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Abstract. Complex bipartite systems are studied in Biology, Physics, Economics,

and Social Sciences, and they can suitably be described as bipartite networks. The

heterogeneity of elements in those systems makes it very difficult to perform a statistical

analysis of similarity starting from empirical data. Though binary Pearson’s correlation

coefficient has proved effective to investigate the similarity structure of some real-

world bipartite networks, here we show that both the usual sample covariance and

correlation coefficient are affected by a bias, which is due to the aforementioned

heterogeneity. Such a bias affects real bipartite systems, and, for example, we report

its effects on empirical data from two bipartite systems. Therefore, we introduce

weighted estimators of covariance and correlation in bipartite complex systems with

a double layer of heterogeneity. The advantage provided by the weighted estimators

is that they are unbiased and, therefore, better suited to investigate the similarity

structure of bipartite systems with a double layer of heterogeneity. We apply the

introduced estimators to two bipartite systems, one social and the other biological.

Such an analysis shows that weighted estimators better reveal emergent properties of

these systems than unweighted ones.

Keywords: Correlation Analysis; Complex Systems; Bipartite systems; Social systems;
Biological systems. Submitted to: J. Stat. Mech.
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1. Introduction

Bipartite systems consist of two sets of elements in which elements of one set directly

relate to elements of the other set only. Often these systems are described as networks.

Complete information about bipartite systems can usually be incorporated in bipartite

networks, however, many studies use the bipartite structure of the system only to set

relationships between the elements of one of the two sets. For instance, the scientific

collaboration network in [1], [2] can be seen as the projection of the bipartite system

of authors and papers, where co-authored papers are only used to set a relationship

between any pair of authors.

Bipartite networks and their projections are widely used to study complex systems

such as mobile communication [3, 4], criminal activity [5], interbank credit markets [6, 7],

investors activity [8], and recommendation systems for users and objects [9, 10].

A common feature of complex bipartite systems is heterogeneity, which typically

characterizes both sides of the system and makes the statistical analysis of the various

properties a challenging task. Here we focus on the heterogeneity of nodes, and,

specifically, on the fact that the distribution of the number of connections of nodes

from either set, i.e. the degree, is eventually scale-free. This phenomenon is apparent in

all of the systems mentioned above. For instance, in the criminal-crime bipartite system

analyzed in [5], there are criminals involved in more than a thousand events, while

most of criminals have been found guilty of only one crime, as well as there are crimes

committed by hundreds of thousands of people (like crimes against the traffic law in

Sweden) and very brutal crimes, such as omicide of children, which are very rare–a few

events over a decade. Such an heterogeneity of degree in the bipartite network makes

it very difficult to quantify the similarity between two elements of the same set, e.g.,

between two criminals, in order to elicit the similarity of criminal patterns from historical

data series, or between crimes, in order to investigate the association between them, and,

eventually, determine the specificities they share. Another example of a system with such

features is the scientific collaboration network, where there is heterogeneity of authors

in terms of the number of papers they authored, and heterogeneity of papers in terms

of the number of co-authors. Indeed, Newman [2] – to account for such heterogeneity

in the construction of the weighted collaboration network of scientists – weighted a

link between two coauthors by not just counting the number of papers in common, but

weighting each one of such papers inversely according to the number of co-authors [2].

The heuristic reasoning behind such a choice is that two scientists participating in a

very large collaboration are less likely to know very well each other than two scientists

being the only authors of a specific paper. In systems as sparse as the collaboration

network, the weight introduced by Newman can be considered as a good measure of

the acquaintance between scientists, since the probability that two scientists end up

authoring the same paper “by chance” is negligible. However, there are other bipartite

systems where such a probability is not negligible at all. A clear example of such

systems is the one of users and movies of a streaming OTT media provider, such as
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Netflix. Suppose that one is interested in measuring the similarity between two users

based on their watching profile over a certain period of time, which is a key step to

develop recommendation systems [9, 10]. The probability that two users have watched

the same n movies just by chance is not negligible, and it depends on their heterogeneity,

i.e., the number of movies each one of them has watched in the past. This is due to

the finite number of movies available to stream, which is small if compared to number

of users in the system. Such an evidence suggests that a better measure of similarity

between users could be obtained by considering the difference between the number of

movies two users have both watched and the expectation of such a number under an

hypothesis of random selection of movies [9, 10], i.e., a sample covariance. To account

for the heterogeneity of users, that is, their degree, the Pearson’s correlation coefficient

might be used in place of the covariance [10, 11, 12].

However, when one is interested in covariance and correlation coefficients to

estimate the connectivity between two nodes in the projected network, we show that

even Newman’s solution is not sufficient to account for the double heterogeneity present

in complex bipartite systems. In general, the presence of such heterogeneity of degree

may induce a bias in covariance and correlation coefficient estimates, which, in turn,

would make the task of discriminating information from noise in covariance/correlation

matrices even more impervious [13], [14], [15].

To remove such a bias from covariance and correlation coefficients we introduce

weighted estimators that take into account, at once, the heterogeneity on both sides of

a bipartite network. Moreover, we also quantify the improvement of the new estimators

compared to unweighted ones and demonstrate the power of the introduced methodology

with applications to two real social and biological datasets. From a conceptual point of

view, the newly proposed estimators are such that the covariance/correlation between

any two given elements in the system depends on all the others, in such a way that

adding or removing even a single element influences the value of the estimator. To

prove the stability of the weighted estimators against such a change in the system, we

ran a robustness analysis and show that the proposed estimators are rather robust to

changes in the system composition up to 30%.

The paper is structured in the following way. Section 2 discusses the problem of a

bias in the sample covariance and correlation of bipartite systems and in Section 3 we

propose a model of the rewiring process which demonstrates that the expected value of

the covariance is different from zero. In Section 4 we define the new weighted covariance

estimator in the multivariate case and show that its expected value is indeed null. In

Section 5 we focus on the weighted correlation coefficient and show the improvement

it offers over the unweighted one. Section 6 introduces the methodology used to

estimate the parameters of the underlying model for the heterogeneity of the bipartite

system. Section 7 displays the results of employing the weighted against the unweighted

estimators in two empirical datasets.
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2. Sample covariance and correlation in bipartite systems

In bipartite networks elements can be divided in two disjoint, independent sets, such

that only links between the two sets are allowed, see Fig. 1.

Figure 1. Schematic representation of a bipartite network with N nodes in set A

(black), e. g., authors, and T nodes in set B (blue), e. g., papers. Links are only

possible between the two sets and are shown in red. A projected network of nodes in

set A is obtained by linking any two nodes in A that share one or more connections to

nodes in set B of the bipartite network.

