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Abstract 

Collusion is covert co-operation between the participants of a game. Detecting the 

colluding players can require discerning and understanding the player’s motivation, 

which is often difficult task even for humans. In this paper we analyse experimental data 

from a simple two-dimensional game using synthetic players. We calculate information 

gains of the features in the data to show how well they indicate collusion. Then we 

examine J4.8 decision tree classifiers learned from the data and use them to detect the 

colluding subsets. 
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1. Introduction 

Collusion means an attempt of covert co-operation. The players who are colluding are 

called colluders and the set of players who are colluding together is a colluding subset of 

all players. Detecting the colluding subset can require understanding the reasons behind 

player’s motivation, which can be a difficult task even for humans.  

Collusion can take many forms and appear in different contexts like tournaments [1], 

multiple choice examinations [2], covert communication channels [3], stock market 

trading [4], [5] social moderation [6], grid computing [7], spectrum auctions [8] and 

games. In games collusion has been addressed in poker [9–11] and bridge [12], but apart 

from them there is very little research. 

In our earlier work [13] we proposed a set of features to be used in collusion detection in 

Pakuhaku game and compared briefly the information gains of the features with four 

colluders in dispenser and even distribution settings. This paper continues our research 

approach [14]: 

1. Generate game data with different number of players, colluders, game types, and 

collusion strategies. 

2. Devise detection methods. 

3. Run the detection method against the data to get results. 

4. Compare accuracy: How many (if any) of the colluders got detected. 

5. Compare swiftness: How quickly the colluders were detected. 

Our task is now to analyse how well the proposed features indicate collusion with 

different number of colluders. We create J4.8 decision tree classifiers from the datasets 

and analyse their performance in detecting the colluding subsets. 

We present the Pakuhaku game in section and the generated data sets in section 2. Section 

3 is divided to three parts. First, we analyse the information gains of the collusion features 

and then we present the results of collusion detection experiments using a decision tree 

classifier. Analysis of the swiftness of our collusion detection method concludes the 

section. Finally, in section 4 we present a summary of the results and our plans for future 

research. 

2. Methods 

As with our previous experiments, we use the Pakuhaku game [14] to generate the test 

data. In Pakuhaku, the players try to collect as many pills as possible before the game 

ends. The game world has the size of 800 times 800 units and players and pills are 

modelled using circles with the radii of 10 and 3 units, respectively. All players start at 



 

2 

the centre of the game world and can move freely to any direction at the speed of 5 units 

per turn. Players move towards the nearest or randomly selected location, if no pills are 

visible. Players have a fog-of-war with the radius of 75 units. Players keep a tabu list [15] 

of visited locations so they do not try to move to an area that is known to contain no pills. 

Players have a beam weapon, which can fire a beam of unlimited range every 20 turns. 

Players hit by a beam freeze for 10 turns. The beam passes through players and can hit 

multiple players at once. 

The players and colluders have four different implementations of this basic behaviour to 

guide their movements: 

 Default player: The player keeps its own tabu list (see Algorithm 1). 

 Tabu colluder: The player plays like the default player, but informs all new 

additions to its tabu list to its co-colluders (i.e., the colluders have a shared tabu 

list). (see Algorithm 2) 

 Area-of-interest (AOI) colluder: The colluders divide the game world into non-

overlapping evenly sized rectangles or - if that is not possible - evenly sized 

horizontal slices (Figure 1). The player acts like a tabu colluder but does not leave 

its designated area-of-interest. (see Algorithm 3) 

 Blocking colluder: One of the colluders is elected as a leader, who will play like 

a tabu colluder. The other colluders also play like the tabu colluder but try to keep 

near the non-colluding players so that they can prevent them from reaching pills 

by eating them first. (see Algorithm 4) 

The players shoot at a random visible target immediately when their weapon is loaded. 

Colluding players engage in soft play and do not shoot at their co-colluders, although they 

might get hit by collateral fire. 

 
Figure 1 AOI partitions for 2 to 6 colluders 
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Algorithm 1: Decision making for the default player 

UPDATE(p) 

in: the current player p 

if NEWPILLISDISPENSED() tabu(p) ← ∅ 

if WANTSTOSHOOT(p) 

 φ ← NORMALISE(GETTARGETPOSITION(p) – position(p)) 

 SHOOT(p) 

else 
 φ ← DECIDEDIRECTION(p) 

 position(p) ← position(p) + speed(p)∙φ 

DECIDEDIRECTION(p) 

in: the current player p 

out: a new direction vector for the player 

if destination(p) = null  

 destination(p) ← PICKNEWDESTINATION(p) 

else 

 if ISDISPENSED()) tabu(p) ← ∅ 

 tabu(p) ← tabu(p) ∪ VISIBLEPLAYERPOSITIONS() 

 nearestPill ← FINDNEARESTPILL() 

 if nearestPill ≠ null 

  destination(p) ← nearestPill 

 else if |𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 −  𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛|< 2.5∙s 

  destination(p) ← PICKNEWDESTINATION(p) 

return NORMALISE(destination - position) 

