
recorded in a microplate reader at 595 nm. WT αHL monomer (row 1) lysed rRBCs, whereas TBMΔ6 (row 3) did not due to its truncated β
barrel. Similarly, the full-length synthetic αHL monomer SMf (5.9 μg mL−1, in well 1) lysed rRBCs, whereas SMΔ6−113M (7.4 μg mL−1) and
SMΔ6−113F (7.8 μg mL−1) did not. WT and TBMΔ6 monomers were produced by IVTT. (F) SDS-PAGE gel analysis of WT and synthetic αHL
(SMf). Lane 1: molecular markers. Lane 2: radiolabeled αHL monomer (mon) produced by IVTT. Lane 3: radiolabeled WT7 pores (hep)
produced in the presence of DPhPC liposomes (7 mg mL−1). Lane 4: (SMf)7 pores assembled with purified SMf in the presence of DPhPC
liposomes under the same conditions comigrate with the WT7 pore. An autoradiogram is superimposed on the Coomassie Blue-stained gel.
(G) Heteroheptameric pores. WT αHL (radiolabeled protein) and SM were mixed in various ratios in the presence of rRBCm to yield
heteromeric WT7−nSMn (n = 0−7) pores. The heptameric pores with different numbers of SMf were separated by SDS-PAGE based on the
different electrophoretic mobilities produced by D8 tails at the C-terminus of SMf. (H) Homoheptameric pores formed with SMΔ6−113M (left)
and SMΔ6−113F (right). Homomeric pores were prepared in the presence of DPhPC liposomes (10 mg mL−1).
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SC1-CTFΔ114-DH was prepared by two successive homologous
recombinations21 from pT7-TBMΔ6, which encodes TBMΔ6
(Figure S5). The codons for residues 1−113 were removed
(retaining the initiator Met), and codons for a D8H6 (DH) tag
were added in the first and second rounds, respectively. The
two different C-terminal fragments (CTF127 [Cys127-Asn293]-
D8H6, and CTFΔ114 [Cys114-Asn293, ΔPhe120-Thr125, ΔGly133-
Ala138]-D8H6) were overexpressed in E. coli. Like the NTFs, the
CTFs were obtained from inclusion bodies and, in this case,
purified under denaturing conditions (6 M Gu·HCl) by FPLC
(ÄKTA purifier, GE Healthcare Life Sciences) at room
temperature by use of the His6 tag at the C-terminus (Figure
S6). The N-terminal fMet was found to be absent, and the
thiazolidine produced by condensation of the N-Cys with
pyruvic acid was removed with 0.4 M HONH2·HCl for 4 h at
room temperature. The purified CTFs were characterized by
LC-MS (Figure S7, CTF127: [M + H]+ = 20 974 (obs), 20 974
Da (calcd); CTFΔ114: [M + H]+ = 21 214 (obs), 21 212 Da
(calcd)).
α-Hemolysin Polypeptides by Two-Fragment Liga-

tion. We ligated NTFs and CTFs (Figure S1) in NCL buffer
[200 mM NaH2PO4 (pH 6.9), 6 M Gu·HCl, 200 mM 4-
mercaptophenylacetic acid (MPAA), and 50 mM tris(2-
carboxyethyl)phosphine (TCEP)] to make three different
αHL constructs. In each case, an NTF and a CTF were
mixed and the buffer was exchanged by dilution−concentration
cycles with a centrifugal filter. NTF126 (∼0.5 mM) and CTF127
(∼0.5 mM) were coupled to produce the full-length αHL
synthetic monomer (SMf). NTF113M (∼0.6 mM) and NTF113F
(∼0.7 mM) were separately coupled with CTFΔ114 (∼0.8 mM)
to yield two different truncated mutant monomers19

(SMΔ6−113M and SMΔ6−113F). The rate of ligation is highly
dependent on the steric properties of the C-terminal amino
acid residue of an NTF22,23 and the concentration of reactants.

The ligation reactions were carried out for >12 h at a final
concentration of ∼1 mM as previous work22 had suggested that
ligations of NTFs containing C-terminal Ala, Val, Ile, Met, and
Phe are completed within 9 h at a final peptide concentration of
1−3 mM. The two-fragment couplings gave SMf, SMΔ6−113M,
and SMΔ6−113F (Figures S8 and S9) in 48, 46, and 50% yields,
respectively.

