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Abstract: Three-dimensional correlative light and electron microscopy (3D CLEM) is attaining
popularity as a potential technique to explore the functional aspects of a cell together with high-
resolution ultrastructural details across the cell volume. To perform such a 3D CLEM experiment,
there is an imperative requirement for multi-modal probes that are both fluorescent and electron-
dense. These multi-modal probes will serve as landmarks in matching up the large full cell volume
datasets acquired by different imaging modalities. Fluorescent nanodiamonds (FNDs) are a unique
nanosized, fluorescent, and electron-dense material from the nanocarbon family. We hereby propose
a novel and straightforward method for executing 3D CLEM using FNDs as multi-modal landmarks.
We demonstrate that FND is biocompatible and is easily identified both in living cell fluorescence
imaging and in serial block-face scanning electron microscopy (SB-EM). We illustrate the method by
registering multi-modal datasets.

Keywords: correlative microscopy; 3D CLEM; volume imaging

1. Introduction

Correlative light and electron microscopy (CLEM) combine the strengths of fluores-
cence and electron microscopy and this allows overcoming their respective limitations
for cell imaging [1–3]. CLEM can be employed to study dynamics and localization of
macromolecules and proteins with live cell light microscopy (LM) followed by electron
microscopic (EM) examination of the ultrastructural morphology of the specific cell of
interest [4–9]. Thus, functional and ultrastructural details of one cell are obtained by
the integration of the two imaging modalities [10,11]. To date, numerous experimental
CLEM approaches have been reported [5,12–14]. Apart from providing functional and
ultrastructural information, recent CLEM methods have employed super-resolution fluo-
rescence techniques to bridge the resolution gap between diffraction-limited fluorescence
microscopy and EM [6,13,15–18]. However, the majority of developed CLEM methods are
based on the correlation of LM with 2D images of thin cell sections imaged with trans-
mission electron microscopy (TEM) [13,16,17,19–21]. Consequently, these CLEM methods
provide very limited information on the z-axis direction, as TEM sections are generally
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restricted to slices of about 60–100 nm thickness and they may also be tilted relative to the
image planes in the confocal image stack, resulting in uncertainty in the final correlation.

Considering the complex 3D organization of a cell, most of the critical 3D cellular
information, especially in the z-direction, is generally under-explored. Therefore, 2D CLEM
methods could be improved by employing instruments capable of performing 3D imag-
ing [14,22–29], enabling CLEM methods to correlate 3D information from both LM and
EM. Combining 3D fluorescence microscopy with 3D EM would significantly improve the
technical possibilities for investigating complex cellular processes across the full volume of
a cell [30].

Recently, several volume-CLEM methods that demonstrate 3D correlation have been
presented [31–36]. Typically, there are common landmarks that are used as fiducials to
facilitate correlation. These landmarks must be detectable with both imaging modalities.
One such fluorescent and electron-dense CLEM marker is the fluorescent nanodiamond
(FND) [19,37–44]. FNDs are non-toxic to cells, and being nanosized particles, they can be
easily internalized in living cells via endocytosis [45–48]. FNDs have excellent photostabil-
ity, and they have non-blinking far-red emission, which makes them well-suited for the
imaging of living and fixed cells. We recently reported that FNDs are robust intracellular
landmarks in 2D CLEM experiments [39].

In this article, a 3D CLEM method using on average 35 nm-sized FNDs as intracel-
lular correlation landmarks for combining cell volume datasets from live-cell confocal
microscopy and serial block-face scanning electron microscopy (SB-EM) is demonstrated.

2. Materials and Methods
2.1. FND Production

The synthesis and characterization of 35 nm FNDs have been previously reported [49].
A brief synthesis protocol is presented as follows. Synthetic type Ib diamond powders with
a nominal size of 100 nm (MDA, Element Six) were purified in acids and suspended in
water. A thin diamond film of ~50 µm thickness were made by depositing the diamond
suspension on a silicon wafer. The diamond film was then treated by a 3-MeV proton beam
and nitrogen-vacancy defect centers were created by annealing the proton beam-treated
nanodiamonds. To produce 35 nm FNDs, the 100 nm FNDs were first mixed with NaF
powders and crushed together with a hydraulic oil press under a pressure of 10 tons.
Smaller FNDs were isolated by centrifugation after dissolving the mixture in hot water to
remove NaF.