In the previous section, we discussed the importance of evaluating—within many
applications—the similarity between two nodes, say i and j, which belong to one set of
a bipartite system, according to their connections to elements of the other set. Such a
similarity measure should have specific properties, typically depending on the nature of
the applications. However, one desirable feature, which most of the similarity measures
share, is that the similarity should suitably take into account the heterogeneity of nodes
i and j, i.e., their degree. This is attained in different ways: for instance according
to Jaccard [16], this is done by taking the number of connections that i and j share,
nij‡, divided by the total number of elements in the second set that are connected to
i and j, that is, Ki + Kj − nij§, where Ki (Kj) is the degree of node i (j). Another
possibility is to consider the difference between the number nij and the expected value
of nij, E(nnij

), according to a simple urn model. Here it is assumed that node i and
node j independently and randomly select Ki, and Kj nodes, respectively, from the
second set, the urn with T labeled marbles, without restitution. According to such a
simple model, nij follows the Hypergeometric distribution (see for instance [17]), and
therefore E(nij) = KiKj/T . In summary, the similarity between node i and j can be
evaluated as nij−KiKj/T , and the method to attain this result is pretty similar to the
one that brought Newman and Girvan to introduce and operationalize the contribution
to “modularity” [18] of a community of nodes as the difference between number of links
observed in that community and the expected number of links in the same community
under an hypothesis of random connectivity that preserves the degree of each node.

‡ nij is the size of the intersection between the sets of first-neighbors of nodes i and j.
§ Ki +Kj − nij is the size of the union of the sets of first-neighbors of nodes i and j.
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Therefore, typically, measures of similarity, such as those described above, make use of
the observed value of nij and rescale and/or shift it according to a model in which the
degree of each node is assumed as a constraint, or, in other words, as a conditioning
quantity. Similarity nij −KiKj/T can be interpreted, apart from a scaling constant, as
a sample covariance, as discussed in the next paragraph, and it explicitly and suitably
takes into account the heterogeneity of degree of the set of nodes i and j belong to,
through the quantities Ki and Kj. However, such a measure totally disregards the
heterogeneity of nodes belonging to the second set, and, as shown below, this absence
of consideration determines a bias in the similarity.
Let’s suppose we measure the sample covariance between two elements i and j in set
A of a bipartite system, as the scalar product between the binary vectors vi and vj. A
component vi,h (vj,h), with h ∈ [1, ..., T ], of vector vi (vj) is equal to 1 if element i (j) is
linked to node h in set B, and 0 otherwise. Therefore, the sample covariance estimator
between two binary vectors can be written as [10]:

ˆcov(i, j) =
1

T
(vi · vj)−

1

T 2

(
T∑

h=1

vi,h

)(
T∑

h=1

vj,h

)
=

1

T

(
n̂ij −

KiKj

T

)
, (1)

the hat is henceforth used to denote an estimator. In Eq.(1) n̂ij is the observed number

of links in common between the pair of elements i and j, of degree Ki =
∑T

h=1 vi,h and

Kj =
∑T

h=1 vj,h. Degrees are parameters which are kept fixed throughout. For example,

looking at Fig. 1, we have for the pair of nodes 4 and 5 in set A, of degree, respectively,

K4 = 4 and K5 = 3, binary vectors v4 = {1, 1, 0, 1, 1, 0} and v5 = {1, 0, 0, 1, 1, 0},
number of common links n45 = 3, a covariance of ˆcov45 = 1

6
(3− 2) = 1/6.

From Eq.(1), the sample correlation coefficient estimator between two binary
vectors becomes:

ρ̂ij =
ˆcov(i, j)

σ̂i σ̂j
=

n̂ij − Ki Kj

T√
Ki

(
1− Ki

T

)
Kj

(
1− Kj

T

) , (2)

where σ̂i and σ̂j are standard deviation estimators of vector vi and vj,

σ̂i =

√
Ki

T

(
1− Ki

T

)
, σ̂j =

√
Kj

T

(
1− Kj

T

)
. (3)

An evaluation of the accuracy of an estimator, the covariance and correlation coefficient

in the present case, represents a crucial aspect to assess the performance of the estimator

itself. However, evaluating the accuracy of an estimator requires that the true value of

the estimated quantity is known. In this study, the heterogeneity of both sets of nodes in

the bipartite system is a feature that shall be considered in the assessment of estimators’

accuracy, as heterogeneity represents a key feature of most real world (bipartite) complex

systems. As far as we know, there is no way to simulate a bipartite network with a double

heterogeneity and controlled connectivity of nodes. Therefore we started from real

data describing a bipartite network, with both layers of heterogeneity, and performed a

random rewiring of the network, in such a way to destroy any association between nodes’

connectivity [19]. In this way the expected covariance between two nodes connectivity

patterns is zero. Basically, one step in the rewiring procedure consists of randomly

sampling a pair of links in the bipartite network, involving two nodes on each side, and
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a swap of the target nodes of the link in set B, if the latter newly formed links are

not already present in the system. For example, from Fig. 1, one randomly selects the

pair of links 4− II and 6− IV and swaps the target nodes in set B to obtain two new

links 4 − IV and 6 − II, since neither 4 nor 6 were already linked, respectively, to IV

and II. To randomize the network, one needs to perform a great number of swaps,

stopping when the overlapping between the original and rewired networks, evaluated

with an appropriate measure, stabilizes around a minimum value (see Section 6 for

details). However, when considering a randomly rewired bipartite network, we note that

resulting covariance and correlation matrices still display a residual structure as detailed

in section 7.1. The residual structure still present in matrices appears to depend on the

degree distributions of both sets of nodes, that is, on the intrinsic double heterogeneity

of the system. Thus, the sample covariance and correlation estimators reported in Eq. 1

and 2, respectively, appear to be biased in such systems, and the bias won’t be uniform.

Such a bias is evaluated and interpreted through a biased urn model in the next section.

3. Expected value of the covariance and correlation under a biased urn

model

Here, we propose a model which approximately describes the statistical properties of

the outcome of a random rewiring procedure. The model we propose is a simplification

of the problem which, nonetheless, allows us to exactly preserve the degree distribution

on one side of the bipartite network, and to keep the degree distribution on average on

the other side. The underlying idea is to model the random rewiring as a sampling from

a biased urn, followed by a sampling from an unbiased urn, both without replacement

(to preserve degrees).

Our aim is to show the origin of the bias in the covariance and correlation coefficient

in Eqs. (1) and (2) of the randomized network, by calculating their expected values and

showing that they are different from zero.

To show the presence of a bias we describe a simplified situation, where nodes in

set B only have either a high degree, which we’ll formalize as a heavy weight w2, or a

low degree w1 (a ”light” weight). If we now look at how random links form between a

node i in set A and a number Ki of nodes in set B, such a process can be modeled as a

sampling of exactly Ki marbles (node’s i degree), from the total of T marbles in set B.

The crucial hypothesis is that we assume that marbles have two different probabilities

of being selected. Specifically, m marbles have a probability to be sampled proportional

to weight w2 (heavy), whereas the remaining T −m marbles have a probability to be

sampled proportional to w1 (light), and we define the weight ratio as w = w2/w1 > 1.

The weight models the heterogeneity in set B. We’ll focus on Eq.(1), and show that the

expected value of cov(i, j) is, in general, different from zero, if w > 1.

In this model, each node i in set A samples a total of Ki marbles, of which kwi
are heavy and the remaining Ki − kwi are light. In a biased urn problem without

replacement, a single variable w is sufficient to describe the system, with the stochastic
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variable kwi ∈ [max(0, Ki − T + m),min(Ki,m)] following the Wallenius non-central

hypergeometric distribution [20].

