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Abstract
In this paper, we show that Orlicz–Sobolev spaces W 1,ϕ(Ω) can be characterized with the
ACL- and ACC-characterizations. ACL stands for absolutely continuous on lines and ACC
for absolutely continuous on curves. Our results hold under the assumptions that C1(Ω)

functions are dense in W 1,ϕ(Ω), and ϕ(x, β) ≥ 1 for some β > 0 and almost every x ∈ Ω .
The results are new even in the special cases of Orlicz and double phase growth.
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1 Introduction

In this paper, we study the ACL- and ACC-characterizations of Orlicz–Sobolev spaces
W 1,ϕ(Ω), where ϕ has generalized Orlicz growth andΩ ⊂ R

n is an open set. ACL stands for
absolutely continuous on lines andACC for absolutely continuous on curves. Special cases of
Orlicz growth include the constant exponent caseϕ(x, t) = t p , theOrlicz caseϕ(x, t) = ϕ(t),
the variable exponent case ϕ(x, t) = t p(x), and the double phase case ϕ(x, t) = t p +a(x)tq .
Generalized Orlicz and Orlicz–Sobolev spaces onR

n have been recently studied for example
in [4,5,13], and in a more general setting in [1,12]. ACC-characterization has been used for
example in [9] to study properties of capacities in the variable exponent case.

The ACL-characterization of the classical constant exponent Sobolev spaces was given
by Nikodym [11]. It states that a function u ∈ L p(Ω) belongs to W 1,p(Ω) if and only if
it has representative ũ that is absolutely continuous on almost every line segment parallel
to the coordinate axes and the classical partial derivatives of ũ belong to L p(Ω). More-
over the classical partial derivatives are equal to the weak partial derivatives. Fuglede [6]
gave a finer version of this characterization, namely, the ACC-characterization. The ACC-
characterization states that a function u ∈ L p(Ω) belongs to W 1,p(Ω) if and only if it has
representative ũ that is absolutely continuous on every rectifiable curve outside a family of
zero p-modulus and the (classical) partial derivatives ũ belong to L p(Ω).
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In [8], it was shown that variable exponent Sobolev space W 1,p(·)(Ω) also has the ACL-
andACC-characterizations, if the exponent satisfies suitable conditions andC1(Ω) functions
are dense. In Section 8 of [12], it was shown that the results hold in the space W 1,ϕ(Rn), if
C1(Rn)-functions are dense and ϕ satisfies certain conditions. In this paper, we generalize
the results even further. We show that the results hold for the space W 1,ϕ(Ω), and we do so
using fewer assumptions than in [8] or [12]. There are two assumptions we need to make:
First that C1(Ω) functions are dense in W 1,ϕ(Ω). And second, that ϕ(x, β) ≥ 1 for some
β > 0 and almost every x ∈ Ω . To best of our knowledge, the results are new even in the
special cases of Orlicz and double phase growth.

We base our approach on [8], but make some modifications to both make the results more
general and simplify some of the results. One difference is that we use a slightly different
definition for the modulus of a curve family. Our definition of is based on the norm, while
the definition in [8] is based on the modular. The reason for defining the modulus differently
has to do with the fact that modular convergence is a weaker concept than norm convergence.
Another difference with [8] is that we do not use the theory of capacities. This has two
advantages: First, the use of capacities would force us to make some extra assumptions on
ϕ. Second, we can prove our results directly in W 1,ϕ(Ω), for any Ω ⊂ R

n , whereas in [8]
the results are first proven in the case Ω = R

n , and this case is then used to prove the results
for Ω ⊂ R

n .
The structure of this paper is as follows: Sect. 2 covers preliminaries about generalized

Orlicz and Orlicz–Sobolev spaces. In Sect. 3 we define and discuss the modulus of a curve
family. In Sect. 4we prove two lemmas, whichwewill need in order to prove ourmain results.
In Sect. 5 we prove our main results, the ACL- and ACC-characterizations of W 1,ϕ(Ω).

Let us say a few words about why one might be interested in studying ACL- or ACC-
characterizations. One reason is that ACL-functions have classical partial derivatives almost
everywhere, and ACC-functions are a subclass of ACL-functions under the assumptions
we use. ACL- and ACC-functions also have some nice closure properties, for example the
product and the maximum of two ACC-funtions is an ACC-function, and the composition of
an ACC-function with a Lipschitz function is an ACC-function, and similar results hold for
ACL. Another reason for studying ACC-characterization in particular is that the theory can
be applied in a more general setting. In a general metric space, the concept of direction does
not really make sense, so the concept of an ACL-functions cannot be used. But the concept
of an ACC-function can still be defined, and has been used in the study of Newtonian spaces
on general metric spaces, see [3,10] for example.

2 Preliminaries

Throughout this paper, we assume that Ω ⊂ R
n is an open set. The following definitions are

as in [7], which we use as a general reference to background theory in generalized Orlicz
spaces.

Definition 2.1 We say that ϕ : Ω × [0,∞) → [0,∞] is a weak Φ-function, and write
ϕ ∈ Φw(Ω), if the following conditions hold

– For every measurable f : Ω → [−∞,∞] the function x �→ ϕ(x, | f |) is measurable,
and for every x ∈ Ω the function t �→ ϕ(x, t) is non-decreasing.