PICKNEWDESTINATION(p) 

in: the current player p 

out: a new destination location 

constant: the maximum number of tries before clearing the tabu list trialsmax 

trials ← 0 

do 
 trials ← trials + 1 

 if trials > MAX(trialsmax, |𝑡𝑎𝑏𝑢(𝑝)| ) tabu(p) ← ∅ 

 destination ← RANDOMPOSITION() 

while POSITIONISTABU(destination, p) 

return destination 

POSITIONISTABU(position, p) 

in:  a candidate position position; the current player p 

out: true if p is tabu position, false otherwise 

constant: fog of war radius rfow 

return ∃𝑥 ∈ 𝑡𝑎𝑏𝑢 ||𝑥 − 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛| < 𝑟𝑓𝑜𝑤 
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GETTARGETPOSITION(p) 

in:  the current player p 

out: target player for p 

FINDNEARESTPLAYER(p) 

WANTSTOSHOOT(p) 

in:  the current player p 

out: true if p is able and wants to shoot, false otherwise 

WEAPONISREADY(p) and HASVISIBLEPLAYERS(p) 

Algorithm 2: Decision making for the tabu colluder as different from Algorithm 1. 

UPDATE(p) 

in: the current player p 

SENDMESSAGE(position(p)) 

RECEIVEMESSAGES(p) 

∇ Pick destination like the default player. 

… 

RECEIVEMESSAGES(p) 

in: the current player p 

for message in messages(p) 

 tabu(p) ← tabu(p) ∪ message 

messages(p) ← ∅ 

SENDMESSAGE(message, p) 

in: the message to send to co-colluders message, the current player p 

for colluder in colluders(p) 

 messages(colluder) ← messages(colluder) ∪ message 

GETTARGETPOSITION(p) 

in:  the current player p 

out: target player for p 

FINDNEARESTNONCOLLUDER(p) 

WANTSTOSHOOT(p) 

in:  the current player p 

out: true if p is able and wants to shoot, false otherwise 

return WEAPONISREADY(p) and HASVISIBLENONCOLLUDERS(p) 
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Algorithm 3: Decision making for the AOI colluder as different from Algorithm 2. 

POSITIONISTABU(position, p) 

in:  a candidate position position; the current player p 

out: true if position is a tabu position or outside of the area-of-interest, false 

otherwise 

constant: fog of war radius rfow 

return not(p ∈ area-of-interest(p)) or ∃𝑥 ∈ 𝑡𝑎𝑏𝑢 ||𝑥 − 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛| < 𝑟𝑓𝑜𝑤 

Algorithm 4: Decision making for the blocking colluder as different from Algorithm 2. 

PICKNEWDESTINATION(p) 

in: the current player p 

out: a new destination location 

if ISLEADER(p) or PILLSVISIBLE(p) or NOVISIBLENONCOLLUDERS(p) 

 ∇ Pick destination like the tabu colluder. 

 … 

else 
 return FUTUREPOSITION(FINDNEARESTNONCOLLUDER(p), p) 

FUTUREPOSITION(target, p) 

in: a target player target; the current player p 

out: the predicted future position of the target 

timeToTarget ← |position(target) – position(p)|/speed(p) 

return position(target) + speed(target)∙direction(target)∙timeToTarget 

 

In this paper, we concentrate on the dispenser competition: There is only one pill, which 

is repositioned to the game world into a random position after it gets eaten. The game 

ends immediately when the sum of pills eaten by all the players reaches 64. 

Let A be the set of all players, 𝑃 ⊆ 𝐴 be the set of non-colluding players and 𝑄 ⊆ 𝐴 the 

set of colluding players such that 𝑃 ∩ 𝑄 = ∅ and 𝑃 ∩ 𝑄 = 𝐴. Let 𝑝 ∈ 𝑃 be a non-

colluding player and 𝑞 ∈ 𝑄 be a colluding player. Moreover, let 

 𝑟𝑚𝑎𝑥: the number of rounds in a single game 

 𝑤, ℎ: the width and height of the game world 

 𝑤𝑖𝑛𝑠(𝑝): the number of games the player p has won 

 𝑝𝑖𝑙𝑙𝑠(𝑝): the number of pills the player p has collected 

 ℎ𝑖𝑡𝑠(𝑝): the number of hits the player p has given 

 ℎ𝑖𝑡𝑠(𝑝, 𝑞): the number of hits the player p has given to the player q 

 𝑑𝑒𝑎𝑡ℎ𝑠(𝑝): the number of the hits the player p has taken 
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 ℓ𝑝,𝑟 = (𝑥𝑝,𝑟 , 𝑦𝑝,𝑟): the location of the player p at the round  𝑟(1 ≤ 𝑟 ≤ 𝑟𝑚𝑎𝑥) 

 𝑣𝑝,𝑟:  the velocity vector (from previous position to the current position) of 

the player p at the round 𝑟(1 ≤ 𝑟 ≤ 𝑟𝑚𝑎𝑥) 

 𝑏𝑜𝑥(𝑝, 𝑟): the bounding box of the player p (i.e., a square centered on the ℓ𝑝,𝑟 

with the width and height of two times the radius of fog-of-war) 