2.2. Cell Culture

MDA-MB-231 (Human breast adenocarcinoma) cells were obtained from Turku Bio-
science Center, University of Turku and Åbo Akademi University, Finland. Cells were
cultured in Dulbecco’s modified Eagle’s medium (DMEM (Lonza, Basel, Switzerland)) sup-
plemented with 10% fetal bovine serum, 2 mM L-glutamine, and 1% penicillin-streptomycin
(v/v), over µ-Dish 35 mm ibidi gridded dishes (ibidi GmbH, Gräfelfing, Germany). 10 µg/mL
of 35 nm FNDs particles were prepared in 1 mL of cell growth media. Then, the cell media
with particles was added to the cells growing. The cells were allowed to incubate with FNDs
for 24 h. Staining with living cell dyes was performed as follows. The cells were washed
three times with serum-free DMEM, after which 0.2 µL of Mitotracker (MitoTracker® Green,
ThermoFisher Scientific Inc., Waltham, MA, USA) was first added to 1.5 mL of medium
(without serum and antibiotics) and then drop by drop to the dish. MDA-MB-231 cells
were incubated for 30 min at 37 ◦C.

2.3. 2D SEM

MDA-MB-231 (Human breast adenocarcinoma) cells were cultured in Dulbecco’s
modified Eagle’s medium (DMEM, Lonza, Basel, Switzerland) supplemented with 10%
fetal bovine serum, 2 mM L-glutamine, and 1% penicillin-streptomycin (v/v). Of 35 nm
FNDs particles, 10 µg/mL were prepared in 1 mL of cell growth media. Then, the cell
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media with particles was added to the cells growing. The cells were allowed to incubate
with FNDs for 24 h. Cells were fixed with 5% glutaraldehyde s-collidine buffer, postfixed
with 2% OsO4 containing 3% potassium ferrocyanide, dehydrated with ethanol, and flat
embedded in a 45,359 Fluka Epoxy Embedding Medium kit. Thin sections were cut using
an ultramicrotome to a thickness of 100 nm. The sections were stained using uranyl acetate
and lead citrate to enable detection with SEM. The Zeiss LEO 1530 (Zeiss, Oberkochen, Ger-
many) SEM instrument used was for imaging. The applied voltage was 15 kV, the detector
was the in-lens detector. The secondary electron detector was placed in the electron optics
column.

2.4. Confocal Microscopy

The living cell 3D imaging was performed with a Leica TCS SP5 confocal micro-
scope (Leica Microsystems, Wetzlar, Germany), using a 63X oil objective. The cells were
maintained at 37 ◦C, 5% CO2 during the imaging. The MitoTracker® Green and the
FNDs were excited by 488 nm argon laser. Fluorescence was collected at 510–550 nm and
650–730 nm with PMTs (Photomultiplier tubes) for MitoTracker® Green and FNDs, respec-
tively. The MitoTracker® Green was recorded in 3D stacks together with FND landmarks
in living cells. Live cell microscopy was performed for 2.5 min to obtain 35 stacks of step
size 0.13 µm. The live cells were instantly fixed in a fixative mixture consisting of 2%
glutaraldehyde, 2% PFA, 2 mM CaCl2 in 0.1 M NaCac buffer, pH 7.4.