– ϕ(x, 0) = limt→0+ ϕ(x, t) = 0 and limt→∞ ϕ(x, t) = ∞ for every x ∈ Ω .
– The function t �→ ϕ(x,t)

t is L-almost increasing for t > 0 uniformly in Ω . “Uniformly”
means that L is independent of x .
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If ϕ ∈ Φw(Ω) is additionally convex and left-continuous, then ϕ is a convex Φ-function, and
we write ϕ ∈ Φc(Ω).

Two functions ϕ and ψ are equivalent, ϕ � ψ , if there exists L ≥ 1 such that ψ(x, t
L ) ≤

ϕ(x, t) ≤ ψ(x, Lt) for every x ∈ Ω and every t > 0. Equivalent Φ-functions give rise to
the same space with comparable norms.

We define the left-inverse of ϕ by setting

ϕ−1(x, τ ) := inf{t ≥ 0 : ϕ(x, t) ≥ τ }.

2.1 Assumptions

We state some assumptions for later reference.

(A0) There exists β ∈ (0, 1) such that ϕ(x, β) ≤ 1 ≤ ϕ(x, 1/β) for almost every x .
(A1) There exists β ∈ (0, 1) such that, for every ball B and a.e. x, y ∈ B ∩ Ω ,

βϕ−1(x, t) ≤ ϕ−1(y, t) when t ∈
[
1,

1

|B|
]

.

(A2) For every s > 0 there exist β ∈ (0, 1] and h ∈ L1(Ω) ∩ L∞(Ω) such that

βϕ−1(x, t) ≤ ϕ−1(y, t)

for almost every x, y ∈ Ω and every t ∈ [h(x) + h(y), s].
(aInc)p There exist L ≥ 1 such that t �→ ϕ(x,t)

t p is L-almost increasing in (0,∞).

(aDec)q There exist L ≥ 1 such that t �→ ϕ(x,t)
tq is L-almost decreasing in (0,∞).

We say that ϕ satisfies (aInc), if it satisfies (aInc)p for some p > 1. Similarly, ϕ satisfies
(aDec), if it satisfies (aDec)q for some q > 1. We write (Inc) if the ratio is increasing rather
than just almost increasing, similarly for (Dec). See [7, Table 7.1] for an interpretation of the
assumptions in some special cases.

2.2 Generalized Orlicz spaces

We recall some definitions. We denote by L0(Ω) the set of measurable functions in Ω .

Definition 2.2 Let ϕ ∈ Φw(Ω) and define the modular �ϕ for f ∈ L0(Ω) by

�ϕ( f ) :=
∫

Ω

ϕ(x, | f (x)|) dx .

The generalized Orlicz space, also called Musielak–Orlicz space, is defined as the set

Lϕ(Ω) := {
f ∈ L0(Ω) : lim

λ→0+ �ϕ(λ f ) = 0
}

equipped with the (Luxemburg) norm

‖ f ‖Lϕ(Ω) := inf

{
λ > 0 : �ϕ

(
f

λ

)
≤ 1

}
. (2.1)

If the set is clear from the context we abbreviate ‖ f ‖Lϕ(Ω) by ‖ f ‖ϕ .

The following lemma is a direct consequence of the proof of [7, Theorem 3.3.7].
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Lemma 2.3 If ( fi ) is a Cauchy sequence in Lϕ(Ω) such that the pointwise limit f (x) :=
limi→∞ fi (x) (±∞ allowed) exists for almost every x ∈ Ω , then f is the limit of ( fi ) in
Lϕ(Ω).

Definition 2.4 A function u ∈ Lϕ(Ω) belongs to the Orlicz–Sobolev space W 1,ϕ(Ω) if its
weak partial derivatives ∂1u, . . . , ∂nu exist and belong to the space Lϕ(Ω). For u ∈ W 1,ϕ(Ω),
we define the norm

‖u‖W 1,ϕ(Ω) := ‖u‖ϕ + ‖∇u‖ϕ.

Here ‖∇u‖ϕ is short for
∥∥|∇u|∥∥

ϕ
. Again, if Ω is clear from the context, we abbreviate

‖u‖W 1,ϕ(Ω) by ‖u‖1,ϕ .
Many of our results need the assumption that C1(Ω)-functions are dense in W 1,ϕ(Ω). A

sufficient condition is given by [7, Theorem 6.4.7], which states that C∞(Ω)-functions are
dense in W 1,ϕ(Ω), if ϕ satisfies (A0), (A1), (A2) and (aDec). By [7, Lemma 4.2.3], (A2) can
be omitted, if Ω is bounded.

3 Modulus of a family of curves

By a curve, we mean any continuous function γ : I → R
n , where I = [a, b] is a closed

interval. If a curve γ is rectifiable, we may assume that I = [0, �(γ )], where �(γ ) denotes
the length of γ . We denote the image of γ by Im(γ ), and by Γrect(Ω) we denote the family
of all rectifiable curves γ such that Im(γ ) ⊂ Ω . Let Γ ⊂ Γrect(Ω). We say that a Borel
function u : Ω → [0,∞] is Γ -admissible, if∫

γ

u ds ≥ 1

for all γ ∈ Γ , where ds denotes the integral with respect to curve length. We denote the set
of all Γ -admissible functions by Fadm(Γ ).