 𝑏𝑜𝑥(𝐿): the bounding box of the set of locations 𝐿 

 𝑎𝑟𝑒𝑎(𝑏): the area of the bounding box b 

 𝑆 ⊆ 𝐴: a subset of players  

 𝑎𝑛𝑔𝑙𝑒(𝑟, 𝑆) = 𝑚𝑒𝑑𝑖𝑎𝑛𝜑𝑖∈𝛷,𝜑𝑖≤𝜑𝑖+1
(𝜑2 − 𝜑1, ⋯ , 𝜑|𝑆| − 𝜑|𝑆|−1, 2𝜋 − 𝜑|𝑆| +

𝜑1) , where 𝛷 = {𝜑𝑠 = cos−1 (
𝑣̅𝑠,𝑟∙𝑣̅𝑠,𝑟

|𝑣̅𝑠,𝑟|
2 ) |𝑠 ∈ 𝑆}: median of the angles between 

the players in S 

 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛(𝑟, 𝑆)|∑ 𝑣̅𝑠,𝑟𝑠∈𝑆 |:length of the sum of the velocities of the players in S  

  𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑟, 𝑆) = |𝜌{ℓ𝑠,𝑟|𝑠 ∈ 𝑆}|: the absolute value of the Pearson 

correlation of the players' locations 

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑟, 𝑆) = 𝑚𝑎𝑥𝑠,𝑡∈𝑆(|𝑣̅𝑠,𝑟 − 𝑣̅𝑡,𝑟|): the maximum distance between a 

pair of players in S 

 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑟, 𝑆) = 𝑎𝑟𝑒𝑎(⋂ 𝑏𝑜𝑥(𝑠)𝑠∈𝑆 ) 𝑤ℎ⁄ : the intersection area of the 

players’ bounding boxes divided by the game world’s area 

 𝑢𝑛𝑖𝑜𝑛(𝑟, 𝑆) = 𝑎𝑟𝑒𝑎 (𝑏𝑜𝑥({ℓ𝑠,𝑟|𝑠 ∈ 𝑆})) 𝑤ℎ⁄ : the union area of the players’ 

bounding boxes divided by the game world’s area 

We created a test data for each colluder type using collusion features proposed by 

Laasonen et al. [13]. To make comparison of a large number of features easier, we arrange 

the features to four groups: direction, shooting, location and area, which base on the 

measure they represent. The features and their grouping are listed in Table 2. In addition 

the following meta-features were added to the data: 

 colluderRatio [0,1]: fraction of colluders in the subset 

 colluders ℕ: number of colluders for the game 

 collusion {0,1}: 1 if 𝑆 = 𝑄, 0 otherwise 

We performed 100 runs with each number of colluders between 2 and 6. For each test run 

one row was created for each subset 𝑆 ⊆ 𝐴, |𝑆| = |𝑄|. We have assumed that the number 

of the colluders is somehow known beforehand. While this is an unrealistic assumption, 

it makes the number subsets substantially smaller. The full data for each colluder type 

contains 23800 rows. The number of rows with specific number of colluders is listed in 

the Table 1. The data in ARFF format [16] and supplementary files are available for 

download from figshare [17]. 
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Table 1 Number of instances with different number of colluders 

# of colluders 2 3 4 5 6 Full dataset 

# instances 2800 5600 7000 5600 2800 23800 

We calculate the information gain to analyse how the number of colluders affects the 

different feature. Because the value class information is maximum for information gain 

and it is different in the different subsets based on the number of colluders we use 

𝑔𝑎𝑖𝑛(𝑓𝑒𝑎𝑡𝑢𝑟𝑒) 𝑖𝑛𝑓𝑜(𝑐𝑜𝑙𝑙𝑢𝑠𝑖𝑜𝑛)⁄  to compare the features. 

We used the R programming language [18] and the Weka 3 software suite [19] to create 

J4.8 decision tree classifiers from the datasets and perform tenfold cross validation. J4.8 

is Weka’s implementation of C4.5 decision tree learner [20] and it was chosen because it 

is available in Weka suite out of the box and decision trees are easy for humans to 

comprehend. 
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Table 2 Collusion features 

Group Feature Function 

Direction angleMean 𝑚𝑒𝑎𝑛1≤𝑟≤𝑟𝑚𝑎𝑥
(𝑎𝑛𝑔𝑙𝑒(𝑟, 𝑆)) 

 angleMax 𝑚𝑎𝑥1≤𝑟≤𝑟𝑚𝑎𝑥
(𝑎𝑛𝑔𝑙𝑒(𝑟, 𝑆)) 

 angleMin 𝑚𝑖𝑛1≤𝑟≤𝑟𝑚𝑎𝑥
(𝑎𝑛𝑔𝑙𝑒(𝑟, 𝑆)) 

 angleStdDev 𝑠𝑡𝑑𝑑𝑒𝑣1≤𝑟≤𝑟𝑚𝑎𝑥
(𝑎𝑛𝑔𝑙𝑒(𝑟, 𝑆)) 

 directionsMean 𝑚𝑒𝑎𝑛1≤𝑟≤𝑟𝑚𝑎𝑥
(𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛(𝑟, 𝑆)) 

 directionsMax 𝑚𝑎𝑥1≤𝑟≤𝑟𝑚𝑎𝑥
(𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛(𝑟, 𝑆)) 

 directionsMin 𝑚𝑖𝑛1≤𝑟≤𝑟𝑚𝑎𝑥
(𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛(𝑟, 𝑆)) 

 directionsStdDev 𝑠𝑡𝑑𝑑𝑒𝑣1≤𝑟≤𝑟𝑚𝑎𝑥
(𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛(𝑟, 𝑆)) 