If all marbles are distinguishable, for example labeled, we now ask ourselves what

would be the intersection nij between the marbles sampled by two different nodes, i and

j, in A. The expected number of sampled objects E[nij|kwi , kwj ] in common between i

and j will be the sum of the expected number of heavy marbles in common, nwij, and

the expected number of light ones in common, n1
ij,

E[nij |kwi , kwj ] = E[nwij |kwi , kwj ] + E[n1ij |kwi , kwj ]. (4)

The underlying probability distribution, since each weight-group is now homogeneous,

is the Hypergeometric distribution. Specifically, the probability that both nodes

sampled exactly nwij heavy marbles in common, out of the m available ones, is given by

P (nwij; k
w
i , k

w
j ,m). Similarly, the corresponding probability for the n1

ij light marbles in

common is P (n1
ij;Ki−kwi , Kj−kwj , T−m). Since the sampling processes are independent,

variables nwij and n1
ij are independent as well, so that the joint probability distribution

is just the product of the previous two. The expected numbers of common heavy and

light marbles can be easily calculated,

E[nwij |kwi , kwj ] =
kwi k

w
j

m
and E[n1ij |kwi , kwj ] =

(Ki − kwi )(Kj − kwj )

T −m
, (5)

thus the expected number of marbles in common between i and j turns out to be:

E[nij ] =
∑

kw
i ,kw

j

(
E[nwij |kwi , kwj ] + E[n1ij |kwi , kwj ]

)
W (kwi )W (kwj ) =

µi µj

m
+

(Ki − µi)(Kj − µj)

T −m
, (6)

where µi (µj) is the expected value of kwi (kwj ) calculated with the Wallenius distribution

PMF W (kwi ) (W (kwj )).
Unfortunately, no exact formula for the mean of the Wallenius distribution is known [20],
however, the approximate solution of the following equation is reasonably accurate [21]:

µi

m
+

(
1− Ki − µi

T −m

)w

= 1. (7)

Finally, by calculating the Taylor series up to second order of E[nij] in Eq.(6) near

w = 1 and due to the linearity of operator expectation E, the expected value of the

covariance can be approximated by:

E[cov(i, j)] =
E[nij]

T
− KiKj

T 2
'

' m(T −m)

T 2
[(1− Ki

T
) ln(1− Ki

T
)][(1− Kj

T
) ln(1− Kj

T
)](w − 1)2.(8)

For a graphical representation of the dependency of E[cov(i, j)] on Ki, Kj see Fig.2.
The expected value of the correlation coefficient in Eq.(2) can be calculated from

Eq.(8) dividing by the standard deviations, which depend only on fixed parameters:

E[ρij ] '
m(T −m)

T

√
Ki

(
1− Ki

T

)
Kj

(
1− Kj

T

)(1− Ki

T

)
ln

(
1− Ki

T

)(
1− Kj

T

)
ln

(
1− Kj

T

)
(w − 1)2. (9)
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Figure 2. Left panel: plot of f(x) = (1 − x) ln(1 − x) for x ∈ [0, 1], the function is

strictly negative and displays a minimum in xm = 1 − 1/e ' 0.632. Right panel: 3D

plot of f(x, y) = (1 − x) ln(1 − x) · (1 − y) ln(1 − y) for x, y ∈ [0, 1], the function is

strictly positive and shows a maximum in {xM , yM} = {1− 1/e, 1− 1/e}.

From Eq.(8) and Eq.(9) it’s easy to see how the expected value of both the covariance

and the correlation coefficient depends on i’s and j’s degrees, Ki and Kj, as well as on

w, which is the ratio of w2 to w1 (here representing the heterogeneity of the other set,

B, in the bipartite system). Thus, we’ve shown there exists a bias due to the interplay

between both sets’ heterogeneity in a bipartite system. In the next section, we introduce

estimators of covariance and correlation coefficient, whose expected value is zero in any

randomly rewired network, that is, they are bias free.

4. Multivariate weighted covariance estimator

In the most general case, we’re dealing with n < T groups, each containing m =

{m1,m2, ...,mn}marbles of weight w = {w1, w2, ..., wn}. Each node i samples kqi marbles

out of group q, for a total of marbles equal to its own degree Ki. Our aim here is to

show that the bias in the expected value of the covariance can be completely removed

by opportunely weighing the original binary vectors. Thus, re-normalizing the vectors

leads to the definition of a new covariance estimator, ˆcov(i, j)w, which possesses the

desirable property that its expected value is zero.

Specifically, focusing on node i, a component q of vector vw
i is now set equal to

1/f(wq, Ki) if i randomly sampled a marble out of group q and 0 otherwise. We can

then reorder each user’s weighted vector vw
i as follows:

vw
i =

{
δ1

f(w1, Ki)
, ...,

δm1

f(w1, Ki)
,

δm1+1

f(w2, Ki)
, ...,

δm1+m2

f(w2, Ki)
, ...,

δT−mn+1

f(wn, Ki)
, ...,

δT
f(wn, Ki)

}
,

where each δs is either 1 or 0, and the following constraints hold,

m1∑
s=1

δs = k1i , · · · ,
T∑

s=T−mn+1

δs = kni ;
T∑
s=1

δs =
n∑
q=1

kqi = Ki;
n∑
q=1

mq = T.

Having thus re-normilized the original vectors by the weight functions f(wq, Ki),
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we can now define the weighted covariance estimator as:

ˆcov(i, j)w =
1

T

n∑
q=1

n̂qij
f(wq,Ki)f(wq,Kj)

− 1

T 2

(
n∑

q=1

kqi
f(wq,Ki)

)(
n∑

q=1

kqj
f(wq,Kj)

)
, (10)

where n̂qij is the number of marbles of weight wq in common between i and j.
Working under the multivariate version of the biased urn model introduced in

Section 3, we’re now in the position to calculate the expected value of the weighted
covariance. Under the Hypergeometric distribution hypothesis, see Eq.(6) we have that,

E[nqij |k
1
i , ...k

n
i , k

1
j , ...k

n
j ] =

kqi k
q
j

mq
, (11)

so that the expected value of the weighted covariance in Eq.(10) can be written as:

E[cov(i, j)w] =
1

T

n∑
q=1

[
E[kqi ]

f(wq,Ki)

(
E[kqj ]

mq f(wq,Kj)
− 1

T

n∑
p=1

E[kpj ]

f(wp,Kj)

)]
(12)

From Eq.(12), we can define the group of weight functions {f(w1, Kj), ..., f(wn, Kj)} as

those which zero the expected value of the weighted covariance, that is, the solutions of

the following system of equations:

E[k1j ]

m1 f(w1,Kj)
− 1

T

n∑
p=1

E[kpj ]

f(wp,Kj)
= 0

E[k2j ]

m2 f(w2,Kj)
− 1

T

n∑
p=1

E[kpj ]

f(wp,Kj)
= 0

...

E[knj ]

mn f(wn,Kj)
− 1

T

n∑
p=1

E[kpj ]

f(wp,Kj)
= 0.