Definition 3.1 Let Γ ⊂ Γrect(Ω). Let ϕ ∈ Φw(Ω). We define the ϕ-modulus of Γ by

Mϕ(Γ ) := inf
u∈Fadm(Γ )

‖u‖ϕ.

If Fadm(Γ ) = ∅, we set Mϕ(Γ ) := ∞. A family of curves Γ is exceptional, if Mϕ(Γ ) = 0.

The definition above is as in [10]. The following lemma gives some useful properties
of the modulus. Items (a) and (b) are items (a) and (c) of [10, Lemma 4.5], and item (c)
is a consequence of [10, Proposition 4.8]. To use the lemma, we must check that Lϕ(Ω)

satisfies conditions (P0), (P1), (P2) and (RF) stated at the beginning of section 2 in [10]. The
conditions (P0), (P1) and (P2) are easy to check. For (RF) to hold, there must exists c ≥ 1
such that ∥∥∥∥∥

∞∑
i=1

ui

∥∥∥∥∥
ϕ

≤
∞∑

i=1

ci‖ui‖ϕ

holds for non-negative ui ∈ Lϕ(Ω). This is an easy consequence of [7, Lemma 3.2.5], which
states that there exists c ≥ 1 such that∥∥∥∥∥

∞∑
i=1

ui

∥∥∥∥∥
ϕ

≤ c
∞∑

i=1

‖ui‖ϕ.
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Lemma 3.2 Let ϕ ∈ Φw(Ω), then the ϕ-modulus has the following properties:

(a) if Γ1 ⊂ Γ2, then Mϕ(Γ1) ≤ Mϕ(Γ2),
(b) if Mϕ(Γi ) = 0 for every i ∈ N, then Mϕ(

⋃∞
i=1 Γi ) = 0.

(c) Mϕ(Γ ) = 0 if and only if there exists a non-negative Borel function u ∈ Lϕ(Ω) such
that

∫
γ

u ds = ∞ for every γ ∈ Γ .

In [6], the L p-modulus was originally defined by

Mp(Γ ) := inf
u∈Fadm(Γ )

∫
Ω

u p dx .

This differs from Definition 3.1 in that the infimum is taken over the modulars of admissible
functions instead of their norms. A similar approach was taken in the variable exponent case
in [8]. Following the original approach, we could have defined the modulus by

M̃ϕ(Γ ) := inf
u∈Fadm(Γ )

∫
Ω

ϕ(x, u(x)) dx .

In the case ϕ(x, t) = t p , where 1 ≤ p < ∞, we have M̃ϕ(Γ ) = Mϕ(Γ )p . Thus in this
special case M̃ϕ(Γ ) = 0 if and only if Mϕ(Γ ) = 0. Since we are only interested in whether
a family of curves is exceptional or not, in this case it does not matter whether we use Mϕ or
M̃ϕ .

In the general case, the situation is somewhat more complicated. Let ϕ ∈ Φw(Ω). By [7,
Corollary 3.2.8], if ‖u‖ϕ < 1, then �ϕ(u) � ‖u‖ϕ . Thus Mϕ(Γ ) = 0 implies M̃ϕ(Γ ) = 0.
The converse implication does not necessarily hold, as the next example shows, which is the
main reason for using norms instead of modulars in Definition 3.1.

Example 3.3 Define ϕ ∈ Φw(R2) by

ϕ(x, t) :=
{
0 if t ≤ 1,
t − 1 if t > 1.

For y ∈ [0, 1], let γy : [0, 1] → R
2, z �→ (y, z), and let Γ := {γy : y ∈ [0, 1]}. Let u = 1

everywhere. Then ∫
γ

u(s) ds = 1

for every γ ∈ Γ , and therefore u ∈ Fadm(Γ ). Since ϕ(x, u(x)) = 0 for every x ∈ R
2, we

have �ϕ(u) = 0, and thus M̃ϕ(Γ ) = 0.
To show that Mϕ(Γ ) > 0, suppose on the contrary, that Mϕ(Γ ) = 0. Then by

Lemma 3.2(c) there exists some v ∈ Lϕ(R2) such that
∫
γ

v ds = ∞ for every γ ∈ Γ .
Thus ∫

[0,1]
v(y, z) dz =

∫
γy

v ds = ∞

for every y ∈ [0, 1]. Let λ > 0. Since ϕ(x, t) ≥ t − 1 for every x ∈ R
2 and every t ≥ 0,

Fubini’s theorem implies that∫
R2

ϕ(x, λv(x)) dx ≥
∫

[0,1]

∫
[0,1]

λv(y, z) − 1 dz dy = ∞ −
∫

[0,1]

∫
[0,1]

1 dz dy = ∞

Since λ > 0 was arbitrary, it follows by (2.1) that ‖v‖ϕ = ∞. But this is impossible, since
v ∈ Lϕ(R2). Thus the assumption that Mϕ(Γ ) = 0 must be wrong and Mϕ(Γ ) > 0.
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Note that if ϕ ∈ Φw(Ω) satisfies (aDec)q for 1 ≤ q < ∞, then, by [7, Lemma 3.2.9]
(since ϕ satisfies (aInc)1 by definition) we have

‖u‖ϕ � max{�ϕ(u), �ϕ(u)
1
q }.