Shooting deathsTotal ∑ 𝑑𝑒𝑎𝑡ℎ𝑠(𝑠) |𝑆|⁄
𝑠∈𝑆

 

 deathsTotalDelta 𝑠𝑡𝑑𝑑𝑒𝑣𝑠∈𝑆(𝑑𝑒𝑎𝑡ℎ𝑠(𝑠)) 

 hitsAll ∑ ℎ𝑖𝑡𝑠(𝑠)
𝑠∈𝑆

|𝑆|⁄  

 hitsAllDelta 𝑠𝑡𝑑𝑑𝑒𝑣𝑠∈𝑆(ℎ𝑖𝑡𝑠(𝑠)) 

 hitsMutual ∑ ∑ ℎ𝑖𝑡𝑠(𝑝, 𝑞)
𝑞∈𝑆,𝑝≠𝑞𝑝∈𝑆

 

 hitsMutualDelta 𝑠𝑡𝑑𝑑𝑒𝑣({ℎ𝑖𝑡𝑠(𝑝, 𝑞)|𝑝, 𝑞 ∈ 𝑆, 𝑝 ≠ 𝑞}) 

Location correlationMean 𝑚𝑒𝑎𝑛1≤𝑟≤𝑟𝑚𝑎𝑥
(𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑟, 𝑆)) 

 correlationMax 𝑚𝑎𝑥1≤𝑟≤𝑟𝑚𝑎𝑥
(𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑟, 𝑆)) 

 correlationMin 𝑚𝑖𝑛1≤𝑟≤𝑟𝑚𝑎𝑥
(𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑟, 𝑆)) 

 correlationStdDev 𝑠𝑡𝑑𝑑𝑒𝑣1≤𝑟≤𝑟𝑚𝑎𝑥
(𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑟, 𝑆)) 

 meanXMean 𝑚𝑒𝑎𝑛1≤𝑟≤𝑟𝑚𝑎𝑥
(𝑚𝑒𝑎𝑛𝑠∈𝑆(𝑥𝑠,𝑟)) 

 meanXMax 𝑚𝑎𝑥1≤𝑟≤𝑟𝑚𝑎𝑥
(𝑚𝑒𝑎𝑛𝑠∈𝑆(𝑥𝑠,𝑟)) 

 meanXMin 𝑚𝑖𝑛1≤𝑟≤𝑟𝑚𝑎𝑥
(𝑚𝑒𝑎𝑛𝑠∈𝑆(𝑥𝑠,𝑟)) 

 meanXStdDev 𝑠𝑡𝑑𝑑𝑒𝑣1≤𝑟≤𝑟𝑚𝑎𝑥
(𝑚𝑒𝑎𝑛𝑠∈𝑆(𝑥𝑠,𝑟)) 

 meanYMean 𝑚𝑒𝑎𝑛1≤𝑟≤𝑟𝑚𝑎𝑥
(𝑚𝑒𝑎𝑛𝑠∈𝑆(𝑦𝑠,𝑟)) 

 meanYMax 𝑚𝑎𝑥1≤𝑟≤𝑟𝑚𝑎𝑥
(𝑚𝑒𝑎𝑛𝑠∈𝑆(𝑦𝑠,𝑟)) 

 meanYMin 𝑚𝑖𝑛1≤𝑟≤𝑟𝑚𝑎𝑥
(𝑚𝑒𝑎𝑛𝑠∈𝑆(𝑦𝑠,𝑟)) 

 meanYStdDev 𝑠𝑡𝑑𝑑𝑒𝑣1≤𝑟≤𝑟𝑚𝑎𝑥
(𝑚𝑒𝑎𝑛𝑠∈𝑆(𝑦𝑠,𝑟)) 

(Continues on the next page.)  
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Table 2 (continues) 