Purification, Folding, and Functional Properties of α-
Hemolysin Polypeptides. We purified the SMs (SMf,
SMΔ6−113M, and SMΔ6−113F) by gel filtration in 8 M urea
(Figure S8) and characterized them by LC-MS (Figure 1B−D
and Figure S8, SMf: [M + H]+ = 34 983 (obs), 34 981 Da
(calcd); SMΔ6−113M: [M + H]+ = 33 908 (obs), 33 907 Da
(calcd); SMΔ6−113M: [M + H]+ = 33 924 (obs), 33 923 Da
(calcd)). We then folded the purified SMs by diluting the 8 M
urea in the purification buffer to ∼60 mM and concentrating
the proteins using a centrifugal filter (MWCO 3k). The folded
monomers were examined for hemolytic activity toward rabbit
red blood cells (rRBCs) (Figure 1E). We observed similarities
between the synthetic monomers and the WT or truncated
αHL monomers produced either in E. coli or by in vitro
transcription and translation (IVTT). As expected, only SMf
exhibited hemolytic activity toward rRBCs.19 The specific
hemolytic activity of SMf was HC50 = 92 ng mL−1, which is in
the same range as that of WT αHL (HC50 = 31 ng mL−1).24 To
visualize the formation of αHL heptamers, we incubated SMf at
37 °C in the presence of liposomes (10 mg mL−1,
diphytanoylphosphatidylcholine, DPhPC), which produced a
new band upon sodium dodecyl sulfate/polyacrylamide gel
electrophoresis (SDS-PAGE) corresponding to the size (∼240
kDa) of the heptamer (Figure 1F, left). We also incubated SMf
in the presence of rabbit red blood cell membranes (rRBCm)
in different ratios with radiolabeled WT αHL produced by
IVTT. The SMf oligomerized to form heteroheptamers with

Figure 2. Reactivity of the Cys-127 residue in WT6SMf1 αHL. (A) WT6SMf1 was eluted from a gel (Figure 1G), and a single WT6SMf1 pore was
established in a planar bilayer. Me-PEG-OPSS (5 kDa, 0.1 mM, inset, n = 3) was added to the trans compartment. The current drop indicates
a blockade caused by reaction of the PEG derivative with the pore through the formation of a disulfide bond with the side chain of Cys-127.
(B) Addition of 5 mM DTT to both compartments cleaved the PEG chain from the WT6SMf1 pore. The buffer was 1 M KCl, 20 mM Tris·HCl
(pH 8.5). The currents in (A) and (B) were filtered and sampled at 2 and 10 kHz, respectively.
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different stoichiometries (WT7−nSMn, n = 0−7) (Figure 1F,
right). SMΔ6−113M and SMΔ6−113F were incubated with DPhPC
liposomes (10 mg mL−1) and oligomerized to form homomeric
structures11 (Figure 1G).
Electrical Properties of Two-Fragment Pores and

Binding of Cyclodextrins. To examine the electrical
properties of the various heptameric αHL pores containing
synthetic subunits [WT6SMf1, (SMΔ6−113M)7, and
(SMΔ6−113F)7], we determined the mean unitary conductance
values under defined conditions and measured I−V curves
(Figure S10a,b). The conductance values for the αHL pores
containing synthetic monomers were similar to that of pores
comprising WT αHL subunits produced by IVTT.
To confirm that the transmembrane β barrels of the

semisynthetic pores were intact, we evaluated the binding
kinetics at the single-molecule level of cyclodextrin molecular
adapters (βCD and am7βCD (heptakis(6-deoxy-6-amino)-β-
cyclodextrin)) with the WT6(SMf)1, (SMΔ6−113M)7, and
(SMΔ6−113F)7 pores.25,26 It was already known that the
homoheptamer formed from TBMΔ6/M113F binds am7βCD
very tightly.19,20 We determined the association and dissocia-
tion rate constants (kon and koff) of βCD for the three different
protein pores. At least three measurements were made for each
construct. βCD blocks the ionic current transiently when it is
lodged within the lumen of the αHL pore. The dissociation
constants (KD = koff/kon, Figure S11) of βCD for WT6SMf1 (KD
= 14.5 ± 0.4 × 10−3 M, kon = 10.0 ± 0.2 × 104 M−1·s−1, and koff
= 14.5 ± 0.2 × 102 s−1) and (SMΔ6−113M)7 (KD = 6.5 ± 0.2 ×
10−2 M, kon = 2.4 ± 0.1 × 104 M−1·s−1, and koff = 15.7 ± 0.3 ×
102 s−1) were similar to the values obtained in our previous
studies for WT7

25 and (TBMΔ6−113M)7.
19 The KD (6.1 ± 1.3 ×

10−5 M) of βCD for (SMΔ6−113F)7 (Figure S12A) was smaller
by 3 orders of magnitude than the KD for the (SMΔ6−113M)7
pore, which makes sense as it is known that βCD binds more

tightly by 3−4 orders of magnitude to a pore formed by the
full-length M113F subunit than it does to the WT pore.20 We
also analyzed the binding of am7βCD to the (SMΔ6−113F)7 pore
(Figure S12B) and found that it remained bound to the pore
“permanently” as previously reported for the same truncated
pore produced by conventional means.19 The binding kinetics
of βCD and am7βCD suggest that the semisynthetic protein
pores produced by two-fragment coupling, and thereby
containing a Cys mutation (S114C), are very similar to the
protein pores derived from WT αHL produced directly by
IVTT from the corresponding genes.