2.5. 3D SB-EM Sample Preparation

The specimens were prepared using a protocol modified from Deerinck et al. (2010) [50].
The cells were fixed for 30 min at RT with a fixative mixture consisting of 2% glutaralde-
hyde, 2% PFA, 2 mM CaCl2 in 0.1 M NaCac buffer (pH 7.4) and washed five times with
NaCac buffer containing 2 mM CaCl2. The cells were postfixed for 1 h on an ice bath in a
fume hood with 2% OsO, 1.5% K4[Fe(CN)6], 2 mM CaCl2 in 0.1 M NaCac buffer, pH 7.4.
The cells were washed 5 times with distilled water (DW). The cells were then incubated in
1% aqueous thiocarbohydrazide (TCH) for 10 min at RT. The cells were washed 5 times with
DW. The cells were incubated in 1% OsO4 in DW for 30 min at RT. The cells were washed
5 times with DW. The cells were incubated with 1% uranyl acetate at +4 ◦C overnight,
washed 5 times with DW at RT, incubated in the pre-warmed lead aspartate solution at
60 ◦C oven for 30 min., and washed 5 times with DW followed by serial dehydration. The
cells were dipped into an aluminium plate with a resin-acetone solution containing acetone
with 50% (v/v) Epon resin to incubate for 1 h. Further, cells were incubated in 100% Epon
resin and incubated for 1 h RT. The cells were allowed to polymerize in an oven at 60 ◦C
for 28 h.

2.6. 3D SB-EM Imaging

The area of interest with the selected cells was trimmed from the plastic block and
mounted onto a pin using conductive epoxy glue (model 2400; CircuitWorks, Kennesaw,
GA, USA). The trimmed block was further trimmed as a pyramid and its sides were covered
with silver paint (Agar Scientific Ltd., Stansted, UK). To improve conductivity, the whole
assembly was platinum-coated using Quorum Q150TS (Quorum Technologies, Laughton,
UK). SB-EM data sets were acquired with a FEG-SEM Quanta 250 (Thermo Fisher Scientific,
FEI, Hillsboro, OR, USA), using a backscattered electron detector (Gatan Inc., Pleasanton,
CA, USA) with 2.5-kV beam voltage, a spot size of 2.9, and a pressure of 0.15 Torr. The block
faces were cut with 50-nm increments and imaged with XY resolution of 25 nm per pixel.
The collected 16-bit images were processed for segmentation using an open-source software
Microscopy Image Browser [51] as follows: (a) individual images were combined into 3D
stacks; (b) the combined 3D-stack was aligned; (c) the contrast for the whole stack was
adjusted, and (d) the images were converted to the 8-bit format.
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2.7. Image Correlation

The multi-modal datasets were registered using the eC-CLEM plugin on the Icy
bioimage analysis platform [52]. To match the large datasets on a laptop (i7, 16Gb RAM),
the EM stack was binned 4 times. The FM stack was matched to the binned dataset using
the FNDs as landmarks, targeting the center of the FNDs aggregates both in LM and
EM using orthogonal views from Icy. Nine FNDs were sufficient to achieve the good
overlay accuracy depicted in this manuscript. Rigid registration was performed despite
a recommendation by the software to apply for non-rigid registration [53]. This decision
was made after careful observation of the LM dataset. Since living cell imaging was
performed on the 3D stack, the cell dynamics caused some of the FNDs to move during
image acquisition. This natural movement was uneven in all FNDs. Local inaccuracies in
this registration were coherent with the cell movement observed. The weighing of each
landmark operated by eC-CLEM compensated for the shifts observed between the LM and
the EM dataset and rigid registration lead to accurate full registration. To generate the final
overlay, the transformation was applied to the LM dataset to match the original EM dataset
using the “apply a reduced scaled transform to a full-size image” function from eC-CLEM
(Advanced usage). This final overlay was used to generate movies in supplementary data.

3. Results
FND Facilitated 3D Cell Volume-CLEM

Our 3D CLEM workflow begins by seeding FND incubated MDA-MB-231 cells over
gridded glass-bottom dishes designed for CLEM experiments. Two FND incubated liv-
ing MDA-MB-231 cells shown in Figure 1a were selected for the 3D CLEM experiment.
To demonstrate the usefulness of FNDs in the 3D CLEM experiment, MDA-MB-231 cells
were stained with a mitochondrial marker dye MitoTracker (Figure 1b,c).

