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ON THE VARIANCE OF SQUAREFREE INTEGERS IN SHORT
INTERVALS AND ARITHMETIC PROGRESSIONS

Ofir Gorodetsky, Kaisa Matomäki, Maksym Radziwi�l�l and

Brad Rodgers

Abstract. We evaluate asymptotically the variance of the number of squarefree
integers up to x in short intervals of length H < x6/11−ε and the variance of the
number of squarefree integers up to x in arithmetic progressions modulo q with
q > x5/11+ε. On the assumption of respectively the Lindelöf Hypothesis and the
Generalized Lindelöf Hypothesis we show that these ranges can be improved to
respectively H < x2/3−ε and q > x1/3+ε. Furthermore we show that obtaining
a bound sharp up to factors of Hε in the full range H < x1−ε is equivalent to
the Riemann Hypothesis. These results improve on a result of Hall (Mathematika
29(1):7–17, 1982) for short intervals, and earlier results of Warlimont, Vaughan,
Blomer, Nunes and Le Boudec in the case of arithmetic progressions.

1 Introduction

1.1 Main results. An integer n ≥ 1 is squarefree if it is not divisible by the
square of a prime. By analogy with questions about prime numbers, a basic problem
in analytic number theory is to understand the distribution of squarefree numbers
in arithmetic progressions and in short intervals. Squarefree numbers ought to be a
simpler, more regular sequence than primes, and yet they present distinct challenges;
for instance we can determine whether n is prime in polynomial time [AKS04], but
there is no known polynomial time algorithm to determine whether n is squarefree.

It was conjectured by Montgomery (see [Cro75]) that for any given ε ∈ (0, 1/100),
and (a, q) = 1,

∑

n≤x
n≡a (mod q)

μ2(n) =
6
π2

· x

q

∏

p|q

(
1 − 1

p2

)
+ Oε

(
(x/q)1/4+ε

)
. (1)

uniformly in 1 ≤ q ≤ x1−ε. This conjecture is difficult for two reasons. In the regime
of large q of size roughly x1−ε the left-hand side contains only xε terms and even
establishing an asymptotic is open1 (see the work of Nunes [Nun17] for the best
result in this direction). In the regime of small q of size about xε establishing an

1 In fact establishing that the left-hand side is positive for q = x1−ε is open!
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asymptotic is easy but obtaining an error term as good as Oε((x/q)1/4+ε) is an open
problem, even conditionally on the Generalized Riemann Hypothesis.

Analogously we conjecture that for any given ε ∈ (0, 1
100), uniformly in xε ≤ H ≤

x,

∑

x<n≤x+H

μ2(n) =
6H

π2
+ Oε(H1/4+ε). (2)

Similarly to the case of arithmetic progressions, when H is close to xε no asymptotic
estimates are known (see the work of Tolev [Tol06] and Filaseta and Trifonov [FT92]
for the best unconditional results in this direction and [CE19, Thm. A.1], [Gra98]
for results conditional on the ABC conjecture). Meanwhile for large H, say H =
x, estimating (2) asymptotically is straightforward, but obtaining an error term
Oε(x1/4+ε) is an open problem, even conditionally on the Riemann Hypothesis (see
[Liu16] for the best result in this direction).

An important feature of both conjectures (1) and (2) is that the error term is
significantly smaller than the square-root of the number of terms being summed, in
contrast to what a naive probabilistic model predicts.

The conjectures (1) and (2) imply the Riemann Hypothesis, and they are almost
certainly deeper than the Riemann Hypothesis. Nonetheless one can still hope to
investigate them on average over residue classes for (1) or on average over short
intervals for (2). Importantly, establishing (1) on average is easier when q is large
than when q is small, since a large q allows for more averaging over the residue classes
a (mod q). Similarly establishing (2) on average is easier when H is small, since there
are more non-overlapping short intervals [x, x + H] to average over compared to the
case when H is large. In fact when there is little averaging (i.e q small or H large), the
averaged versions of (1) and (2) are not significantly easier than the non-averaged
version, see Theorem 3 for a concrete manifestation of this.

In our first result we compute the variance of (2) on average over short intervals.
We estimate the variance asymptotically thus making (on average) the error term
in (2) more precise.