Two-Fragment Ligation Forms a Native Amide Bond.
To verify the existence of a native amide bond formed between
Gly126 and Cys127 in SMf, we carried out thiolate chemistry
on single WT6SMf1 pores by using the side chain of Cys-127
generated by NCL. In the absence of methyl-PEG-OPSS
(MPO, 5.0 kDa), the open state of WT6SMf1 had a long
duration (>30 min). The addition of MPO (0.1 mM) to the
trans compartment at +100 mV generated an irreversible
current drop (Figure 2A), due to the formation of a disulfide
bond between MPO and the side chain of Cys-127. The pore
remained blocked over a range of potentials (−100 to +100
mV), indicating that the current drop is not due to simple
clogging of the pore. In the presence DTT (5 mM, both
compartments), the open current level was restored (Figure
2B) because the PEG chain was cleaved from the pore.

Three-Fragment Ligation To Form a Ketone-Contain-
ing αHL Polypeptide. With NTF113M and CTF127, and a
synthetic central peptide, we next carried out three-fragment
coupling to construct a full-length αHL monomer containing a
ketone group (Figure 3A). The ketone is a versatile functional
group in organic chemistry and participates in a large number
of reactions.27−30 However, reactions of a ketone have not been
observed yet at the single-molecule level. The synthetic

Figure 3. Preparation of αHL pores containing an unnatural amino acid. (A) An αHL monomer was synthesized from three fragments with a
central segment (CSP) bearing an unnatural amino acid with a side chain bearing a ketone group (inset: Un, Fmoc-N6-(3-oxobutanoyl)lysine,
Fmoc-Ket-OH). (B) Characterization of the synthetic αHL monomer (SMket) by LC-MS. [M + H]+ = 35 109 (obs), 35 107 (calcd). (C)
Hemolysis assay for SMket. The full-length synthetic αHL monomer [SMket (0.31 mg mL−1)] lysed rRBCs. rRBCs alone (row 6 in Figure 2E)
are displayed for comparison. (D) Homo- (left) and hetero- (right) heptameric pores formed with SMket. The pores were prepared by the
same methods described in Figure 1F,G.
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methods used to obtain an unnatural amino acid containing a
ketone group28,29 are not very efficient, and the techniques27,30

used to incorporate a ketone amino acid into the middle of a
polypeptide chain are often arduous. We made an unnatural
amino acid bearing a ketone (Fmoc-Ket-OH; Fmoc-N6-(3-
oxobutanoyl)lysine), Figure 3A, inset) from Fmoc-Lys-OH and
N-hydroxysuccinimidyl acetoacetate (NHA). Fmoc-Ket-OH
was used for SPPS of a central segment of the polypeptide
chain (CSP: Thz114ThrLeuKetTyrGlyPheAsnGlyAsnVal-
ThrGly126-Nbz), such that the Ket side chain would project
into the transmembrane β barrel of an αHL pore. CSP was
prepared with a C-terminal acylurea31 (Figures S13 and S14),
which yields a peptide arylthioester with 4-mercaptophenyl-
acetic acid (MPAA), accelerating the NCL reaction. We then
proceeded to assemble a full-length αHL bearing the ketone
group with two sequential NCL reactions (Figure S15). The
final product (SMket) was purified (Figure S16) and

characterized by LC-MS (Figure 3B and Figure S9D; [M +
H]+ = 35 109 (obs), 35 107 Da (calcd)). A hemolysis assay
showed that folded SMket (HC50 = 47 ng mL−1) had similar
activity to the WT αHL monomer (Figure 3C). SMket also
formed homo- and heteroheptameric pores in the presence of
liposomes and rRBCm, respectively (Figure 3D).
We determined the mean unitary conductance values for

individual WT6SM1ket pores in 1 M KCl and 50 mM Na acetate
buffer over a range of applied potentials (−100 to +100 mV)
(Figure S18A). The buffer was adjusted to pH 3.4 in
anticipation of an acid-catalyzed addition reaction (imine
formation) on the ketone side chain (see below). The
conductance of WT6SMket1 (0.93 ± 0.10 nS, n = 9) at +100
mV was similar to that of the WT7 pore (1.07 ± 0.02 nS, n = 9)
under the same conditions. We also determined the association
and dissociation rate constants at pH 3.4 (kon and koff) for βCD
binding from the values of the mean dwell times (τon and τoff)