(13)

System (13) is indeterminate and can be solved after assigning an arbitrary value to
one of the weight functions, for example f(w1, Kj). Then all the other weight functions
can be written relative to f(w1, Kj):

f(wq,Kj)

f(w1,Kj)
=
m1

mq

E[kqj ]

E[k1j ]
, with q ∈ [2, n]. (14)

Thus, by defining the weight functions {f(w1, kj), ..., f(wn, kj)} with Eq.(14), it’s

guaranteed that the expected value of the weighted covariance estimator in Eq.(10)

is zero.
In the multivariate case, the Wallenius distribution PDF for the vector of variables

kj = {k1j , k2j , ..., knj }, with weight vector w = {w1, w2, ..., wn} and number of marbles per
weight group m = {m1,m2, ...,mn}, takes the form:

W (kj;m,w) =

n∏
q=1

(
mq

kqj

)∫ 1

0

n∏
q=1

(1− twq/D)k
q
j dt, (15)

where D = w · (m − kj) =
∑n

q=1wq(mq − kqj ). The group means µq = E[kqj ] with

q ∈ [1, n] satisfy the system of equations [22]:(
1− µ1

m1

)1/w1

=

(
1− µ2

m2

)1/w2

= ... =

(
1− µn

mn

)1/wn

, (16)
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with the constraint
∑n

q=1 µq = Kj. From this constraint and Eq.(14), we can write
each group mean µq in terms of the weight functions,

µq

mq
=

Kj f(wq,Kj)∑n
p=1mp f(wp,Kj)

, (17)

and inserting Eq.(17) in Eq.(16), we find a set of equations for the weight functions:(
1− kj f(w1, kj)∑n

p=1mp f(wp, kj)

)1/w1

= ... =

(
1− kj f(wn, kj)∑n

p=1mp f(wp, kj)

)1/wn

. (18)

System (18) provides a way to directly calculate the weight functions, without

having to compute the group means first.

5. Multivariate weighted correlation estimator

In this section, we write down the weighted estimator for the correlation coefficient and

quantitatively show the improvement it offers over the unweighted one.

From Eq.(12) it’s straightforward to define the weighted correlation coefficient

estimator as the Pearson correlation coefficient of the weighted vectors:

ρ̂wij =
ˆcov(i, j)w

σ̂w
i σ̂w

j

=

∑n
q=1

n
q
ij

f(wq,Ki)f(wq,Kj)
− 1

T

(∑n
q=1

k
q
i

f(wq,Ki)

)(∑n
q=1

k
q
j

f(wq,Kj)

)
√√√√[∑n

q=1
k
q
i

f(wq,Ki)2
− 1

T

(∑n
q=1

k
q
i

f(wq,Ki)

)2
][∑n

q=1

k
q
j

f(wq,Kj)2
− 1

T

(∑n
q=1

k
q
j

f(wq,Kj)

)2
] . (19)

Unfortunately, from Eq.(19) one realizes immediately that having E[cov(i, j)w] = 0

is not a sufficient condition for E[ρwij ] = 0, since variables {ki,kj} now appear in the

denominator as well. However, we can approximate E[ρwij ] by its Taylor series near

w = 1 and show that its value is less than the Taylor series of E[ρij].

5.1. Comparison of correlation coefficients near w=1

We now proceed to show the improvement of the weighted estimator over the unweighted

one, by comparing the Taylor series of their expected values. Out of simplicity, we show

our results in the bivariate case, with n = 2 groups and w = w2/w1. The Taylor series

of E[ρij] near w = 1 was calculated in Section 3, Eq.(9).
We now calculate the Taylor series of E[ρwij], starting from the expected value of ρwij

given kwi , k
w
j , which can be calculated from Eq.(19) when n = 2:

E[ρwij |kwi , kwj ] =
[(T −m) kwi −mf(w,Ki)(Ki − kwi )]

mT σw
i f(w,Ki)

[
(T −m) kwj −mf(w,Kj)(Kj − kwj )

]
(T −m)T σw

j f(w,Kj)
. (20)

From Eq.(20), remembering that the Wallenius distribution in w = 1 becomes the

Hypergeometric distribution, we can calculate the zero order term in the Taylor series,

which turns out to be null. To calculate the first and second order terms, we define the

function:

F (kwi , k
w
j , w) = E[ρwij|kwi , kwj ] ·W (kwi ) ·W (kwj ),
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which, summed over all possible values of {kwi , kwj } gives E[ρwij]. Thus, we can calculate
the derivatives as follows,

dE[ρwij ]

dw

∣∣∣∣
w=1

=
∑

kw
i ,kw

j

[
d

dw
E[ρwij |kwi , kwj ]W (kwi )W (kwj )

]
w=1

=
∑

kw
i ,kw

j

dF (kwi , k
w
j , w)

dw

∣∣∣∣
w=1

, (21)

by exploiting the advantage of first evaluating the derivatives of F (xi, xj, w) near w = 1,

and then summing over the variables. The first non-null term is the second order one,

so that the expected value of the weighted correlation coefficient near w = 1 is:

E[ρwij] '
m(T −m)

T
√
Ki(1− Ki

T
)Kj(1− Kj

T
)
(1− Ki

T
)[h(T ) − h(T−Ki) + (1− 1

Ki

) ln(1− Ki

T
)]·

· (1− Kj

T
)[h(T ) − h(T−Kj) + (1− 1

Kj

) ln(1− Kj

T
)](w − 1)2,

(22)

where h(n) =
∑n

k=1 1/k is the n-th harmonic number, that is, the sum of the

reciprocals of the first n natural numbers.

A graphic comparison between the unweighted estimator in Eq.(9) and the weighted

estimator in Eq.(22) is shown in Fig 3, where the improvement of the latter is clear.

Figure 3. Plot of the expected value of the unweighted correlation coefficient

(left) against the weighted one (right) as a function of ki and kj . Parameters are:

T = 104 = 2m, where m is the number of marbles in either group, according to the

bivariate biased urn model, w = w2

w1
= 2, while ki and kj can vary between 1 and 95%

of the number of marbles in the urn (T ), that is, we let ki and kj to span a range

large enough to describe sparse, as well as dense networks. Both correlation estimates

assume the same value of 0.0001 when ki = kj = 1. Notice that the vertical scales are

different in the left and right plots.

Finally, to quantify the improvement offered by the weighted estimator over the
unweighted one, we use the asymptotic expansion of the harmonic number,

h(T ) − h(T−Ki) ' − ln

(
1− Ki

T

)
− 1

2T

(
Ki/T

1−Ki/T

)
, (23)

valid when T →∞ and T >> Ki.
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Within the former asymptotic limit, we have that the ratio of the expected value

of the weighted correlation coefficient to the unweighted one, near w = 1, is

E[ρwij]

E[ρij]
=

[
h(T ) − h(T−Ki)

ln
(
1− Ki

T

) + 1− 1

Ki

]h(T ) − h(T−Kj)

ln
(

1− Kj

T

) + 1− 1

Kj

 '
'
(

1

Ki

− 1

2T

)(
1

Kj

− 1

2T

)
' 1

KiKj

. (24)

Thus, when T >> Ki, Kj, which occurs, for instance, when the bipartite network is

sparse, we find that the expected value of the weighted correlation estimator is 1/KiKj

times the expected value of the unweighted one.

6. Wallenius’ distribution: weight-groups and odds-ratio estimation

In the previous section, unbiased weighted estimators for the covariance and correlation

coefficient have been introduced, which can be calculated by modifying the original

0/1 incidence matrix on the basis of the degree distributions of both sets nodes in the

bipartite network. That is done, in practice, by dividing the 1’s of the matrix by the

weight function f(wq, kj) if user j has drawn a marble belonging to weight-group q.