Theorem 1. Let ε ∈ (0, 1
100) be given. Let X ≥ 1 and 1 ≤ H ≤ X6/11−ε. Then

1
X

∫ 2X

X

∣∣∣
∑

x<m≤x+H

μ2(m) − 6H

π2

∣∣∣
2
dx = C

√
H + Oε(H1/2−ε/16) (3)

with

C :=
ζ(3/2)

π

∏

p

(
1 − 3

p2
+

2
p3

)
. (4)

Assuming the Lindelöf Hypothesis (3) holds in the wider range H ≤ X2/3−ε.



GAFA VARIANCE OF SQUAREFREE INTEGERS 113

We recall that the Lindelöf Hypothesis follows from the Riemann Hypothesis and
asserts that for any given ε > 0 we have |ζ(1

2 + it)| �ε 1 + |t|ε for all t ∈ R. In
Theorem 3 we will show that if we had (3) in the full range H ≤ X1−ε then the
Riemann Hypothesis would ensue.

Theorem 1 extends a theorem of Hall [Hal82] who showed that the asymptotic
formula (3) holds in the range H ≤ X2/9−ε. We will now explain why the range H =
X1/2 can be considered a threshold in this problem. It is reasonable to conjecture
that given ε > 0, for any 1 ≤ h ≤ x1−ε,

∑

n≤x

μ2(n)μ2(n + h) − C(h)x = Oε(x1/4+ε) (5)

with C(h) a constant depending only on h. Summing this conjectural estimate over
h recovers Theorem 1 but only in the range H < X1/2−ε. Thus Theorem 1 exploits
(unconditionally!) additional cancellations between the error terms in (5).2

We now describe the analogue of Theorem 1 for the distribution of squarefree
numbers in arithmetic progressions with a given modulus. In this case for a given
modulus q the parameter x/q has the same role as the length H of the short interval
in Theorem 1. While the results are analogous they are harder to prove, as is often
the case with q-analogues.

Theorem 2. Let ε ∈ (0, 1
100) be given. Let x ≥ q ≥ x5/11+ε be a prime. Then

1
ϕ(q)

∑

(a,q)=1

∣∣∣
∑

m≤x
m ≡ a (mod q)

μ2(m) − 6
π2

· x

q

∏

p|q

(
1 − 1

p2

)−1∣∣∣
2

= C
∏

p|q

(
1 +

2
p

)−1
·
√

x

q
+ Oε((x/q)1/2−ε/16),

(6)

where C is the same constant as in Theorem 1. Assuming the Generalized Lindelöf
Hypothesis the claim holds in the wider range q > x1/3+30ε.

We recall that the Generalized Lindelöf Hypothesis follows from the Generalized
Riemann Hypothesis and asserts that for any given ε > 0 we have |L(1

2 + it, χ)| �ε

1 + (|q| + |t|)ε for all t ∈ R and all characters χ (mod q).
For simplicity we have assumed in Theorem 2 that q is prime, but our methods

are amenable to handling the general case of composite q with a bit more effort.
Once extended to composite q our Theorem 2 improves on results by Warlimont

[War80] and Vaughan [Vau05] who obtain an asymptotic formula with an additional
averaging over q ≤ Q in the range x2/3 ≤ Q = o(x). Moreover, for prime values of
q, Theorem 2 improves on a succession of results by Blomer [Blo08], Nunes [Nun15]
(see also [Par19]) and Le Boudec [LB18] who considered individual averages over
(a, q) = 1 as we do in Theorem 2. In particular Nunes showed that (6) holds in the

2 Using estimates of Tsang [Tsa85] for (5) recovers Theorem 1 in the range H ≤ X8/33−ε.
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range x31/41+ε ≤ q = o(x) and Le Boudec showed that the left-hand side of (6) is
Oε((x/q)1/2+ε) for all ε > 0 in the range x1/2 ≤ q ≤ x.

Keating and Rudnick [KR16] obtained Theorems 1 and 2 in the context of func-
tion fields in the limit of a large field size. Their results hold in the (analogues of)
the ranges Xε ≤ H ≤ X1−ε and xε ≤ q ≤ x1−ε. Our proofs of Theorem 1 and
Theorem 2 can be adapted in the setting of a fixed base field and large degree limit.
In fact our proofs of Theorems 1 and 2 were originally motivated by analogies with
the function field setting. Since we ended up obtaining equally strong results in the
setting of number fields we do not include the proofs in the function field setting.