Figure 4. Single-molecule reactions of the WT6SMket1 pore. (A) A WT6SMket1 pore was reacted with MePEG-hydroxylamine (MPHA, 1.1 kDa,
2 mM, inset) added to the trans compartment. Reaction occurred at a positive potential (+75 mV) and led to a permanent current blockade of
the WT6SMket1 pore. The modified pore only opened at negative applied potentials. (B) The pore was restored to an open state when 20 mM
HONH2·HCl was added to both compartments to release the PEG chain. The currents in (A) and (B) were filtered at 5 kHz and sampled at
25 kHz. For display, further digital filtering was carried out at 2 kHz with an 8-pole low-pass Bessel filter. The buffer was 1 M KCl, 50 mM Na
acetate (pH 3.4). (C) Reversible oxime formation in a single synthetic pore containing a ketone (WT6SMket1). Oxime formation with MPHA
leads to a current drop, while reversal with HONH2 returns the current to its initial level. The section defined by the orange bracket is
magnified in panel D. (D) Negative potential (−75 mV, b) was applied during the PEG-oxime state (a), which opened the pore (residual
current, IRES = 91%). Subsequently, a positive potential (+75 mV, c) was applied, and the pore closed. The pore became fully open (violet
arrow) with IRES = 100% at negative potential (−75 mV, d), presumably when the formation of an oxime with HONH2 led to release of the
pore-bound polymer. The pore was restored to an open state at a positive potential (+75 mV, e).
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[WT7: KD = 6.1 ± 0.2 × 10−2 M (n = 3), kon = 71.7 ± 0.1 × 102

M−1·s−1, and koff = 4.4 ± 0.2 × 102 s−1; WT6SMket1: KD = 8.6 ±
0.7 × 10−2 M (n = 3), kon = 83.7 ± 6.8 × 102 M−1·s−1, and koff =
7.2 ± 0.1 × 102 s−1] (Figure S17). The ketone residue
presented by the SM subunit affects neither the electrical
properties of the αHL pore nor its ability to bind the βCD
adaptor.
Single-Molecule Covalent Chemistry with a Ketone-

Containing αHL Pore. We then carried out imine chemistry
with single WT6SM1ket pores. We first examined the interaction
of the WT7 pore with 1.1 kDa MePEG-hydroxylamine
(MPHA). The addition of 2 mM MPHA to the trans
compartment at +75 mV in the presence of 1 M KCl, 50
mM Na acetate buffer (pH 3.4), produced short blockades
(∼100 μs), which arise from the entry of MPHA into the lumen
of the pore without covalent attachment.32 No prolonged
current decrease was observed with the WT7 pore during 2 h of
monitoring. We then added 2 mM MPHA to the trans side of
the WT6SMket1 pore, under the same conditions, which led to a
permanent current blockade at +75 mV within 10 min,
presumably due to the covalent attachment of MPHA to the
ketone group within the pore through imine formation.
Interestingly, the modified WT6SMket1 pore opened at negative
applied potentials (−100 to 0 mV) with IRES = 91% (residual
current), compared with the original open state. By contrast, at
positive potentials (0 to +100 mV), the pore was almost closed
(IRES = 3.2%, Figure S18B) with very short openings (<50 ms).
It follows that the current−voltage (I−V) characteristics of
WT6SMket1-imine-PEG show virtually complete current rec-
tification (Figure S18B). Previously, we developed a diode-like
αHL pore (7R-αHL) with positively charged Arg side chains
projecting into the lumen of the transmembrane β barrel,33

allowing ions to flow only at positive potentials. We used 7R-
αHL to construct a bridge rectifier circuit from droplet interface
bilayers. Therefore, the WT6SMket1-oxime-PEG pore, which
shows the opposite electrical properties to 7R-αHL (Figure
4A), might be used in related applications. To confirm that the
attachment was through imine formation, we added 20 mM
NH2OH to both compartments to cleave the linkage. In ∼15
min, the current returned to its initial level (Figure 4B),
suggesting that the PEG chain had been cleaved from the pore.
The observation of the ability of the WT6SMket1 pore to

return its initial conductance level led us to investigate an
oxime−oxime exchange reaction on the ketone side chain at the
single-molecule level. In the presence of 2 mM MPA, in the
trans compartment, and 10 mM of HONH2, in both the cis and
trans compartment, a reversible reaction was observed (Figure
4C). During the formation of the O-alkyloxime by MPHA, the
current was greatly reduced to levels in the range of 1.5 to 17
pA (Figure 4C). Subsequent transitions between this “closed”
level and the open level were apparent. The open level
represents the formation of an oxime with HONH2, and release
of the PEG chain from the pore. The formation of an O-
alkyloxime within the pore with MPHA only allowed
substantial ion flow at a negative potential (−75 mV) (orange
bracket in Figure 4C and a−d in Figure 4D). After
transoximination with HONH2,