Thus, if ϕ satisfies (aDec), then M̃ϕ(Γ ) = 0 if and only if Mϕ(Γ ) = 0.

4 Fuglede’s lemma

Lemma 4.1 (Fuglede’s lemma) Let ϕ ∈ Φw(Ω), and let (ui ) be a sequence of non-negative
Borel functions converging to zero in Lϕ(Ω). Then there exists a subsequence (uik ) and an
exceptional set Γ ⊂ Γrect(Ω) such that for all γ /∈ Γ we have

lim
k→∞

∫
γ

uik ds = 0.

Proof Let (vk) := (uik ) be a subsequence of (ui ), such that

‖vk‖ϕ ≤ 2−k .

Let Γ ⊂ Γrect(Ω) be the family of curves γ , such that
∫
γ

vk ds � 0 as k → ∞. For every
j ∈ N, let

w j :=
j∑

k=1

vk .

Since every vk is a non-negative Borel function, it follows that everyw j is also a non-negative
Borel function. And since the sequence (w j (x)) is increasing for every x ∈ Ω , it follows
that the limitw(x) := lim j→∞ w j (x) (possibly∞) exists. By [7, Corollary 3.2.5], if j < m,
then

‖wm − w j‖ϕ =
∥∥∥∥∥∥

m∑
k= j+1

vk

∥∥∥∥∥∥
ϕ

≤
m∑

k= j+1

‖vk‖ϕ ≤
m∑

k= j+1

2−k < 2− j ,

which implies that (w j ) is a Cauchy sequence in Lϕ(Ω). By Lemma 2.3, w is the limit of
(w j ) in Lϕ(Ω), which implies that w ∈ Lϕ(Ω), and therefore ‖w‖ϕ < ∞.

Suppose now that γ ∈ Γ . Then
∫

γ

w ds =
∞∑

k=1

∫
γ

vk ds = ∞,

because
∑∞

k=1

∫
γ

vk ds < ∞ would imply that limk→∞
∫
γ

vk ds = 0. Thus w/m is Γ -
admissible for every m ∈ N. Since limm→∞ ‖w/m‖ϕ = limm→∞ ‖w‖ϕ/m = 0, we have
Mϕ(Γ ) = 0. ��

Let E ⊂ Ω . We denote by ΓE the set of all curves γ ∈ Γrect(Ω), such that the E ∩ Im(γ )

is nonempty.
The next lemma is, in a sense, a combination of [8, Lemma 3.1] and [2, Lemma 5.1]. The

former of the aforementioned lemmas states that ifC1(Rn) functions are dense in the variable
exponent Sobolev space W 1,p(·)(Rn) and 1 < p− ≤ p+ < ∞, then ΓE is exceptional
whenever E ⊂ R

n is of capacity zero. The latter states that if ϕ ∈ Φw(Rn) satisfies (aInc)
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and (aDec), then for every Cauchy sequence inC(Rn)∩W 1,ϕ(Rn) there exists a subsequence
which converges pointwise outside a set of zero capacity. The beginning of the proof of our
lemma is similar to [2, Lemma5.1], but thenwe use the ideas from [8, Lemma3.1] andmodify
the proof to replace convergence outside a set of capacity zero by convergence outside a set E ,
such that ΓE is exceptional. The reason that we do not simply prove a direct generalization of
[8, Lemma3.1] and then use [2, Lemma5.1] is, that our proof avoids the use of capacities. This
has two advantages: First, we can drop the assumptions (aInc) and (aDec). And second, our
new result works in W 1,ϕ(Ω) for any Ω ⊂ R

n , while in [8, Lemma 3.1] and [2, Lemma 5.1]
we have Ω = R

n .

Lemma 4.2 Let ϕ ∈ Φw(Ω) and let (ui ) be a Cauchy sequence of functions in C1(Ω) ∩
W 1,ϕ(Ω). Then there exists a set E and a subsequence (uik ) such that Mϕ(ΓE ) = |E | = 0
and (uik ) converges pointwise everywhere outside E.

Proof By [7, Lemma3.3.6] there exists a subsequence of (ui ) that converges pointwise almost
everywhere. Thus we can choose a subsequence (vk) := (uik ), such that (vk) converges
pointwise almost everywhere, and

‖vk+1 − vk‖1,ϕ < 4−k

for every k ∈ N. For every k ∈ N, let fk := 2k(vk+1 − vk) ∈ C1(Ω) ∩ W 1,ϕ(Ω). For every
j ∈ N, let

g j :=
j∑

k=1

| fk | and h j :=
j∑

k=1

|∇ fk |.