Group Feature Function 

Area distanceMean 𝑚𝑒𝑎𝑛1≤𝑟≤𝑟𝑚𝑎𝑥
(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑟, 𝑆)) 

 distanceMax 𝑚𝑎𝑥1≤𝑟≤𝑟𝑚𝑎𝑥
(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑟, 𝑆)) 

 distanceMin 𝑚𝑖𝑛1≤𝑟≤𝑟𝑚𝑎𝑥
(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑟, 𝑆)) 

 distanceStdDev 𝑠𝑡𝑑𝑑𝑒𝑣1≤𝑟≤𝑟𝑚𝑎𝑥
(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑟, 𝑆)) 

 intersectionMean 𝑚𝑒𝑎𝑛1≤𝑟≤𝑟𝑚𝑎𝑥
(𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑟, 𝑆)) 

 intersectionMax 𝑚𝑎𝑥1≤𝑟≤𝑟𝑚𝑎𝑥
(𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑟, 𝑆)) 

 intersectionMin 𝑚𝑖𝑛1≤𝑟≤𝑟𝑚𝑎𝑥
(𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑟, 𝑆)) 

 intersectionStdDev 𝑠𝑡𝑑𝑑𝑒𝑣1≤𝑟≤𝑟𝑚𝑎𝑥
(𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑟, 𝑆)) 

 totalIntersetion 
𝑎𝑟𝑒𝑎 (⋃ 𝑏𝑜𝑥({ℓ𝑠,𝑟|1 ≤ 𝑟 ≤ 𝑟𝑚𝑎𝑥})

𝑠∈𝑆
) 𝑤ℎ⁄  

 totalUnion 
𝑎𝑟𝑒𝑎 (⋂ 𝑏𝑜𝑥({ℓ𝑠,𝑟|1 ≤ 𝑟 ≤ 𝑟𝑚𝑎𝑥})

𝑠∈𝑆
) 𝑤ℎ⁄  

 unionMean 𝑚𝑒𝑎𝑛1≤𝑟≤𝑟𝑚𝑎𝑥
(𝑢𝑛𝑖𝑜𝑛(𝑟, 𝑆)) 

 unionMax 𝑚𝑎𝑥1≤𝑟≤𝑟𝑚𝑎𝑥
(𝑢𝑛𝑖𝑜𝑛(𝑟, 𝑆)) 

 unionMin 𝑚𝑖𝑛1≤𝑟≤𝑟𝑚𝑎𝑥
(𝑢𝑛𝑖𝑜𝑛(𝑟, 𝑆)) 

 unionStdDev 𝑠𝑡𝑑𝑑𝑒𝑣1≤𝑟≤𝑟𝑚𝑎𝑥
(𝑢𝑛𝑖𝑜𝑛(𝑟, 𝑆)) 

Score scoreTotal ∑ 𝑝𝑖𝑙𝑙𝑠(𝑠) |𝑆|⁄
𝑠∈𝑆

 

 scoreTotalDelta 𝑠𝑡𝑑𝑑𝑒𝑣𝑠∈𝑆(𝑝𝑖𝑙𝑙𝑠(𝑠)) 

 

3. Results 

3.1. Analysis of the collusion features 

A common pattern for gain as a function of the number of the colluders is that gain starts 

to grow when the number of colluders increases and reaches the maximum around 4 or 5 

colluders and then starts to decrease again. With AOI colluders there is more fluctuation 

on the information gain given the number colluders. This is due to a different partitioning 

of the game world. 

3.1.1. Score 

Score-based features have a low information gain (see Figure 2). Even if they would have 

a high gain, it would be problematic to use them to recognize colluders because it could 

also discriminate good players.  
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In previous work [13] we have shown that the colluders are able to collect more pills than 

the non-colluders. However, the difference is not large enough to separate the classes (see 

Figure 3). Distribution of values reflects the utility function (see Figure 4) [13]: 

𝑢𝑝 = ∑ 𝑝𝑖𝑙𝑙𝑠(𝑞) |𝑄| − ∑ 𝑝𝑖𝑙𝑙𝑠(𝑝) |𝑃|⁄

𝑝∈𝑃

⁄

𝑞∈𝑄

 

The non-colluding subsets have larger scoreTotal when number of colluders and the 

subset size is large. This could indicate that the few non-colluders are able to perform 

better than they would among more non-colluders, but it is more likely duo mixed subsets 

containing mostly colluders. For further analysis pure non-colluders subsets need to be 

separated from mixed subsets. 

 

Figure 2 Information gain / class information of the score features 
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Figure 3 Density estimates of the scoreTotal for different number and type of colluders. 

 

Figure 4 Collusion pay-off in the dispenser setting [13] 
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3.1.2. Shooting 

Colluding players engage strongly in soft play by refusing to shoot each other at all, which 

can be seen in that the shooting related features indicate collusion very clearly (especially 

hitsAllDelta, hitsMutual and hitsMutualDelta) (see Figure 5). Because the colluding 

players do not shoot each other, there are very few mutual hits. This also affects the total 

number of hits, because there are fewer targets to fire at.  

The information gain with the full datasets is somewhat worse than for a specific number 

of colluders. The distribution of values varies with the number of colluders and while the 

classes are separate for specific number of colluders they overlap in the full datasets 

(Figure 6). 

3.1.3. Direction 

Most of the direction-based features have very small gain, but some stand out with a large 

gain, especially for AOI colluders (see Figure 7).  