Now, since f(wq, kj) depends on both the expected number of marbles (according to a

Wallenius’ experiment) drawn by a user with degree kj and the weight wq, a problem

of estimation arises. In fact, once we collect the data, the composition of the “urn”

(marble set) must be characterized, that is, the number and dimension of groups m and

the weights must be estimated.

The only information we have about the marbles is given by their degree, that is

the number of users they are linked to. So, on the basis of that, we need to put together

marbles which are as similar as possible. The most intuitive and easy choice would be to

assume that the odds-ratios w are exactly equal to the degree of set B in the bipartite

system. For example, in a bipartite system of parliament members and private initiatives

(see next section for details), the weight of an initiative could be set equal to the number

of members who signed it. Such a rough estimate has the benefit of automatically

defining the weight-groups vector m, by grouping together all the initiatives which have

the same weight, with the simple idea of just dividing the original vectors vi (vj) by

the weight w defined by set B’s heterogeneity, as inspired by Newman [2], which shall

henceforth be referred to as Newman’s estimator. Basically, Newman’s estimator may

work well when one is dealing with datasets with low heterogeneity, so that the noise

can be modeled as a multinomial distribution, but it becomes dramatically biased as

heterogeneity on both sides of the system grows, as is typically the case in many complex

systems. In truth, the estimation of the odds-ratios in a Wallenius distribution with

different sampling processes, that is, a different number of total marbles sampled by

each user, is not straightforward and has not been investigated in the literature.

A very simple and effective method in this case is given by the K-Means algorithm,

which, starting with some initial centers values, iteratively assigns each marble to the



Cov. and Cor. estimators in bipartite complex systems with a double heterogeneity 13

closest mean, until no marble is moved any more [23]. The problem about the K-

Means algorithm is its deterministic nature, indeed the number of clusters to find

must be given a priori by the researcher. However, it turns out that the classification

performed by K-Means corresponds with the one performed by the maximum likelihood

approach assuming that data come from a Gaussian Mixture Model (GMM), with

clusters distributed normally with same variances. Via an Expectation Maximization

(EM) algorithm it is possible to maximize the likelihood of the mixture model and

compute the usual BIC statistics, which allows one to find the optimal number of weight-

groups [24]. Once the number of weight-groups and their dimension are available, it’s

quite straightforward to estimate the odds-ratios parameter vector w of the Wallenius

distribution, according to Eq.(16), as:

wi
q =

ln
(
1− kiq/mq

)
ln (1− kin/mn)

. (25)

The estimation of groups can be performed by using the function WGroupsEst, while the

function WeightsEst is used to estimate the odds-ratios given the groups (both functions

are available in the R package WestC, which is available upon request to the authors).

From Eq.(25) it’s possible to reconstruct each weight by averaging over all the users

and keeping in mind that, in a multivariate Wallenius distribution, the odds-ratios are

distributed according to a log-normal:

〈wq〉 = exp
(〈

ln
(
wi

q

)〉
i

)
(26)

The odds-ratios estimates obtained from Eq.(26) get more and more accurate as the

number of users and marbles grows. Obviously, when going from Eq.(25) to Eq.(26),

one needs first to remove all the values of wiq that are either 0, 1 or infinite.

7. Application to empirical datasets

In this section, we employ the weighted covariance and correlation estimators we

developed, against the unweighted ones, with the aim of showing how the new estimators

outperform the others in 1) revealing no community structure in randomly rewired

networks and 2) highlighting community structure in two real networks. As a matter

of fact, in order to calculate the weighted covariance and correlation, we simply derive

the weight functions as shown in section 4 and use them to weigh users’ vectors, over

which we then compute the covariance and correlation coefficients. The first step will

be identifying the weight-groups and estimating their corresponding odds-ratios.

The datasets taken into consideration are two, one pertains to the social sciences

and the other one to the biological sciences. The social database [25] consists of 1,808

private initiatives submitted between 2011 and 2014 by 201 members of the Finnish

parliament (MPs), along with information on who signed each initiative. Data cover

an entire parliament of the duration of four years. The resulting bipartite system
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Data

Finnish parliament COGS

T 1,808 4,873

wm − wM 2-150 3-66

N 201 66

Km −KM 2-793 362-2,243

nL 28,568 83,675

Table 1. T is the number of initiatives/COGs; wm−wM is their heterogeneity, that

is, the range (min-max) of degree distributions; N is the number of MPs/organisms;

Km −KM is the range (min-max) of their degree distributions; nL is the number of

links in the bipartite network.

displays members of the parliament (MPs) on one side and initiatives they signed on the

other. Info on MPs include their party and district of election. Parties in Finland are:

Christian Democrats (KD), Centre party (KESK), National Coalition party (KOK),

Finns party (PS), Swedish People’s party (RKP), Social Democratic party (SDP), Left

alliance (VAS) and Green League (Vihr). Electoral districts are 15.

The biological data comes from the COG database [26], which stands for Clusters

of Orthologous Groups of proteins, from the sequenced genomes of prokaryotes and

unicellular eukaryotes. The database consists of 4,873 COGs present in 66 genomes

of unicellular organisms, belonging to 3 broad macro-groups: Archaea, Bacteria or

Eukaryota. The corresponding bipartite system consists of organisms on one side and

COGs present in their genome on the other. Organisms belong to 12 different phyla:

Actinobacteria (Act), Archaea of type Crenarchaeota (ArC) and Euryarchaeota (ArE),

Cyanobacteria (Cya), Eukariota (Euk), Gram-negative Proteobacteria of type α (Gr-

a), β (Gr-b), ε (Gr-e), γ (Gr-g), Gram-positive bacteria (Gr+), Hyperthermophilic

bacteria (HyT) and other bacteria (Oth). This database has been widely studied, see

for example [27] and [28].

Table 1 shows that both datasets present a high degree of heterogeneity in both

sides of the bipartite system, which is at the origin of the bias observed with usual sample

correlation and covariance estimators. However, such a high degree of heterogeneity is

frequently found in bipartite systems.

7.1. Rewiring algorithm

If we want to assess how the heterogeneity of nodes affects the correlation matrix

computed according to Eq.(2), one of the approaches used in the literature [19] is

the rewiring of the bipartite network, since it keeps constant the degree of each node,

and generates a network where the expected correlation between two nodes, based on

their connectivity patterns, is zero. The rewiring algorithm samples randomly a pair of

MPs/organisms according to a probability distribution equal to their degree distribution,

then samples randomly two initiatives/COGs out of those already linked to the first
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sampled pair, again according to the degree distribution of initiatives/COGs. Then, if

neither in the pair is already linked to the other’s sampled initiative/COG, the two links

are swapped, otherwise the swap is rejected. Such an algorithm performs a random

rewiring of the entire bipartite system, preserving both sides degree distributions.

To efficiently rewire large bipartite networks a Monte Carlo procedure known as the

switching-algorithm (SA) [29] can be used. This algorithm can be performed by using

the function Rewiring of our R package.