Since the sequences (g j (x)) and (h j (x)) are increasing for every x ∈ Ω , the limits g(x) :=
lim j→∞ g j (x) and h(x) := lim j→∞ h j (x) (possibly ∞) exist. Since the functions g j are
continuous, g is a Borel function. If j < m, then by [7, Corollary 3.2.5]

‖gm − g j‖ϕ �
m∑

k= j+1

‖ fk‖ϕ ≤
∞∑

k= j+1

‖ fk‖1,ϕ <

∞∑
k= j+1

2−k = 2− j ,

which implies that (g j ) is a Cauchy sequence in Lϕ(Ω). By Lemma 2.3, g is the limit of
(g j ) in Lϕ(Ω). Similarly, since

‖hm − h j‖ϕ �
m∑

k= j+1

‖∇ fk‖ϕ ≤
∞∑

k= j+1

‖ fk‖1,ϕ < 2− j ,

we find that h is the limit of h j in Lϕ(Ω).
Since fk ∈ C1(Ω), for any k ∈ N we have

∣∣| fk(x)| − | fk(y)|∣∣ ≤ | fk(x) − fk(y)| ≤
∫

γ

|∇ fk | ds

for every x, y ∈ Ω and any γ ∈ Γrect(Ω) containing x and y. Thus for every j ∈ N we have

|g j (x) − g j (y)| ≤
j∑

k=1

∣∣| fk(x)| − | fk(y)|∣∣ ≤
j∑

k=1

∫
γ

|∇ fk | ds =
∫

γ

h j ds, (4.1)

for every x, y ∈ Ω and any γ ∈ Γrect(Ω) containing x and y.
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Denote by E the set of points x ∈ Ω such that the sequence (vk(x)) does not converge.
Since (vk) converges pointwise almost everywhere, we have |E | = 0. It is easy to see that if
x ∈ E , then x ∈ {| fk | > 1} for infinitely many k ∈ N, and therefore g(x) = ∞. Thus

E ⊂ E∞ := {x ∈ Ω : g(x) = ∞},
and ΓE ⊂ ΓE∞ . Next we construct a set Γ ⊂ Γrect(Ω) such that ΓE∞ ⊂ Γ and Mϕ(Γ ) = 0.
It then follows by Lemma 3.2(a) that Mϕ(ΓE ) = Mϕ(ΓE∞) = 0.

By Lemma 4.1, considering a subsequence if necessary, we find an exceptional set Γ1 ⊂
Γrect(Ω) such that

lim
j→∞

∫
γ

h − h j ds = 0

for every γ ∈ Γrect(Ω)\Γ1. Let

Γ2 :=
{
γ ∈ Γrect(Ω) :

∫
γ

g ds = ∞
}

and Γ3 :=
{
γ ∈ Γrect(Ω) :

∫
γ

h ds = ∞
}

.

For every m ∈ N, the function g/m is Γ2 admissible, hence Mϕ(Γ2) ≤ ‖g‖ϕ/m. Thus it
follows that Mϕ(Γ2) = 0. Similarly, we see that Mϕ(Γ3) = 0. Let Γ := Γ1 ∪ Γ2 ∪ Γ3. By
Lemma 3.2(b) Mϕ(Γ ) = 0.

It remains to show that ΓE∞ ⊂ Γ . Suppose that γ ∈ Γrect(Ω)\Γ . Since γ /∈ Γ2, there
must exist some y ∈ Im(γ ) with g(y) < ∞. By (4.1), for any x ∈ Im(γ ) and any j ∈ N we
have

g j (x) ≤ g j (y) + |g j (x) − g j (y)| ≤ g j (y) +
∫

γ

h j ds.

Since γ /∈ Γ1, it follows that

lim
j→∞

∫
γ

h j ds =
∫

γ

h ds,

where the right-hand side is finite because γ /∈ Γ3. Thus we have

g(x) = lim
j→∞ g j (x) ≤ lim

j→∞

(
g j (y) +

∫
γ

h j ds

)
= g(y) +

∫
γ

h ds < ∞.

Since x ∈ Im(γ ) was arbitrary, it follows that γ /∈ ΓE∞ . And since γ /∈ Γ was arbitrary, it
follows that ΓE∞ ⊂ Γ . ��

5 Fuglede’s Theorem

We begin this section by defining some notations. Let k ∈ {1, 2, . . . , n}. If z ∈ R and
y = (y1, y2, . . . , yn−1) ∈ R

n−1 we define

(y, z)k := (y1, . . . , yk−1, z, yk, . . . , yn−1) ∈ R
n .

For every x = (x1, x2, . . . , xn) ∈ R
n , we write x̃k := (x1, . . . , xk−1, xk+1, . . . , xn) ∈ R

n−1.
With these notations, we have x = (x̃k, xk)k . We define Ω̃k ⊂ R

n−1 by

Ω̃k := {x̃k : x ∈ Ω} = {y ∈ R
n−1 : (y, z)k ∈ Ω for some z ∈ R}.

The set Ω̃k is, in a sense, the orthogonal projection of Ω into the space {x ∈ R
n : xk = 0},

but strictly speaking this is not true, since a projection is a function P : R
n → R

n , but
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Ω̃k ⊂ R
n−1. For every y ∈ Ω̃k , we let Zk(y) ⊂ R be the set of points z, such that (y, z)k ∈ Ω .