DirectionsMin has a high gain for all collusion types with 2 colluders. For a random set 

of players, we might expect that value for directionsMin would be zero, but colluders do 

not move freely in relation to each other and a common direction can be found (Figure 

8). However, this effect is very small and diminishes when the number of colluders 

increases. Also, the AOI colluders may have this effect when the partitions do not have 

uniform dimensions, because players have more room to move in one direction than 

another. For two AOI colluders also directionsStdDev has a high gain. Two AOI colluders 

have more deviation in mean direction than non-colluders (Figure 9), but the difference 

diminishes with larger number of colluders or more uniform division 

AngleStdDev has a high gain for three AOI colluders and they have larger standard 

deviation than non-colluders (Figure 10). AngleMean has a high gain for five AOI 

colluders and a moderate gain for three AOI colluders. For three colluders angleMean is 

larger than non-colluders and for five colluders angleMean is smaller than for non-

colluders (Figure 11). 
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Figure 5 Information gain / class information of the shooting features 
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Figure 6 Density estimates of hitsMitual with different number and type of colluders. 
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Figure 7 Direction features 
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Figure 8 Density estimates of directionsMin for 2 colluders 

 
Figure 9 directionStdDev density of 4 and 6 AOI colluders 
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Figure 10 angleStdv density estimate for 3 AOI colluders 

 
Figure 11 angleMean density estimate for 3 and 5 AOI colluders 

3.1.4. Location 

Location-based features have almost a zero gain for blocking and tabu colluders, but very 

high gain on some features for AOI colluder (see Figure 13). MeanXStdDev has a high 
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gain with all numbers of AOI colluders while meanYStdDev has a high gain only for 4 

and 6 AOI colluders. The game world is always divided in the x-direction, and because 

of that the agents have more even distribution in the x-direction (see Figure 12). For the 

y-direction, division happens only with 4 and 6 colluders. These features work well with 

our division, but, for example, rotating the division would make them less useful.  

Correlation and correlationStdDev have a high gain with 4 colluders and moderate with 

6 colluders. The division used with 4 and 6 colluders forces the agents to be distributed 

more uniformly and fixates them to a lattice-like structure which has a low correlation 

between the agent locations (see Figure 15 and Figure 16). This leads also lower standard 

deviation in correlation (see Figure 14). When a division occurs only in one dimension, 

it allows the agents also to have highly correlating positions. 

Coordinate and correlation features indicate AOI collusion strongly, but changing the 

division or making it vary over different games would make them less useful. 

 

Figure 12 Density estimates of meanXStdDev of AOI colluders 
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Figure 13 Location features 
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Figure 14 Density estimates of correlationMean for 4 and 6 AOI colluders 

 

Figure 15 Density estimation of correlationMax for 4 AOI colluders 
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Figure 16 Density estimates of correlationStdDev for 4 and 6 AOI colluders 

3.1.5. Area 

The area-based features have small gains for blocking and tabu colluders. DistanceMean 

and unionMean have high gains for two and four AOI colluders. intersectionMean and 

intrsectionStdDev have high gain for two AOI colluders. These features have a larger 

value when colluders use grid-like division of the game world (Figures 13 and 14). With 

a small number of colluders there is naturally less variation in the distances between the 

colluders. When the number of colluders increases and the areas of interest get smaller, 

the bounding boxes of the colluders tend to overlap more often. 
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Figure 17 Area features 
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Figure 18 distanceMean density of 2 and 4 AOI colluders 

 
Figure 19 unionMean density estimate for 2 and 4 AOI colluders 
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Figure 20 Density estimates of intersection features for 2 AOI colluders 
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3.2. Detecting the colluding subset 

For colluding subset detection we omit the shooting related features from all of the 

datasets, because soft play is very easy to detect. We created J4.8 decision tree classifiers 

from the data. We generated one classifier for each colluder type and number of colluders 

between 2 and 6, and also for the full data. The sizes of the resulting decision trees are 

presented in Figure 21. 

 
Figure 21 Classifier size (nodes) 

The overall performance seems good, because most of the instances are non-colluding 

subsets. They are classified correctly but colluders have a large error in most cases. Only 

the classifiers for AOI colluders show good classification performance across every 

number of colluders. Recall and precision of the colluders are plotted in Figure 22. The 

two-colluder case was the only one with good results for all colluders  

The classifiers for the tabu and blocking colluders have precision and recall around 80% 

for the two-colluder case. For real applications this might still be acceptable level of 

accuracy compared to no detection at all, but it will require human screening to filter out 

false positives. 
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Figure 22 Colluders precision and recall 

Example decision trees for AOI colluder are presented in figures 27 to 30, for tabu 

colluder in Figure 29 and for blocking colluder in Figure 30. The nodes contain the name 

of the feature and the lines connecting the nodes have the value of the feature for that 

branch. Leafs are represented as grey rectangles and contain the value of classification: 1 

for colluders and 0 for non-colluders. Beneath the class value is the number of training 

instances for the leaf. In only one number is presented all of the instances are of the 

predicted class. If two numbers are separated by a slash first number is the number of 

instances with the predicted class and the second number is the number of instances of 

the other class. Different decision trees are possible, due learning algorithm parameters. 

Also, in some datasets there are multiple features with enough information to separate the 

classes completely. 