We can now compare the weighted estimators against the unweighted ones, over

both datasets. The first result, as shown in Fig. 4, is that the weighted covariance

estimator completely destroys the structure still present in the unweighted covariance

matrix of the rewired network. This feature translates also to the weighted/unweighted

correlation coefficients in Fig. 5, although the expected value of the weighted correlation

estimator is only approximately zero. In Fig. 6, we show how the weighed

Figure 4. Covariance matrices of MPs (top-row) and organisms (bottom-row) after

random rewiring of the original bipartite network, calculated without weighing the

vectors (left) and weighing them (right). MPs/organisms are ordered by increasing

degree with respect to columns and by decreasing degree with respect to rows. The

Color Key scale is identical in all figures.

correlation outperforms the unweighted correlation in randomly rewired networks.

Indeed, according to Fig.5, the weighted correlation does not indicate the presence

of any structure in the system, whereas the unweighted one does. Furthermore, Fig.5

shows that the weighed correlation better highlights the cluster-structure present in the
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Figure 5. Correlation matrices of MPs (top-row) and organisms (bottom-row) after

random rewiring of the original bipartite network, calculated without weighing the

vectors (left) and weighing them (right). MPs/organisms are ordered by increasing

degree with respect to columns and by decreasing degree with respect to rows. The

Color Key scale is identical in all figures.

real system. Indeed, the weighted correlation matrix better identifies the clusters in

the original COGs bipartite system (bottom row), by encompassing a broader scale of

values, displayed within the matrix in violet (negative correlations), zero (red), orange

(low), yellow (average) and green (high) against the unweighted matrix which only

features the positive correlations, making it harder to distinguish sub-clusters. Indeed

the right weighted matrix shows sub-clustering corresponding to organisms’ phyla. For

example, it neatly discriminates Archaea (red and orange in the left color-bar), Eukariota

(Salmon) and Bacteria (all the rest), by also grouping together Gram-negative bacteria

(shades of green), Gram-positive bacteria (blue), Hyperthermophilic bacteria (violet),

Actinobacteria (pink) and Cyanobacteria (cyan).

Concerning the Finnish parliament dataset (term 2011-2014), results reported in

top-row panels of Fig. 6 show how the weighing destroys the cluster of party KESK,

implying that this cluster is more due to the heterogeneity and consequent bias in the

unweighted correlation estimator than to a real collaboration between MPs, while, at

the same time, weighing preserves the cluster of party PS. This finding is in agreement

with the general trend observed in [25], where the evolution of this network over 4

Finnish parliament terms is studied. In fact, during previous terms, MPs collaborated
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by district and by party both, with party being more characterizing in the opposition and

district sub-clustering within the government. If we look at the unweighted matrix, it

appears that not only the two opposition parties strongly cluster and display a negative

correlation with each other, but also the government splits in two right-wing left-wing

sub-clusters. Such a change from the previous terms was attributed to the sudden rise in

numbers of the populist party PS. From the weighted matrix instead we can see that the

situation is more in line with previous terms, with district subclustering reappearing.

Figure 6. Unweighted (left) against weighted (right) correlation matrices of MPs

(top) and organisms (bottom), ordered by hierarchical clustering with average linkage

performed on each matrix [30]. The left-side bar is colored according to party (left

legend) or phylum (right legend), the top bar is colored according to districts (right

legend). Diagonals have been colored white. The Color Key scale is identical in all

figures.

7.2. Weight-groups and Odds-ratios Estimation

In this subsection our proposed estimation method will be applied to a simulation study

as well as to the real datasets discussed before to show the improvement it brings over the

unweighted and Newman covariance/correlation estimates. The setting of the simulation

is as follows: we define set A heterogeneity, by fixing vi’s degree for every i, we consider

five groups of marbles of equal size, and set the odds-ratios as w = {15, 10, 5, 2.7, 1},
since all the weights can be normalized in terms of any of the other weights, in this case

normalizing with respect to the lightest weight-group. We ran an exploratory simulation



Cov. and Cor. estimators in bipartite complex systems with a double heterogeneity 18

with m = {500, 500, 500, 500, 500}, encompassing the whole spectrum of values of Ki,

from 10 to 1990 in steps of 30 for a total of 83 users. With these initial parameters,

the simulation runs a random sampling from a biased urn with odds-ratios w, one user

at a time. Then, all of the marbles sampled by each user are labeled randomly from

1 to the total of 2,500 marbles, so that the corresponding user’s profile binary vector

can be constructed. Finally, the incidence matrix is built from all the profile vectors,

after taking care of having removed any marble labels which were never sampled by

any user (which usually doesn’t happen if the number of users is not too low and their

heterogeneity is not too poor).

Having thus constructed our synthetic database, we can easily calculate Newman’s

covariance and correlation estimators by simply dividing every row of the matrix by

its corresponding weight, which is just the number of users who sampled it, and then

computing the unweighted estimators on the resulting matrix.

For what concerns our newly proposed weighted estimators, in order to calculate the

weight functions f(wh, Ki) one needs to estimate both the weight-groups m and the

odds-ratios w from the synthetic dataset. In Fig. 7 we report the results of the

exploratory simulation, by showing the plot with the estimated partition of marbles, the

BIC curve with points starting from two clusters (so that BICmin=19,717.7; therefore 5

is the optimal number of groups to choose), the plot of both covariance and correlation

estimators calculated with Newman’s weight and with our weighted estimators as a

function of users’ degree: KiKj/T
2, ∀i, j > i.

From the simulations we ran, it’s quite clear that the weighted estimators perform

better than Newman’s ones in terms of accuracy (Fig. 7). In fact, the latter ones are still

affected by a bias growing as user’s degree increases. In Fig. 8, we compare the estimators

in terms of their precision. The results indicate that precision of all the three estimators

is comparable in spite of the degree. In conclusion, the weighted estimator turns out

to be more accurate than the other estimators, especially when high values of degree

are considered, and all the estimators show a similar precision. The performed analysis

suggests that, while there are many other ways in which one can attempt to identify

the weight-groups in empirical datasets when they are unknown a priori, our approach,

which is quite simple, works well enough to provide estimates of the parameters that

allow the introduced weighted estimators of covariance and correlation to outperform

the other considered estimators.

In Fig. 9 and 10 we show the above described method to identify groups and rela-

tive odds-ratios for the rewired matrices of the Finnish parliament and COGs databases.

The parameters we obtained from the algorithm are summarized in TABLE 2.
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Figure 7. Exploratory simulation, top row shows the estimation process of the number

and dimension of groups, mid row shows the plot of Newman’s covariance (left) and

weighted covariance (right) as a function of KiKj/T
2 and the bottom row shows the

same plot of Newman’s correlation and weighted one.
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Figure 8. Standard deviations of covariances (left) and correlations (right) for the

Pearson, Newman and weighted estimators. Standard deviations are calculated over

non overlapping moving windows of the support (ki kj/T ), each one including 500

points.