34 the current increased from
−56 to −67 pA at −75 mV (violet arrow in Figure 4D) and an
open-level current of +78 pA was observed during the
subsequent application of a positive potential (+75 mV).
The mean dwell time of the open pore (τon) is the mean

lifetime of the oxime formed by HONH2 (o), which is the
mean reaction time for O-alkyloxime (ao) formation with

MPHA. Similarly, the mean dwell time of the closed pore (τoff)
is the mean lifetime of the O-alkyloxime, which is the mean
reaction time for oxime formation with HONH2. The measured
mean lifetimes the O-alkyloxime and the oxime were 52 ± 2 s
(n = 79) and 51 ± 2 s (n = 78) (Figure S19), which yield rate
constants for transoximination of kf,ao = 10 M−1·s−1 and kf,o = 2
M−1·s−1, respectively, in 1 M KCl, Na acetate buffer (pH 3.4),
at +75 mV, where kf,ao = kon = 1/τon·[MPHA] and kf,o = koff =
1/τoff·[NH2OH].

CONCLUSIONS
The ability to introduce unnatural amino acids into the αHL
pore has the potential to provide a large variety of reactive side
chains for the investigation of single-molecule covalent
chemistry. We have previously produced αHL polypeptides
with unnatural alkyl and aryl amino acids by using in vitro
chemically acylated tRNAs.35 However, this approach is
demanding and often gives poor results when more than one
amino acid is introduced. The coupling of polypeptide
segments by NCL has been used extensively to produce
proteins36−38 and is a favorable alternative means to
incorporate unnatural amino acids. In the present work, we
demonstrate a variety of synthetic protein pores using αHL
polypeptides and use the synthetic pore containing a ketone as
single-molecule nanoreactor.
Oxime chemistry was examined in an aqueous environment

at the single-molecule level with a ketone-containing αHL pore
(WT6SMket1), and the work described here is the first
observation of reversible covalent chemistry using an unnatural
amino acid side-chain in a nanoreactor. Oxime formation from
a ketone proceeds via nucleophilic addition to form a
tetrahedral intermediate,39,40 followed by the elimination of
water. Transoximination also proceeds reversibly through a
tetrahedral intermediate that subsequently breaks down to form
a new oxime and a hydroxylamine.34 In our work, no
intermediates were observed in both the O-alkyloxime
formation by MPHA and the transoximination reaction.
Presumably, the lifetimes of the tetrahedral intermediates are
too short or the current changes too small to observe under our
recording conditions. We obtained rate constants for oxime and
O-alkyloxime formation within the pore (kf,ao = 10 M−1·s−1 and
kf,o = 2 M−1·s−1). Earlier determinations in bulk solution41,42

are in the range ∼1 to 104·M−1·s−1 and depend strongly on
substituents, solvent, pH, and temperature. In our case, the
partitioning of the polymer reactant, MPHA, into the pore
must be considered.11,43

We have observed oxime formation by using a semisynthetic
pore containing an unnatural amino acid as a nanoreactor. The
ketone-containing pore expands the range of covalent
chemistry that can be studied by the nanoreactor approach to
reversible reactions for which statistically significant data can be
acquired rapidly without tedious repeats. Taken together with
our recent demonstration of alkyne chemistry,11 the versatility
of the nanoreactor approach is apparent, and we look forward
to developing even more ambitious possibilities, such as single-
molecule catalysis, which may require the placement of several
different unnatural amino acids within a single polypeptide
chain.

METHODS
Native Chemical Ligation. Two-Fragment Coupling. Fifty

microliters of CTF (>0.5 mM), from which pyruvate had been
removed, was mixed with 50 μL of NTF (>0.5 mM) in 0.4 mL of NCL
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buffer [200 mM NaH2PO4 (pH 6.9) containing 6 M Gu·HCl, 50 mM
tris(2-carboxyethyl)phosphine (TCEP), and 200 mM 4-mercaptophe-
nylacetic acid (MPAA)] and concentrated to 100 μL using a
centrifugal filter (Amicon, MWCO 3k) at 14 000g for 20 min. The
buffer containing NTF and CTF was replaced with NCL buffer by
repeated (5 times) dilution and concentration with the same filter. The
reaction was allowed to proceed overnight at room temperature.
Three-Fragment Coupling. CTF (0.5 mM), from which pyruvate