Leaf nodes are displayed as rectangles and they contain the following classification: 0 for 

non-colluders and 1 for colluders and the number of training instances for the leaf. In case 

of misclassified instances their number is displayed after slash. For example, in the 

decision tree for four AOI colluders (Figure 23) the root node has the feature 

intersectionMean and all instances with value larger than 0 go to the right sub tree and 

are classified as non-colluders. Instances with intersectionMean equal to or smaller than 

0 go to the left sub tree and are classified as colluders. In this case both leaf nodes are 

pure.  
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For three AOI colluders classification is based on maxXStdDev. Because the colluders 

stay on their respective areas and the areas are large compared to the whole game world 

there is little overlap in the player’s bounding boxes. So the value for union is often two 

times the bounding box area. 

For two tabu and blocking colluders the most of the non-colluder instances are decided 

by the root node. The directionsMin feature was the only one with high information 

gain and separates most of non-colluders. 

 
Figure 23 Decision tree for two AOI 

colluders 

 
Figure 24 Decision tree for three AOI 

colluders 

 
Figure 25 Decision tree for four AOI 

colluders 

 

 
Figure 26 Decision tree for five AOI 

colluders 

 

 
Figure 27 Decision tree for six AOI colluders 
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Figure 28 Decision tree for any number of AOI colluders 
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Figure 29 Decision tree for two tabu colluders 
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Figure 30 Decision tree for two blocking colluders 

When we compare the collusion pay-off [13]  

𝑢𝑤 = ∑ 𝑤𝑖𝑛𝑠(𝑞) |𝑄|⁄

𝑞∈𝑄

− ∑ 𝑤𝑖𝑛𝑠(𝑝) |𝑃|⁄

𝑝∈𝑃

 

for different number of colluders (see Figure 31) to the classification performance in 

Figure 22. We observe that the maximum and minimum of the collusion payoff and 

classification accuracy are almost co-located. Classification seems to correlate negatively 

with the collusion pay-off. It is somewhat surprising that it is more difficult to recognize 

colluders when the gain from collusion is at its largest. Figure 32 shows the relationship 

between the gain from collusion and precision and recall of the learned classifiers. For 

the tabu colluder the relationship is statistically significant (Precall = 0.0117, Pprecision = 

0.0197). 

One explanation for this is that collusion pay-off has the maximum around 4 colluders 

which is even distribution between colluders and non-colluders and this could be the 

reason for classification minimum. To verify this we need more experiments with larger 

number of players. We expect the maximum pay-off to appear with fairly small number 

of colluders so with a large number of players the pay-off should peak when |Q| is 
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relatively small and the classification performance should have minimum when colluders 

are evenly distributed, but more experiments are needed to confirm that. 

 
Figure 31 Collusion payoff in the dispenser setting [13] 

 
Figure 32 Correlation between collusion pay off and classification performance 

When the number of colluders increases this kind of detection becomes more difficult 

because more subsets with both colluders and non-colluders appear. When subset size is 

large, some of the subsets contain mostly colluders and the feature values for these mixed 

sets overlap easily with the colluding subsets. 

Instead of using binary classifier, a numerical classifier could be used to get a collusion 

rating. Subsets with sufficiently high rating would be tagged suspicious and selected for 
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further analysis. For example, we could check which players appear in a large number of 

suspicious sets. 

3.3. Swiftness of the proposed method 

The feature generation were performed on a computer with Intel Core 2 Duo CPU at 2.66 

GHz and 4 GB of memory running the Windows 7 operating system. The test application 

was implemented with Java 7. The classification experiments were performed on a 

computer with AMD FX 8320 CPU at 3.5 GHz and 16 GB of memory running the 

Windows 8 operating system. 

Calculating the features for eight players and a limited subset size appears to be fast. The 

time required to calculate the features for a single time step is between 0.6 and 1.7 

milliseconds depending on the subset size (Figure 33). However, in reality the features 

for multiple subset sizes are required because the number of the colluders is unknown. In 

this case, it would increase the required time from under 1.8 milliseconds to 6.0 

milliseconds. Compared to the 0.3 milliseconds required to perform the simulation step 

the time required to calculate features is large. 

Considering that to play modern first person shooters smoothly requires a frame rate of 

at least 40 frames per second (25 milliseconds per frame) contributing several 

milliseconds to collusion detection is not feasible. This places constraints on how the 

feature generation is implemented. If a dedicated server is used, this can be generated on 

the server side, but if features are generated on the client side, the frequency of the feature 

collection needs to be lower than the simulation or graphics update frequency or the task 

needs to be distributed between the clients. 

Learning a decision tree classifier from the features took under 1 second for any number 

of colluders and around 5 seconds for a full dataset (Figure 34). The number of instances 

in the full datasets and with a given number of colluders are presented in Table 1. The 

time required for applying the classifier is not given by Weka, but using decision trees 

should be fast. 
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Figure 33 Time required for calculating the features. 

 
Figure 34 Time required to build the classifier model 
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3.4. Summary 

Shooting-based features, especially the ones related to mutual hits, have very high gains. 