Confocal image stacks of the whole cell volumes were acquired from both the Mito-
Tracker (green) and the FND (red) signals (Figure 1d–f and Video S1). MitoTracker signal
was seen widespread in cytoplasmic space (Figure 1d). The fluorescence signal from FNDs
(Figure 1e) was mostly localized to a few spots suggesting their confinement in vesicles.
Following earlier results FNDs are internalized by clathrin-mediated endocytosis [45,46]
and they tend to aggregate inside endosomal vesicles (Figure S1) and subsequently slowly
exocytose from cells [45,47]. The aggregation of FNDs in cellular vesicles brings added
benefit from a CLEM perspective [39] because, in comparison to single FNDs, the high
concentration of FNDs aggregated inside vesicles provides better contrast both in fluores-
cence microscopy and in EM. Besides, the confinement of FNDs in vesicles prevents their
movement in the sample processing steps after the confocal imaging enabling more reliable
correlation of EM images.

3D localization of FNDs for the MitoTracker fluorescence signal can be seen in Video S2.
These 3D confocal datasets were used for software-based correlation with SB-EM datasets.
After confocal imaging, the selected cells were fixed, stained, and embedded for SB-EM
(Figure 1g). The use of gridded glass-bottom dishes allowed easy identification of the cells
of interest within the plastic block and trimming the blocks accordingly. The trimmed area
was mounted on a pin and imaged in SEM. The mounted block-face overview image before
SB-EM is displayed in Figure 1h.

The two selected cells were identified (Figure 1h) using a 15 kV electron beam. The
collection of 3D EM data was performed with an SEM instrument equipped with a system
for serial block-face SEM (SB-EM). In SB-EM, an ultramicrotome performed automated
sectioning of whole-cell volume by cutting thin sections (≥50 nm) from the sample’s block-
face (Video S3). Consequently, after each cut, a high-resolution image of the freshly made
block-face was acquired using a backscattered electron detector to form a 3D image stack.
SB-EM imaging provided a three-dimensional dataset of the selected cells with a resolution
to recognize the structure of interest (mitochondria) and FNDs aggregated in vesicular
structures for CLEM (Figure 2).
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selected cells. (e) Maximum intensity z-projection image from the fluorescent nanodiamond (FND) 
channel of the selected cells. (f) Overlay of maximum intensity z-projections of MitoTracker and 
FND channels. (g) Schematic representation of 3D CLEM workflow with FNDs (red dots) and a 
standard organic fluorophore (green structures). (h) Localization of the selected cells on the EM 
block-face (near the letter E) for SB-EM. The yellow box indicates the same selected cells as in (a). 
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Figure 1. The 3D correlative light and electron microscopy workflow demonstrating the live-cell
confocal microscopy to the serial block-face scanning electron microscopy (SB-EM). (a) Bright-field
image of the living cells on a gridded glass-bottom dish. The cells selected for 3D CLEM are indicated
by the yellow box. (b) MitoTracker signal from the stained selected cells (indicated by the yellow
box). (c) Close-up view of the selected cells shown by an overlay of brightfield and MitoTracker
images. (d) Maximum intensity z-projection image from the MitoTracker channel of the selected cells.
(e) Maximum intensity z-projection image from the fluorescent nanodiamond (FND) channel of the
selected cells. (f) Overlay of maximum intensity z-projections of MitoTracker and FND channels.
(g) Schematic representation of 3D CLEM workflow with FNDs (red dots) and a standard organic
fluorophore (green structures). (h) Localization of the selected cells on the EM block-face (near the
letter E) for SB-EM. The yellow box indicates the same selected cells as in (a).

Correlation of the LM and SB-EM volume datasets was done using the eC-CLEM
plugin on the Icy bioimage analysis platform [52,54]. First corresponding intracellular
FNDs were identified in both datasets. FNDs aggregated in vesicles have a distinct ap-
pearance in SEM images (Supplementary Figure S1) and they are easily distinguished
from morphological features of the cell. Figure 3 shows representative SB-EM and 3D LM
image pairs (Figure 3a,b; Figure 3d,e) in which the corresponding FNDs are identified and
marked.