had been removed, was mixed with CSP-Nbz (5 mM) in 0.5 mL of
NCL buffer [200 mM NaH2PO4 (pH 6.9) containing 6 M Gu·HCl, 50
mM tris(2-carboxyethyl)phosphine (TCEP), and 50 mM MPAA].
After overnight reaction at room temperature, the unreacted peptide
was removed by passing the mixture through a size-exclusion column
(Superdex 200 10/300 GL). The product was analyzed by LC-MS.
The N-terminal Thz group was subsequently cleaved by treatment

with 0.4 M HONH2·HCl in 200 mM NaH2PO4 buffer (pH adjusted to
4.0) containing 6 M Gu·HCl and 50 mM TCEP for 4 h at room
temperature. For the next round of ligation, the buffer was replaced
with NCL buffer containing 200 mM MPAA by repeated dilution and
concentration with a centrifugal filter (Amicon, MWCO 3k).
NTF-αthioester (0.6 mM) was mixed with the first ligation product
(0.3 mM), and the reaction was allowed to proceed overnight. The
final ligation product was purified by gel filtration followed by ion-
exchange chromatography. The reaction yield was determined by
quantifying the intensity of the polypeptide bands after SDS-PAGE by
using ImageJ (NIH).

ASSOCIATED CONTENT

*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acsnano.6b04663.

Experimental procedures and supplementary figures for
analytical and spectral characterization data (PDF)

AUTHOR INFORMATION

Corresponding Author
*E-mail: hagan.bayley@chem.ox.ac.uk.

Author Contributions
J. Lee, A.J.B., M.A.B., S.C., O.D., and H.B. designed the
research. A.J.B., M.A.B., S.C., and O.D. carried out early
synthetic work. J. Lee performed recent synthetic work and
characterization of the synthetic pores. J. Li and H.T. assisted
with solid-phase peptide synthesis. J. Lee and H.B. wrote the
manuscript.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank Professor Tom Muir (Princeton University)
for helpful discussions. This work was supported by an ERC
Advanced Grant. J. Lee was supported in part by a Korean
government scholarship. O.D. was supported by a Junior
Research Fellowship at Christ Church, Oxford. This paper is
dedicated to the memory of Dr. Stephen Cheley.

REFERENCES
(1) Song, L.; Hobaugh, M. R.; Shustak, C.; Cheley, S.; Bayley, H.;
Gouaux, J. E. Structure of Staphylococcal Alpha-Hemolysin, a
Heptameric Transmembrane Pore. Science 1996, 274, 1859−66.
(2) Bayley, H.; Luchian, T.; Shin, S.-H.; Steffensen, M. Single-
Molecule Covalent Chemistry in a Protein Nanoreactor. In Single
Molecules and Nanotechnology; Rigler, R., Vogel, H., Eds.; Springer:
Berlin, 2008; Vol. 12, pp 251−277.