Parameters from the algorithm

Exploratory simulation

N.groups 5

BIC 19,717.7

m̂ 537 476 520 470 497

ŵ 12.4 8.4 4.6 2.5 1

Finnish Parliament 11-14 data

N.groups 4

BIC 14,082.9

m̂ 33 417 388 970

ŵ 38.12 5.98 2.21 1

COGs data

N.groups 4

BIC 35,502.8

m̂ 470 603 1094 2706

ŵ 28.98 10.95 4.16 1

Table 2. Parameters obtained by running the algorithms implemented by the

R package WestC. The algorithm first estimates the number of groups via GMM

likelihood approach and then calculates the best partition according to the k-

means algorithm, from which the weight-groups vector m is obtained (this can be

performed by the function WGroupsEst), while the corresponding odds-ratios vector

w is calculated according to Eq.26 (function WeightsEst). The estimates are sorted

according to a decreasing weight, with the lighter fixed to 1.
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Figure 9. Finnish parliament rewired data, top row shows the groups estimation

process, mid row shows the plot of Newman’s covariance (left) and weighted covariance

(right) as a function of KiKj/T
2 and the bottom row shows the same plot of Newman’s

correlation and weighted one.
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Figure 10. COGs rewired data, top row shows the groups estimation process, mid

row shows the plot of Newman’s covariance (left) and weighted covariance (right) as a

function of KiKj/T
2 and the bottom row shows the same plot of Newman’s correlation

and weighted one.
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7.3. Unbiased weighted estimators in a community detection framework

We have also compared the proposed estimators as applied to a more complicated,

yet controlled, synthetic system. Specifically, we have considered the actual marginals

observed in the Finnish parliament dataset, i.e., the degree (number of signers) of

initiatives and the degree (number of signed initiatives) of parliament members, in such

a way to be assured that a double heterogeneity is included in the model. We have

then randomly sorted out parliament members in three non overlapping groups, G1 and

G2 including 60 MPs each, and G3 with the remaining 81 MPs. Each one of the 1808

initiatives has been randomly labeled according to four categories, in order to mimic,

in the simulation, the presence of first signers, i.e., proposers, and the group(s) they

belong to. Specifically, 482 initiatives have been assumed to be proposed by a member

of group G1 and labeled P1, 514 initiatives proposed by a member of G2 and labeled P2,

542 proposed by a member of G3 and labeled P3, and, finally, 270 initiatives proposed

by one member of G2 and one member of G3 and labeled P4. Then the simulation

consisted in randomly selecting, independently for each initiative, the list of signers in

the following way. For each initiative m with label Pi and degree k, k MPs have been

randomly selected, without restitution, from the list of the 201 MPs with probability

proportional to the degree of MPs times a weighting factor only depending on the label

Pi of the initiative, that is, the group(s) the proposer belongs to. Specifically, if i = 1, 2,

or 3 then the degree of members of the group(s) Gi (i=1,..,3) has been multiplied by a

factor wi, whereas the degree of the other MPs remained the same, and, if i = 4, then

the degree of members of both G2 and G3 has been multiplied by a factor w4. Weights

used in the simulation are w1 = 5, w2 = 2, w3 = 2, and w4 = 3. Weights w1, w2, and

w3 are used to increase the probability that MPs belonging to the same group co-sign

initiatives proposed by a member of their group, while weight w4 plays a double role:

on the one hand it increases the probability of intra-group co-signing for groups G2 and

G3, on the other hand it introduces a mixing factor between these groups, since it also

increases the probability that a member of G2 and a member of G3 co-sign the same

initiative. According to the way in which simulation has been performed, empirical

values of the degree of initiatives are exactly preserved in the synthetic realization,

whereas the empirical degree of each MP is preserved only on average, that is, the

expected value of the degree of each MP in the simulation corresponds to the one

empirically observed. At least to our knowledge, the expected value of connectivity

covariance or correlation between any two MPs is unknown for this model.

Once a simulated network has been obtained, we prove here that the information

carried by the introduced weighted estimator turns out to be useful when performing

community detection, for instance, by applying deterministic algorithms, such as the k-

means, but also methods based on generative model estimation, such as the Stochastic

Block Model (SBM) [31].

With respect to a large majority of community detection techniques, SBM has the

advantage of explicitly stating the underlying assumptions of the model, which improves
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the interpretability of results. Since the introduction of the SBM [31], a lot of

improvements have been subsequently made to basic SBM scheme, in order to make

it more versatile by increasing the number of model parameters. Prominent examples

are the degree-corrected SBM [32], which takes into account the heterogeneity of vertex

degrees within the same communities, the biSBM for analyzing bipartite networks [33],

and the hierarchical SBM (hSBM) [34] to overcome the so-called “resolution limit”

problem of community size, that is, the fact that well-defined small clusters were not

detectable when dealing with very large networks. In general, for the SBM model

specification, the number of groups can be given independently, otherwise users are

required to resort to heuristics, or more complicated inference approaches based on the

computation of the model evidence, which are not only numerically expensive, but can

only be done under onerous approximations.

There is a subtle difference between SBM and the estimation of similarity patterns

between nodes of a network. On the one hand, the main objective of SBMs estimation

is addressing community detection problems. Its estimation is performed thorough

the inference of parameters of a given specification of the model, obtaining values of

parameters as the ones that best explain the observed network (Maximum likelihood).

On the other hand, the method proposed in this paper is not based on the estimation

of parameters of a generative model, but rather, on the opportune modification of

the original incidence matrix. This can be easily done by estimating the strategic

weight functions f(w, k) that allow the purification of the covariance/correlation matrix

from the presence of the spurious correlations due to the heterogeneity of both sets

of a bipartite network. From an operative point of view this approach is similar

to the Newman’s one in that both act directly on the binary vectors of the original

incidence matrix. The weighted covariance/correlation estimators turn out to be a good

instrument to highlight similarity patterns between the objects of a bipartite network,

similarity patterns that eventually are useful in a community detection framework.

Therefore, we first performed the Louvain’s clustering algorithm [35], which is

based on the maximization of the weighted modularity function, to estimate the optimal

number of communities in the projection of the synthetic bipartite network discussed

above. In particular, we applied it to three different weighted projected networks,

in order to make a direct comparison between the clustering algorithm performances

depending on the kind of weights considered in the projected network. Specifically,

links of the projection of our synthetic network were weighted according to Pearson’s,

Newman’s, and our weighted correlation coefficients. Since weights have to be positive,

the sequence w′ = (w − wmin)/(wmax − wmin) was considered to allow weights to

vary within the interval [0, 1]. While the optimal number of groups detected using

the network with weights according to Pearson is two, and the optimal one using the

network with weights according to Newman’s approach is four—thus underestimating

and overestimating the number of groups, respectively—the network weighted according

to our weights leads the algorithm to correctly uncover the three groups of objects.

With respect to other clustering algorithms we used, the k-means algorithm with 3
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groups proved to have the best class predictive power. Therefore, here we report the

results obtained by using the k-means algorithm with three groups to compare the

three weighting methods when used as classifiers. The confusion matrix associated with

each estimator has been calculated, as well as the corresponding multivariate Matthews

Correlation Coefficient (MCC) [36], which has been used as an overall measure of

performance of the classifiers. The confusion matrices obtained for each correlation

estimator are:

C(biased urn) =

 55 5 0

0 54 6

0 45 36

 ; C(Newman) =

 55 4 1

2 29 29

2 20 59

 ; C(Pearson) =

 56 4 0

0 31 29

2 29 52

 ,

where, each row corresponds to the original classification of MPs in the synthetic network

and each column to the classification elicited from the simulated network. The matrices

show that all of the estimators easily allow to separate MPs belonging to group G1

from the others, while distinguishing between groups G2 and G3 is more difficult due

to the mixing weight w4 used in the simulation. The three class Matthews correlation

coefficients associated with the confusion matrices above are MCC(biasedurn) = 0.63,

MCC(Newman) = 0.56, MCC(Pearson) = 0.53.