Finally the next result shows that obtaining nearly optimal upper bounds for (3)
in a complete range is equivalent to the Riemann Hypothesis.

Theorem 3. The Riemann Hypothesis holds if and only if for every ε ∈ (0, 1
100)

and every 1 ≤ H ≤ X1−ε,

1
X

∫ 2X

X

∣∣∣
∑

x<m≤x+H

μ2(m) − 6H

π2

∣∣∣
2
dx �ε,δ H1/2+δ (7)

for every δ > 0.

Following the proof of Theorem 3 one can show that for any smooth compactly
supported Φ, conditionally on the Generalized Riemann Hypothesis

1
ϕ(q)

∑

(a,q)=1

∣∣∣
∑

m≡a (mod q)

μ2(n)Φ
(n

x

)
− 6

π2ϕ(q)

∑

(m,q)=1

Φ
(m

x

)∣∣∣
2

�ε,δ (x/q)1/2+δ

(8)

for all δ > 0 and uniformly in 1 ≤ q ≤ x1−ε for any given ε ∈ (0, 1
100). However

it is not clear whether (8) implies the Generalized Riemann Hypothesis. Moreover
replacing the smoothing Φ by sharp cut-offs appears to be difficult. For these reasons
we decided not to pursue this further in the present paper.

Finally, we note that we have made no effort to optimize the exponents of error
terms Oε(H1/2−ε/16) and Oε((x/q)1/2−ε/16) in Theorems 1 and 2. Better power sav-
ing estimates, in more restricted ranges, can be found in the papers [Hal82, Nun15].

1.2 Fractional Brownian motion. One notable feature of Theorems 1 and
2 is that while the expected count of squarefrees in a short interval (or likewise
arithmetic progression) is of order H, the variance of these counts is of order H1/2.
For many other natural arithmetic sequences (e.g. primes) one conjectures that the
variance of counts is of the same order of magnitude as the expected value of counts.

That the variance is of order H1/2 in Theorems 1 and 2 speaks to the idea that
the squarefree numbers are “less random” than (for example) the primes (cf. [CS13]).
One may conjecture that higher moments are Gaussian (see [ACS17] for numerical
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Figure 1: Partial sums of μ2(n): depiction of (9) with x = 2 × 1015, H = 44,721,359 and
0 ≤ t ≤ 10.

Figure 2: Partial sums of log p: depiction of (10) with x = 2 × 1015, H = 44,721,359. and
0 ≤ t ≤ 10.

evidence). For x drawn uniformly at random from [X, 2X], one may even make the
stronger conjecture that the process

t �→ 1
H1/4

∑

x<n≤x+tH

(μ2(n) − 1/ζ(2)) (9)

tends weakly, when suitably normalized by H1/4, to a fractional Brownian motion
with Hurst parameter 1/4. See Fig. 1 for an illustration of the evolution of the partial
sums (9). A formulation of this perspective seems to have been first made in [GH91].
This is in contrast to the analogous process generated by prime-counting, where one
may conjecture the appearance of Hurst parameter 1/2—that is, usual Brownian
motion. (See [She14] for a survey on fractional Brownian motion.) The evolution of
the process

t �→ 1
H1/2

∑

x<p≤x+tH

(log p − 1). (10)

is depicted in Fig. 2. Both Figs. 1 and 2 depict the same range of parameters to
make the comparison easier. The dots on Figs. 1 and 2 correspond to lattice points
on the positive x-axis and on the (positive and negative) y-axis and indicate the
difference in scales.
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1.3 Conventions and notations. Throughout the rest of the paper we will
allow the implicit constants in � and O(·) to depend on ε. Furthermore the notation
n ∼ N in the subscript of a sum will mean that N ≤ n < 2N .

2 Proofs of Theorems 1 and 2

We will show in this section how Theorems 1 and 2 follow from a number of technical
propositions that are proven in Sects. 4–7.

The proof of Theorem 1 splits into two steps and depends on the identity

μ2(m) =
∑

nd2=m

μ(d)

and the following two propositions.

Proposition 1. Let ε ∈ (0, 1
100) be given. Let X ≥ 1 and Xε ≤ H ≤ X2/3−ε. Let

H1+ε ≤ z ≤ min{X/H1/2+ε, H1/2−εX1/2}. Then, as X → ∞,

1
X

∫ 2X

X

∣∣∣
∑

x<nd2≤x+H
d2≤z

μ(d) − H
∑

d2≤z

μ(d)
d2

∣∣∣
2
dx = C

√
H + O(H1/2−ε/10) (11)

with C as in (4).