Note that Ω = {(y, z)k : y ∈ Ω̃k and z ∈ Zk(y)}.
Since we will be using Lebesgue measures with different dimensions simultaneously, we

will use subscripts to differentiate them, i.e. m-dimensional measure will be denoted by | · |m .
Definition 5.1 We say that u : Ω → R is absolutely continuous on lines, u ∈ ACL(Ω), if it
is absolutely continuous on almost every line segment in Ω parallel to the coordinate axes.
More formally, let k ∈ {1, 2, . . . , n} and let Ek ⊂ Ω̃k be the set of points y such that the
function

fy : Zk(y) → [−∞,∞], fy(z) = u((y, z)k)

is absolutely continuous on every compact interval [a, b] ⊂ Zk(y). Then u ∈ ACL(Ω) if and
only if |Ω̃k\Ek |n−1 = 0 for every k.

Let u ∈ ACL(Ω). Absolute continuity implies that the classical partial derivative ∂ku of
u ∈ ACL(Ω) exist for every x ∈ Ω such that x̃k ∈ Ek . Since |Ω̃k\Ek |n−1 = 0, it follows
by Fubini’s theorem that ∂ku exists for almost every x ∈ Ω . Another application of Fubini’s
theorem shows that the classical partial derivative is equal to the weak partial derivative,
see [14, Theorem 2.1.4]. Since the partial derivatives exist almost everywhere, it follows
that the gradient ∇u exists almost everywhere. A function u ∈ ACL(Ω) is said to belong to
ACLϕ(Ω), if |∇u| ∈ Lϕ(Ω).

The following lemma follows immediately from the definitions of Lϕ(Ω), ACLϕ(Ω) and
W 1,ϕ(Ω).

Lemma 5.2 If ϕ ∈ Φw(Ω), then ACLϕ(Ω) ∩ Lϕ(Ω) ⊂ W 1,ϕ(Ω).

Definition 5.3 For any u : Ω → R, we defineΓNAC(u) ⊂ Γrect(Ω) as the family of curves γ :
[0, �(γ )] → Ω such that u◦γ is not absolutely continuous on [0, �(γ )]. IfMϕ(ΓNAC(u)) = 0,
then we say that u is absolutely continuous on curves, u ∈ ACC(Ω).

In the next lemma, we show that ACC(Ω) is a subset of ACL(Ω), if ϕ satisfies a suitable
condition.

Lemma 5.4 Let ϕ ∈ Φw(Ω) and assume that ϕ satisfies the following condition:

there exist β > 0 such that ϕ(x, β) ≥ 1 for almost every x ∈ Ω. (5.1)

Then

ACC(Ω) ⊂ ACL(Ω).

Remark 5.5 Note that (A0) implies (5.1), but not the other way around, since we do not
assume that ϕ(x, 1/β) ≤ 1. We also note (5.1) is equivalent to

there exist β > 0 and δ > 0 such that ϕ(x, β) ≥ δ for almost every x ∈ Ω. (5.2)

It is clear that (5.1) is just a special case of (5.2) with δ = 1. It is also clear that (5.2) implies
(5.1), if δ > 1. Suppose then, that ϕ satisfies (5.2) with 0 < δ < 1. Then

δ

β
≤ ϕ(x, β)

β
(5.3)

for almost every x ∈ Ω . By (aInc)1 (which ϕ satisfies by definition of Φw), there exist a
constant a ≥ 1 such that

ϕ(x, β)

β
≤ a

ϕ(x, t)

t
(5.4)
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for almost every x ∈ Ω and every t ≥ β. Choosing t := aβ/δ > β, it follows from (5.3)
and (5.4) that ϕ(x, aβ/δ) ≥ 1 for almost every x ∈ Ω , and therefore ϕ satisfies (5.1). Thus
the choice δ = 1 in (5.1) has no special meaning, except for making notations simpler by
getting rid of δ.

Proof of Lemma 5.4 Let u ∈ ACC(Ω), and let k ∈ {1, . . . , n} and let Ek ⊂ R
n−1 be as in

Definition 5.1. By Lemma 3.2, there exists a non-negative Borel function v ∈ Lϕ(Ω) such
that

∫
γ

v ds = ∞ for every γ ∈ ΓNAC(u). For every y ∈ Ω̃k\Ek , let I (y) ⊂ Zk(y) be some
compact interval such that v is not absolutely continuous on I (y), and let γy : [0, |I (y)|1] →
Ω be a parametrization of I (y). Since γy ∈ ΓNAC(u), it follows that

∫
I (y)

v((y, z)k) dz =∫
γy

v(s) ds = ∞.
From (5.3) (with δ = 1) and (5.4) we get

ϕ(x, t) ≥ t

aβ

for almost every x ∈ Ω and every t ≥ β. Since ϕ(x, t) ≥ 0, it follows that

ϕ(x, t) ≥ t

aβ
− 1

a
(5.5)

for almost every x ∈ Ω and every t ≥ 0. Let λ > ‖v‖ϕ . By (2.1) and Fubini’s theorem we
have

1 ≥
∫

Ω

ϕ

(
x,

v(x)

λ

)
dx =

∫
Ω̃k

∫
Zk (y)

ϕ

(
(y, z)k ,

v((y, z)k)

λ

)
dz dy

≥
∫

Ω̃k\Ek

∫
I (y)

ϕ

(
(y, z)k,

v((y, z)k)

λ

)
dz dy.