Correlation of the two volume datasets was calculated using the identified FND posi-
tion pairs as fiducials, and the accordingly transformed volume dataset of the fluorescence
signal of interest (MitoTracker) was overlayed on the SB-EM stack. The FNDs facilitated
mapping of the mitochondrial locations throughout the cell volume (Figure 4a–d) resulting
in good colocalization of the MitoTracker signal with mitochondria seen in the EM image
stack (Videos S4–S6 and Figure S2).
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Figure 3. Overview of the corresponding FND aggregates in EM and LM. Corresponding FNDs
(color-coded) were matched in respective EM and light microscopy (LM) sections. (a,d) SEM images
with FND localized in vesicles (color-coded). (b,e) Respective FNDs (color-coded) in LM images
were matched up. (c,f) corresponding MitoTracker channels.

Quite commonly in the literature, the multi-modal correlation is performed in absence
of such a common landmark, and the process of 3D dataset correlation severely suffers
from misalignment and errors in localizing critical information across 3D. However, in
this type of CLEM approach, there can be multiple factors that could affect precise image
correlation. The major challenge encountered in the CLEM experiment was inherently low
axial (600 nm) and lateral (250 nm) resolution provided by confocal microscopes compared
to the nanometer scale resolution provided by EM (Supplementary Figure S3). Currently,
the limited resolution of confocal microscopy can result in the misalignment of details
within large scale datasets. Sample autofluorescence, unspecific binding of fluorophores,
and obtaining a bright FND signal with live-cell imaging are additional parameters that
still must be optimized.
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Figure 4. Volume-CLEM of living cells. (a–d) CLEM images of multiple planes in increasing z-axis.
(e) ROI selected in CLEM image to demonstrate the correlation of LM over EM. (f) In slice no: 80,
a single high-resolution image shows numerous mitochondria (green) and an empty vesicle. (g) In
slice no: 94, FNDs (red), mitochondria (green), and a vesicle can be seen. (h) In slice no: 123, a vesicle
filled with FNDs (red), and fewer mitochondria (green) can be seen. FNDs in the EM image are the
dark dots inside the vesicle.

4. Discussion

We have introduced a novel FND enabled cell volume (3D) correlative microscopy
method. The CLEM workflow is straightforward and can be performed without any
dedicated CLEM imaging systems. We demonstrated that a standard organic fluorophore
can be used for 3D CLEM experiments with the FND-based method without any special
sample preparation requirements.

In general, organic fluorophores do not survive routine EM sample processing and
are not electron dense molecules, and therefore are not detectable with EM. In contrast, the
employed 35 nm FNDs were intracellularly detectable with both imaging modalities in our
experiments, enabling the successful correlation of volume datasets for 3D CLEM. FNDs
can offer multiple advantages over currently used CLEM fiducials as their internalization
does not need chemical permeabilization, which has impacts on cellular morphology
and ultrastructure. FNDs may be considered as a leading contender in the search for an
exceptional CLEM probe because they are not prone to chemical degradation, have excellent
photostability, and their nanoscale size facilitates their rapid internalization to cells.

In our CLEM workflow, confocal microscopy was chosen for 3D living cell imaging
even if it offers a limited resolution. Pairing confocal with SB-EM imaging was a practical
choice for our experiment because the specific instrument was available to us. However,
the focused ion beam imaging (FIB-SEM) could be used as an alternative for automatically
obtaining the serial section image stacks. However, SB-EM can manage larger sample
volumes than FIB-SEM, but with more limited z resolution. Our next step is to explore the
possibilities of performing FND-enabled CLEM with 3D super-resolution imaging.

Supplementary Materials: The following are available online at https://www.mdpi.com/2079-4
991/11/1/14/s1. Figure S1: SEM imaging of vesicle aggregated FNDs; Figure S2: FND landmarks
facilitated the alignment of 3D images; Figure S3: Single stacks image correlation; Video S1: 3D live
cell confocal microscopy; Video S2: 3D reconstruction of FND distribution; Video S3: 3D SB-EM
imaging of both cells; Video S4: 3D CLEM of both cells; Video S5: 3D CLEM of vesicle aggregated
FND; Video S6: 3D CLEM of single cell. The video files referred to in the article as Videos S1–S6 are
available on Zenodo at https://zenodo.org/record/4279702 (DOI:10.5281/zenodo.4279702).
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