Proposition 2. Let ε ∈ (0, 1
100) be given. Let X ≥ 1 and Xε ≤ H ≤ X4/7−ε. Let

z ≥ H4/3+ε. Then

1
X

∫ 2X

X

∣∣∣
∑

x<nd2≤x+H
d2>z

μ(d) − H
∑

2X≥d2>z

μ(d)
d2

∣∣∣
2
dx � H1/2−ε/8. (12)

Assuming the Lindelöf Hypothesis, the claim holds in the wider range Xε ≤ H ≤
X2/3−ε and z ≥ H1+ε.

Under the assumption of the Lindelöf Hypothesis, the above propositions cover
all the possible values of d2 for Xε ≤ H ≤ X2/3−ε. However, unconditionally they
cover all the possible values of d2 only for Xε ≤ H ≤ X6/(11+12ε). It would be possible
to improve on the exponent 4/7 in Proposition 2, but this would not help. Similarly
it should be possible to prove Proposition 1 only with the condition H1+ε ≤ z ≤
X/H1/2+ε by adapting the proof of Proposition 3 below.

We note that only the terms d with d2 ∈ [H1−ε, H1+ε] contribute to the main
term C

√
H in Proposition 1.

Roughly speaking Proposition 1 depends only on “convex” inputs such as a
Fourier expansion and a point-counting lemma, whereas Proposition 2 exploits large
value estimates of Huxley and subconvexity and fourth moment estimates for the
Riemann zeta-function.
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Proof of Theorem 1 assuming Propositions 1 and 2. Let ε ∈ (0, 1
100). If H ≤ Xε

then the result already follows from Hall’s theorem. We can therefore assume that
H > Xε.

For H ∈ [Xε, X6/11−ε], take z = min{X/H1/2+ε, H1/2−εX1/2}. Note that z ≥
H4/3+ε. Denoting by I1 the left-hand side of (11) and by I2 the left-hand side of
(12), we get, using Cauchy–Schwarz, that

1
X

∫ 2X

X

∣∣∣
∑

x<nd2≤x+H

μ(d) − H
∑

d2≤2X

μ(d)
d2

∣∣∣
2
dx = I1 + O(

√
I1I2 + I2).

Using the bounds in (11) and (12), we conclude that

1
X

∫ 2X

X

∣∣∣
∑

x<nd2≤x+H

μ(d) − H
∑

d2≤2X

μ(d)
d2

∣∣∣
2
dx = C

√
H + O(H1/2−ε/16). (13)

Notice that the tail H
∑

d2>2X μ(d)/d2 is � H/
√

X. Hence the claim reduces to
showing that

1
X

∫ 2X

X

∣∣∣
∑

x<nd2≤x+H

μ(d) − H
∑

d2≤2X

μ(d)
d2

∣∣∣ · H√
X

+
( H√

X

)2
dx � H1/2−ε/16.

Applying Cauchy–Schwarz and (13) we see that the left hand side is � H1/4(H/
√

X)
+ H2/X � H1/2−ε/16 since H ≤ X2/3−ε. ��

Likewise the proof of Theorem 2 splits into two steps and depends on the following
propositions.

Proposition 3. Let ε ∈ (0, 1
100). Let q be prime with x1/3+30ε ≤ q ≤ x1−ε and let

(x/q)1+ε ≤ z ≤ x−ε · √
qx. Then

1

ϕ(q)

∑

(a,q)=1

∣∣∣
∑

d2n≤x, d2<z

d2n ≡ a (mod q)

μ(d) − 1

ϕ(q)

∑

d2n≤x, d2<z

(d2n,q)=1

μ(d)
∣∣∣
2

= C
√

x/q + O
(
(x/q)1/2−ε/16

)
(14)

with C as in (4).