(5.6)

By (5.5) we have∫
I (y)

ϕ

(
(y, z)k,

v((y, z)k)

λ

)
dz ≥

∫
I (y)

v((y, z)k)

aβλ
dz −

∫
I (y)

1

a
dz.

Since
∫

I (y)
v((y, z)k) dz = ∞, the first integral on the right-hand side is infinite, and since

I (y) is compact, the second integral is finite. Thus∫
I (y)

ϕ

(
(y, z)k,

v((y, z)k)

λ

)
dz = ∞.

Inserting this into (5.6), we get

1 ≥
∫

Ω̃k\Ek

∫
I (y)

ϕ

(
(y, z)k,

v((y, z)k)

λ

)
dz dy

=
∫

Ω̃k\Ek

∞ dy.

This is possible only if |Ω̃k\Ek |n−1 = 0. Thus u ∈ ACL(Ω). ��
The next example shows that the assumption (5.1) in the preceding lemma is not redundant.

Example 5.6 Let Ω = R
2. For x = (y, z) ∈ R

2, let

ϕ(x, t) :=
⎧⎨
⎩

t if y = 0,
0 if y �= 0 and t ≤ |y|−1,

t if y �= 0 and t > |y|−1.
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It easily follows from [7, Theorem 2.5.4] that ϕ ∈ Φw(R2). Define u : R
2 → R by

u(y, z) :=
⎧⎨
⎩
0 if y < 0,
1 if y = 0,
2 if y > 0.

It is trivial that u /∈ ACL(R2). It is however the case that u ∈ ACC(R2).
It is easy to see, that ΓNAC(u) = ΓE , where E := {(y, z) ∈ R

2 : y = 0}. Define
v : R

2 → [0,∞] by

v(y, z) :=
{∞ if y = 0,

|y|−1 if y �= 0.

Since the set

{(y, z) ∈ R
2 : v(y, z) > r} = {(y, z) ∈ R

2 : |y| < r−1}
is open for every r ∈ R, it follows that v is a Borel function. Fix γ ∈ ΓE . For every
a ∈ [0, �(γ )], we write (ya, za) := γ (a). Now, there exists some b ∈ [0, �(γ )] with yb = 0.
Since γ is parametrized by arc-length, we have

|ya | = |ya − yb| ≤ |γ (a) − γ (b)| ≤ |a − b|
for every a ∈ [0, �(γ )]. If a �= b, then v(γ (a)) ≥ |a − b|−1, since if ya = 0, then
v(γ (a)) = ∞, and if ya �= 0, then v(γ (a)) = |ya |−1 ≥ |a − b|−1. Thus
∫

γ

v ds =
∫ b

0
v(γ (a)) da +

∫ �(γ )

b
v(γ (a)) da ≥

∫ b

0

1

|a − b| da +
∫ �(γ )

b

1

|a − b| da = ∞.

Since this holds for all γ ∈ ΓE , by Lemma 3.2(c), to show that Mϕ(ΓE ) = 0, it suffices to
show that v ∈ Lϕ(R2). If x = (y, z) and y �= 0, then ϕ(x, v(x)) = ϕ(x, |y|−1) = 0. Thus
ϕ(x, v(x)) = 0 almost everywhere, and �ϕ(v) = 0. By (2.1), it follows that ‖v‖ϕ ≤ 1, and
therefore v ∈ Lϕ(R2).

We know that∇u exists for every u ∈ ACL(Ω). Thus, if ϕ satisfies (5.1), then Lemma 5.4
implies that ∇u exists for every u ∈ ACC(Ω). We say that u ∈ ACCϕ(Ω), if u ∈ ACC(Ω)

and ∇u ∈ Lϕ(Ω).

Theorem 5.7 (Fuglede’s theorem) Let ϕ ∈ Φw(Ω) satisfy (5.1). If C1(Ω)-functions are
dense in W 1,ϕ(Ω), then u ∈ W 1,ϕ(Ω) if and only if u ∈ Lϕ(Ω) and it has a representative
that belongs to ACCϕ(Ω). In short

ACCϕ(Ω) ∩ Lϕ(Ω) = W 1,ϕ(Ω).

Proof By Lemmas 5.2 and 5.4 , we have

ACCϕ(Ω) ∩ Lϕ(Ω) ⊂ ACLϕ(Ω) ∩ Lϕ(Ω) ⊂ W 1,ϕ(Ω).

Thus it suffices to show that W 1,ϕ(Ω) ⊂ ACCϕ(Ω). Since |∇u| ∈ Lϕ(Ω) whenever u ∈
W 1,ϕ(Ω), we only have to show that W 1,ϕ(Ω) ⊂ ACC(Ω).