(3) Lu, S.; Li, W. W.; Rotem, D.; Mikhailova, E.; Bayley, H. A
Primary Hydrogen-Deuterium Isotope Effect Observed at the Single-
Molecule Level. Nat. Chem. 2010, 2, 921−8.
(4) Steffensen, M. B.; Rotem, D.; Bayley, H. Single-Molecule Analysis
of Chirality in a Multicomponent Reaction Network. Nat. Chem. 2014,
6, 603−7.
(5) Pulcu, G. S.; Mikhailova, E.; Choi, L.-S.; Bayley, H. Continuous
Observation of the Stochastic Motion of an Individual Small-Molecule
Walker. Nat. Nanotechnol. 2015, 10, 76−83.
(6) Shin, S. H.; Luchian, T.; Cheley, S.; Braha, O.; Bayley, H. Kinetics
of a Reversible Covalent-Bond-Forming Reaction Observed at the
Single-Molecule Level. Angew. Chem., Int. Ed. 2002, 41, 3707−9.
(7) Shin, S. H.; Bayley, H. Stepwise Growth of a Single Polymer
Chain. J. Am. Chem. Soc. 2005, 127, 10462−10463.
(8) Choi, L. S.; Bayley, H. S-Nitrosothiol Chemistry at the Single-
Molecule Level. Angew. Chem., Int. Ed. 2012, 51, 7972−7976.
(9) Hammerstein, A. F.; Shin, S. H.; Bayley, H. Single-Molecule
Kinetics of Two-Step Divalent Cation Chelation. Angew. Chem., Int.
Ed. 2010, 49, 5085−90.
(10) Boersma, A. J.; Bayley, H. Continuous Stochastic Detection of
Amino Acid Enantiomers with a Protein Nanopore. Angew. Chem., Int.
Ed. 2012, 51, 9606−9.
(11) Lee, J.; Bayley, H. Semisynthetic Protein Nanoreactor for
Single-Molecule Chemistry. Proc. Natl. Acad. Sci. U. S. A. 2015, 112,
13768−73.
(12) Chong, S. R.; Mersha, F. B.; Comb, D. G.; Scott, M. E.; Landry,
D.; Vence, L. M.; Perler, F. B.; Benner, J.; Kucera, R. B.; Hirvonen, C.
A.; Pelletier, J. J.; Paulus, H.; Xu, M. Q. Single-Column Purification of
Free Recombinant Proteins Using a Self-Cleavable Affinity Tag
Derived from a Protein Splicing Element. Gene 1997, 192, 271−281.
(13) Evans, T. C.; Benner, J.; Xu, M. Q. Semisynthesis of Cytotoxic
Proteins Using a Modified Protein Splicing Element. Protein Sci. 1998,
7, 2256−2264.
(14) Wu, W.; Wood, D. W.; Belfort, G.; Derbyshire, V.; Belfort, M.
Intein-Mediated Purification of Cytotoxic Endonuclease I-Tevi by
Insertional Inactivation and Ph-Controllable Splicing. Nucleic Acids Res.
2002, 30, 4864−71.
(15) Tolbert, T. J.; Wong, C. H. New Methods for Proteomic
Research: Preparation of Proteins with N-Terminal Cysteines for
Labeling and Conjugation. Angew. Chem., Int. Ed. 2002, 41, 2171−4.
(16) Pentelute, B. L.; Barker, A. P.; Janowiak, B. E.; Kent, S. B. H.;
Collier, R. J. A Semisynthesis Platform for Investigating Structure
Function Relationships in the N-Terminal Domain of the Anthrax
Lethal Factor. ACS Chem. Biol. 2010, 5, 359−364.
(17) Gentle, I. E.; De Souza, D. P.; Baca, M. Direct Production of
Proteins with N-Terminal Cysteine for Site-Specific Conjugation.
Bioconjugate Chem. 2004, 15, 658−63.
(18) Bang, D.; Kent, S. B. A One-Pot Total Synthesis of Crambin.
Angew. Chem., Int. Ed. 2004, 43, 2534−8.
(19) Stoddart, D.; Ayub, M.; Hofler, L.; Raychaudhuri, P.;
Klingelhoefer, J. W.; Maglia, G.; Heron, A.; Bayley, H. Functional
Truncated Membrane Pores. Proc. Natl. Acad. Sci. U. S. A. 2014, 111,
2425−30.
(20) Gu, L. Q.; Cheley, S.; Bayley, H. Prolonged Residence Time of a
Noncovalent Molecular Adapter, Beta-Cyclodextrin, within the Lumen
of Mutant Alpha-Hemolysin Pores. J. Gen. Physiol. 2001, 118, 481−
493.
(21) Howorka, S.; Bayley, H. Improved Protocol for High-
Throughput Cysteine Scanning Mutagenesis. Biotechniques 1998, 25,
764−6.
(22) Hackeng, T. M.; Griffin, J. H.; Dawson, P. E. Protein Synthesis
by Native Chemical Ligation: Expanded Scope by Using Straightfor-
ward Methodology. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 10068−
10073.
(23) Lee, J.; Kwon, Y.; Pentelute, B. L.; Bang, D. Use of Model
Peptide Reactions for the Characterization of Kinetically Controlled
Ligation. Bioconjugate Chem. 2011, 22, 1645−1649.
(24) Walker, B.; Krishnasastry, M.; Zorn, L.; Kasianowicz, J.; Bayley,
H. Functional Expression of the Alpha-Hemolysin of Staphylococcus

ACS Nano Article

DOI: 10.1021/acsnano.6b04663
ACS Nano 2016, 10, 8843−8850

8849

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acsnano.6b04663
http://pubs.acs.org/doi/suppl/10.1021/acsnano.6b04663/suppl_file/nn6b04663_si_001.pdf
mailto:hagan.bayley@chem.ox.ac.uk
http://dx.doi.org/10.1021/acsnano.6b04663