We also wanted to investigate the possibility that our weighting method might prove

useful in the SBM framework. Therefore the degree-corrected hierarchical SBM (DC-

hSBM) was applied to our synthetic network, in the following two settings:

(i) the unweighted bipartite network, represented by the original 0/1 incidence matrix;

(ii) the weighted bipartite network, where links are weighted according to the

components of vector vw
i (functions of f(wj, Ks)), which depend on both the degree

of subject s and the weight-group of marble j.

By maximizing the models’ posterior distribution, it is possible to estimate the optimal

number of groups of objects, given the graph and the other parameters of the model.

In case (i), the upper three hierarchical levels of the estimated DC-hSBM

highlighted respectively 5, 2 and 1 clusters, meaning that, according to DC-hSBM, the

number of estimated groups of MPs closest to the one used to generate the synthetic

network was two. On the contrary, when case (ii) is considered, the hierarchical levels

of the model unveiled respectively 16, 3 and 1 clusters, suggesting how the introduction

of our weights helps the model to reveal the true underlying structural properties of

the analyzed bipartite network, that is, 3 groups of MPs. To further improve the

classification provided by DC-hSBM as applied to case (ii), which corresponds to a value

of MCC equal to 0.47, we used the optimal number of groups revealed by DC-hSBM,

i.e. 3 groups, as a prior information for the estimation of the degree-corrected bipartite

SBM [33], leading to a very high level of accuracy in the prediction of membership of

MPs. Indeed, the confusion matrix of the classification for the DC-biSBM is:



Cov. and Cor. estimators in bipartite complex systems with a double heterogeneity 26

C[biSBM(3 groups)] =

 60 0 0

0 53 7

1 7 73

 ,

The Matthews correlation coefficient associated with this confusion matrix is 0.91, that

is far higher than the ones obtained using the k-means clustering algorithm. Although

we are aware that this is just a preliminary analysis, it suggests that the biased urn

model might be usefully integrated with SBM. However, an in depth analysis of that is

out of the scope of the present paper and is left for future work.

7.4. Robustness analysis

Since the proposed weighted estimator depends on the heterogeneity of both sets

of elements in a bipartite network, if we sample a subset of elements from the

group of interest (MPs/organisms), then the degree of elements on the other set

(initiatives/COGs) decreases as well and, as a result, the weighted correlations may

change for the sampled elements in the set of interest. In other words, the correlation

coefficient between two elements would potentially depend on the composition of the

subset, and therefore a robustness analysis is in order, to show how the weighted

estimator holds up when subsetting data.

We ran 1,000 independent random samplings of 90%, 80% and 70% MPs/organisms

from the randomly rewired network, and calculated the Frobenius distance between

(i) pairs of weighted correlation matrices (by considering only elements included in

both samplings), (ii) weighted correlation matrices and the identity matrix (which

corresponds to the noiseless null-model) and (iii) unweighted correlation matrices and

the identity matrix [37]. In order to compare matrices of different dimensions, we

renormalized each distance by
√
n(n− 1), where n is the size of the pair of matrices

over which the distance is calculated.

According to Fig. 11, the variability of the distribution of distances increases as

the percentage of sampled elements decreases, while their expected value remains the

same.

The distribution of the Frobenius distances between the weighted correlation

matrices and the identity matrix is the first one from the left in each panel, while the

the distribution of the Frobenius distances between the unweighted correlation matrices

and the identity matrix is at right side of each panel. Furthermore, the distribution

of distances between weighted correlation matrices is always in between the other two

distributions. These results indicate a larger accuracy of the weighted estimator.

8. Conclusions

Elements’ heterogeneity is a common feature of many real-world bipartite systems, and

we have provided evidence of biasing in the binary covariance and correlation estimators
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Figure 11. Robustness analysis performed on the weighted correlation coefficient

between MPs (top) and between organisms (bottom) in the rewired network. We

display in violet the distribution of Frobenius distances between weighted correlation

matrices, in yellow the distribution of weighted-Identity distances, in green the

distribution of unweighted-Identity distances.

when applied to bipartite systems with a high degree of heterogeneity on both sides.

Such a bias becomes apparent when looking at the correlation and covariance matrices of

a randomly rewired network, which is supposed to be completely randomized, whereas

both the unweighted correlation and covariance matrices turn out to be structured

instead.

To explain the former structure and devise an unbiased estimator, we developed

a simple theoretical model of the rewiring process, as a sampling without replacement

from a biased urn. Such a model is an approximation of the randomly rewired network,

in the sense that the degrees of the set we are projecting on is exactly preserved in

the model, like in the randomly rewired network, while the degrees of the other set of

nodes is only preserved on average, while it is exactly preserved in the randomly rewired

network. According to the biased urn model, two users randomly and independently pick

a number of marbles equal to their degree, the underlying distribution being, therefore,

the Wallenius non-central hypergeometric distribution. One can then calculate the

expected value of random co-occurrence within each weight-category, that is the number

of marbles with the same label randomly sampled by two users, by using the standard

hypergeometric distribution. The model predicts a second order correction to the
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expected value of the unweighted sample covariance, which depends on both users degree

and quadratically on the weight, when w ' 1.

The starting point to construct the unbiased estimator lies on the idea of including

weighs in the binary vectors, in order to remove the bias. Weights are chosen in such

a way as to satisfy the requirement of zeroing the expected value of the covariance in

the purely random case. By doing so, we automatically end up with a new estimator of

covariance whose expectation value is zero under random rewiring, thus being unbiased.

By using the same weighting functions used to estimate the covariance, the expected

value of the correlation keeps showing a second order bias in w. However, such a bias

is much smaller than the one in the unweighted estimator: it is 1/(KiKj) times the

unweighted one, where Ki and Kj are the degrees of the considered users. Furthermore,

from a more practical point of view, we’ve shown that such an improvement in the

correlation estimator de facto zeroes the expected value of the correlation coefficient

under rewiring as well, at least for a broad range of users’ degrees, in both real-world

examples analyzed in the paper.

Finally, the introduced covariance and correlation estimators perform better than

the unweighted ones at grasping the clustered structure of the real bipartite networks

considered in the paper. Specifically, they better capture aggregation by phyla in

the COGs dataset and better discriminate between real and noise-induced clusters of

members of the Parliament in the Finnish dataset of initiatives.

We have also assessed how similarity patterns described by the proposed weighted

correlation coefficients can be very helpful in a community detection framework. We

proved it in the specific case where the observed bipartite network presented a hierar-

chical cluster structure and double heterogeneity.

Of course, we rely on the fact that the improvement brought by our methodology

can have a positive impact in other real situations as well - for example - referring to

the machine learning algorithms for online recommendation which currently uses the

simple unweighted correlation coefficients to find patterns of similarity in the data.

In conclusion, our paper serves both as a warning to other researchers when using binary

correlation and covariance to investigate bipartite systems with a high heterogeneity on

both sides, and as a solution to the problem, in that we propose weighted estimators,

which get rid of the bias problem.

The R package named WestC has been implemented, with functions that, among

others, give the user the possibility to calculate bias free correlations and covariances in

bipartite systems, and which is available upon request to the authors.
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