Majority of the proposed features are not good for tabu or blocking collusion. Only 

directionsMin has significant gain in 2 colluder case. Several of the features have high 

gains for AOI colluders, but gains depend on the number of colluders and division in the 

game world. It is expectable that these features would not generalize well to other 

divisions. 

We were able to detect area-of-interest colluders in call test cases and tabu and blocking 

in two-colluder case with J4.8 decision tree classifier built based on the proposed features. 

We found that there is a statistically significant inverse relationship with collusion pay-

off and classifier performance. However, we expect this to be an artifact of our test setup. 

Our method was reasonably fast. Building the decision trees and classification requires 

negligible time, considering that they can be performed off-line. Feature generation on – 

while fast with small number of subsets – can cause performance problems in resource 

tight environments or when all features are required for all possible subsets and may 

require that feature generation is skipped for some time-steps. 

4. Conclusions 

In this paper, we analysed information gains of the proposed collusion features [13] in 

Pakuhaku game [14] using different number of colluders. We have demonstrated that for 

simple cases it is possible to devise a collusion detection method by defining a suitable 

set of features and using J4.8 decision tree classifiers to detect a colluding subset. We also 

analysed the performance of the feature generation and collusion detection by using the 

datasets from [17]. 

Soft play is easy to detect with decision tree classifiers and the proposed features. Features 

hitsAllDelta, hitsMutual and hitsMutualDelta have a very high information gain with all 

colluder types. This was expected because the colluders do not shoot each other at all. 

While the proposed features indicate collusion for all cases, the distribution of feature 

values is different with different number or type of colluders. Also, further experiments 

are needed for more subtle forms of soft play. 

Several of the proposed features had high information for area-if-interest collusion with 

pre-set non-overlapping rectangular partitioning and it is easy to detect. The J4.8 decision 

tree classifier learnt from proposed features had nearly 100% precission and recall for 

colluding subset. Tabu and blocking colluders had low gains with the exception of 

directionsMin with two colluders and were difficult to detect except the two-colluder 

case, which had around 80% precision and recall for colluding subset.  
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The most promising features are: angleMean, angleStdDev, directionsMean, 

directionsStdDev, directionsMin, directionsMax, distanceMin, distanceMax, unionMean, 

unionMin, totalUnion, totalIntersection, correlationMean, correlationStdDev. Again, the 

classifier learnt from certain configuration works poorly on others. Our proposed method 

do not generalize well over different number of colluders. Even if the feature has high 

information gain, several number of colluders the distribution of values can be different 

and it is difficult to separate the colluders without knowing their exact number. 

It could be possible to learn a more general classifier by using union of data from different 

number of colluders, but the size of the decision tree is much larger and it is expected that 

this classifier would perform poorly on situations not present in the original dataset. It 

could also be possible to achieve similar results by aggregating setup specific classifiers. 

This would allow updating the classifier incrementally when classifiers for new setups 

become available.  

We detected an inverse correlation between collusion pay-off and the accuracy of 

colluding subset accuracy with tabu and blocking colluders. The pay-off per colluder 

peaks around 4 colluders, which is also minimum for detection accuracy. We surmise that 

accuracy minimum is due uniform distribution of colluders and non-colluders and just 

coincides with pay-off maximum in the used setting, but further research is required to 

verify that. 

The learning and using decision tree classifiers is reasonably fast and can be done offline 

if required. Feature generation for games with a large number of players can easily 

become infeasible in practice, because features need to be calculated for |𝒫(𝑆)| ∈ 𝑂(𝑐𝑛) 

subsets. Also the mixed subsets with both colluding and non-colluding players make the 

detection more difficult when the number of colluders is large. To reduce overhead of 

feature generation we could use only subset sizes with large predicted collusion pay-off 

or small subsets in general or calculate feature values with smaller frequency than the 

game state updates. 

4.1. Future work 

The scenarios analysed in this paper are very simplistic and we seek to move towards 

more realistic settings. However, the problem of collusion detection is difficult even in 

these simple cases. We aim at making our test settings and synthetic players incrementally 

more complex. Eventually we want to perform experiments with human players. As we 

move towards more realistic scenarios, we also need to update our test platform used to 

generate the test data. Our current Java implementation is still quite far from a real 

multiplayer game and we plan to create new test platform using a real 3D game engine.  

In this paper, we demonstrated colluding subset detection using features calculated from 

for each subset. With larger number of players and unknown number of colluders the 

number of possible subsets becomes too large for this kind of approach to be feasible. We 

plan to apply collusion clustering algorithms [4], [5]. Then it is required to calculate 

collusion index only for candidate subsets found be the algorithm. Before we can apply 
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it to our problem, a collusion index and a pairwise metric for the weights in the collusion 

graph have to be prepared. The collusion features analysed in this paper are will be our 

starting point for the collusion index and a numeric model tree from our data sets might 

be used to calculate the collusion index. 

In this paper, we have analysed features for collusion detection but with suitable features 

similar approach could be used in detecting different kinds of player behaviour for 

example this could be other unwanted activity like griefing [21], encouraged to activity 

to distinguish good players or player modelling in general.  
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