Suppose that u ∈ W 1,ϕ(Ω). Let (ui ) be a sequence of functions in C1(Ω) ∩ W 1,ϕ(Ω)

converging to u in W 1,ϕ(Ω). By Lemma 4.2, passing to a subsequence if necessary, we may
assume that (ui ) converges pointwise everywhere, except in a set E with Mϕ(ΓE ) = |E |n =
0. Let ũ(x) := lim inf i→∞ ui (x) for every x ∈ Ω . Since the functions ui are continuous, it
follows that ũ is a Borel function. Since ui (x) converges for every x ∈ Ω\E , it follows that
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ũ(x) = limi→∞ ui (x) for x ∈ Ω\E . By Lemma 2.3, ui → ũ in Lϕ(Ω), and it follows that
ũ = u almost everywhere.

Since ui → u in W 1,ϕ(Ω) we may assume, considering a subsequence if necessary, that

‖∇ui+1 − ∇ui ||ϕ < 2−i

for every i ∈ N. Since

ui = u1 +
i−1∑
j=1

(u j+1 − u j ),

we have |∇ui | ≤ gi for every i ∈ N, where

gi = |∇u1| +
i−1∑
j=i

|∇u j+1 − ∇u j |.

Since the sequence (gi (x)) is increasing for every x ∈ Ω , the limit g(x) := limi→∞ gi (x)

(possibly ∞) exists. Since the functions gi are continuous, g is a Borel function. For every
m > n we have

‖gm − gn‖ϕ =
∥∥∥∥∥∥

m−1∑
j=n

|∇u j+1 − ∇u j |
∥∥∥∥∥∥

ϕ

�
∞∑

j=n

‖∇u j+1 − ∇u j‖ϕ <

∞∑
j=n

2−i < 2−n+1,

i.e. (gi ) is a Cauchy sequence in Lϕ(Ω). Lemma 2.3 implies that gi → g in Lϕ(Ω).
Let

Γ1 :=
{
γ ∈ Γrect(Ω) :

∫
γ

g ds = ∞
}

.

Since g/ j is Γ1-admissible for every j ∈ N, we find that Mϕ(Γ1) = 0. By Lemma 4.1,
passing to a subsequence if necessary, we find an exceptional set Γ2 ⊂ Γrect(Ω), such that

lim
i→∞

∫
γ

g − gi ds = 0

for every γ ∈ Γrect(Ω)\Γ2. The set Γ2 has the following property: if γ ∈ Γrect(Ω)\Γ2 and
0 ≤ a ≤ b ≤ �(γ ), then γ |[a,b] ∈ Γrect(Ω)\Γ2. The reason is that, since g − gi ≥ 0, we
have ∫

γ

g − gi ds ≥
∫

γ |[a,b]
g − gi ds ≥ 0,

and since the first term tends to zero, the middle term must also tend to zero. Let Γ :=
Γ1 ∪ Γ2 ∪ ΓE . By Lemma 3.2(b) Mϕ(Γ ) = 0.

We complete the proof by showing that ũ ◦ γ is absolutely continuous for every γ ∈
Γrect(Ω)\Γ . Let k ∈ N and for j ∈ {1, 2, . . . , k}, let (a j , b j ) ⊂ [0, �(γ )] be disjoint
intervals. Since Im(γ ) does not intersect E , and ui ∈ C1(Ω) for every i , we have

k∑
j=1

|ũ(γ (b j )) − ũ(γ (a j ))| = lim
i→∞

k∑
j=1

|ui (γ (b j )) − ui (γ (a j ))|

≤ lim sup
i→∞

k∑
j=1

∫
γ |[a j ,b j ]

|∇ui | ds.

123



Fuglede’s theorem in generalized Orlicz–Sobolev spaces

Using first the fact that |∇ui | ≤ gi , and then the fact that γ |[a j ,b j ] /∈ Γ2, we get

lim sup
i→∞

k∑
j=1

∫
γ |[a j ,b j ]

|∇ui | ds ≤ lim sup
i→∞

k∑
j=1

∫
γ |[a j ,b j ]

gi ds =
k∑

j=1

∫
γ |[a j ,b j ]

g ds.

Thus

k∑
j=1

|ũ(γ (b j )) − ũ(γ (a j ))| ≤
k∑

j=1

∫
γ |[a j ,b j ]

g ds

Since γ /∈ Γ1, we have g◦γ ∈ L1[0, �(γ )], which together with the inequality above implies
that ũ ◦ γ is absolutely continuous on [0, �(γ )]. ��

We can combine Theorem 5.7 with Lemmas 5.2 and 5.4 to get the following corollary:

Corollary 5.8 Let ϕ ∈ Φw(Ω) satisfy (5.1). If C1(Ω)-functions are dense in W 1,ϕ(Ω), then

ACCϕ(Ω) ∩ Lϕ(Ω) = ACLϕ(Ω) ∩ Lϕ(Ω) = W 1,ϕ(Ω).

As was noted at the end of Sect. 2, C∞(Ω) functions are dense in W 1,ϕ(Ω) if ϕ satisfies
(A0), (A1), (A2) and (aDec). By Remark 5.5, (A0) implies (5.1). Thus Corollary 5.8 also
holds with assumptions (A0), (A1), (A2) and (aDec), instead of (5.1) and density of C1(Ω)-
functions.
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