Aureus in Intact Escherichia Coli and in Cell Lysates. Deletion of Five
C-Terminal Amino Acids Selectively Impairs Hemolytic Activity. J.
Biol. Chem. 1992, 267, 10902−10909.
(25) Gu, L. Q.; Bayley, H. Interaction of the Non-Covalent
Molecular Adapter, Beta-Cyclodextrin, with the Staphylococcal
Alpha-Hemolysin Pore. Biophys. J. 2000, 79, 1967−1975.
(26) Braha, O.; Webb, J.; Gu, L. Q.; Kim, K.; Bayley, H. Carriers
versus Adapters in Stochastic Sensing. ChemPhysChem 2005, 6, 889−
892.
(27) Cornish, V. W.; Hahn, K. M.; Schultz, P. G. Site-Specific Protein
Modification Using a Ketone Handle. J. Am. Chem. Soc. 1996, 118,
8150−8151.
(28) Mahal, L. K.; Yarema, K. J.; Bertozzi, C. R. Engineering
Chemical Reactivity on Cell Surfaces through Oligosaccharide
Biosynthesis. Science 1997, 276, 1125−1128.
(29) Ayers, B.; Blaschke, U. K.; Camarero, J. A.; Cotton, G. J.;
Holford, M.; Muir, T. W. Introduction of Unnatural Amino Acids into
Proteins Using Expressed Protein Ligation. Biopolymers 1999, 51,
343−354.
(30) Wang, L.; Zhang, Z.; Brock, A.; Schultz, P. G. Addition of the
Keto Functional Group to the Genetic Code of Escherichia Coli. Proc.
Natl. Acad. Sci. U. S. A. 2003, 100, 56−61.
(31) Blanco-Canosa, J. B.; Dawson, P. E. An Efficient Fmoc-Spps
Approach for the Generation of Thioester Peptide Precursors for Use
in Native Chemical Ligation. Angew. Chem., Int. Ed. 2008, 47, 6851−5.
(32) Movileanu, L.; Cheley, S.; Bayley, H. Partitioning of Individual
Flexible Polymers into a Nanoscopic Protein Pore. Biophys. J. 2003, 85,
897−910.
(33) Maglia, G.; Heron, A. J.; Hwang, W. L.; Holden, M. A.;
Mikhailova, E.; Li, Q. H.; Cheley, S.; Bayley, H. Droplet Networks
with Incorporated Protein Diodes Show Collective Properties. Nat.
Nanotechnol. 2009, 4, 437−440.
(34) Ciaccia, M.; Di Stefano, S. Mechanisms of Imine Exchange
Reactions in Organic Solvents. Org. Biomol. Chem. 2015, 13, 646−654.
(35) Banerjee, A.; Mikhailova, E.; Cheley, S.; Gu, L. Q.; Montoya,
M.; Nagaoka, Y.; Gouaux, E.; Bayley, H. Molecular Bases of
Cyclodextrin Adapter Interactions with Engineered Protein Nano-
pores. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 8165−8170.
(36) Blaschke, U. K.; Cotton, G. J.; Muir, T. W. Synthesis of Multi-
Domain Proteins Using Expressed Protein Ligation: Strategies for
Segmental Isotopic Labeling of Internal Regions. Tetrahedron 2000,
56, 9461−9470.
(37) Arnold, U.; Hinderaker, M. P.; Nilsson, B. L.; Huck, B. R.;
Gellman, S. H.; Raines, R. T. Protein Prosthesis: A Semisynthetic
Enzyme with a Beta-Peptide Reverse Turn. J. Am. Chem. Soc. 2002,
124, 8522−8523.
(38) Kienhofer, A.; Kast, P.; Hilvert, D. Selective Stabilization of the
Chorismate Mutase Transition State by a Positively Charged
Hydrogen Bond Donor. J. Am. Chem. Soc. 2003, 125, 3206−3207.
(39) Sayer, J. M.; Peskin, M.; Jencks, W. P. Imine-Forming
Elimination-Reactions 0.1. General Base and Acid Catalysis and
Influence of Nitrogen Substituent on Rates and Equilibria for
Carbinolamine Dehydration. J. Am. Chem. Soc. 1973, 95, 4277−4287.
(40) Sayer, J. M.; Pinsky, B.; Schonbrunn, A.; Washtien, W.
Mechanism of Carbinolamine Formation. J. Am. Chem. Soc. 1974,
96, 7998−8009.
(41) Suratt, E. C.; Proffitt, J. R.; Lester, C. T. Rate of Oxime
Formation of Some Aryl Alkyl Ketones. J. Am. Chem. Soc. 1950, 72,
1561−1561.
(42) Selvaraj, K.; Nanjappan, P.; Ramalingam, K.; Ramarajan, K.
Reactivities of Variously Substituted 4-Heteracyclohexanones in the
Formation of Oximes. J. Chem. Soc., Perkin Trans. 2 1983, 49−52.
(43) Movileanu, L.; Bayley, H. Partitioning of a Polymer into a
Nanoscopic Protein Pore Obeys a Simple Scaling Law. Proc. Natl.
Acad. Sci. U. S. A. 2001, 98, 10137−10141.

ACS Nano Article

DOI: 10.1021/acsnano.6b04663
ACS Nano 2016, 10, 8843−8850

8850

http://dx.doi.org/10.1021/acsnano.6b04663