Proposition 4. Let ε ∈ (0, 1
100). Let x ≥ 1 and x3/7+ε ≤ q ≤ x1−ε. Let z ≥

(x/q)4/3+ε. Then

1
ϕ(q)

∑

(a,q)=1

∣∣∣
∑

d2n≤x, d2≥z
d2n ≡ a (mod q)

μ(d) − 1
ϕ(q)

∑

d2n≤x, d2≥z
(d2n,q)=1

μ(d)
∣∣∣
2

� (x/q)1/2−ε/8. (15)

Assuming the Generalized Lindelöf Hypothesis, the claim holds in the wider range
x1/3+ε ≤ q ≤ x1−ε and z ≥ (x/q)1+ε.
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The proof of Proposition 3 depends once again only on “convex” inputs: in this
case Poisson summation and results on integer solutions to binary quadratic forms
with positive discriminant. However the proof of Proposition 3 is more intricate than
that of Proposition 1 due to a number of technical issues. The proof of Proposition
4 is similar to the proof of Proposition 2 and uses hybrid versions of Huxley’s large
value estimates, subconvexity estimates for L(s, χ) and a hybrid fourth moment
estimate.

The deduction of Theorem 2 from the above two proposition is identical to the
deduction of Theorem 1 from Propositions 1 and 2. The only difference is that we
use the result of Nunes to handle the case when q > x1−ε and we notice that for
prime q,

1
ϕ(q)

∑

d2n≤x
(d2n,q)=1

μ(d) =
1

ϕ(q)

∑

d2≤x
(d,q)=1

μ(d)
(⌊ x

d2

⌋
−

⌊ x

qd2

⌋)

=
x

q

∑

d2≤x
(d,q)=1

μ(d)
d2

+ O
(√

x

q

)
=

6
π2

x

q

(
1 − 1

q2

)−1
+ O

(√
x

q

)

and the total error term incurred is x/q2 which is ≤ x−ε
√

x/q for q > x1/3+ε.
Theorem 3 depends upon similar principles as Propositions 2 and 4. We prove

Theorem 3 in Sect. 8.
Finally let us make a few remarks on the bottleneck that prevents us from pushing

our result further. Taking H = X6/11, we are unable to show the following estimate,

1
X

∫ 2X

X

∣∣∣
∑

x≤nd2≤x+H
d2∼X8/11

μ(d) − H
∑

d2∼X8/11

μ(d)
d2

∣∣∣
2
dx �A

√
H

logA X
.

Specifically opening μ(d) using Heath-Brown’s identity (see [HB82]) the only situ-
ation that we are not able to estimate is the one in which μ(d) is replaced by two
smooth sums of equal length. Roughly speaking this corresponds to estimating,

1
X

∫ 2X

X

∣∣∣
∑

x≤na2b2≤x+H
a,b∼X2/11

1 − H
∑

a,b∼X2/11

1
a2b2

∣∣∣
2
dx �

√
H

logA X

Opening the above expression into Dirichlet polynomials this is roughly equivalent
to

∫

|t|≤X5/11

∣∣∣
∑

n∼X3/11

1
n1/2+it

∑

a∼X2/11

1
a1/2+2it

∑

b∼X2/11

1
b1/2+2it

∣∣∣
2
dt � X6/11

logA X
.

Applying the functional equation on the Dirichlet polynomial over n, and setting
Y = X12/11 we then see that obtaining the above estimate is equivalent to showing
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that,
∫

|t|≤Y 5/12

∣∣∣
∑

n∼Y 1/6

1
n1/2+it

∑

a∼Y 1/6

1
a1/2+2it

∑

b∼Y 1/6

1
b1/2+2it

∣∣∣
2
dt � Y 1/2

logA Y
.

If the 2it in the Dirichlet polynomial over a and b were replaced by it then we would
be facing exactly the same bottleneck as in the case of improving Huxley’s prime
number theorem in short intervals (by a variant of the computations in [HB82], see
also [Har07, Chapter 7]). In particular to make further progress we either need to
find a way to improve Huxley’s estimate or find a way to exploit the fact that the
phases in two of the Dirichlet polynomials are 2it and not it. Unfortunately we do
not see how to make progress on either of these questions.

3 Lemmas

3.1 Dirichlet polynomials and L-functions. Let us first collect some stan-
dard results on large values of Dirichlet polynomials and L-functions.

Lemma 1 (Large-value theorem). Let N, T ≥ 1 and V > 0. Let F (s) =
∑

n≤N ann−s

be a Dirichlet polynomial and let G =
∑

n≤N |an|2. Let T be a set of 1-spaced points
tr ∈ [−T, T ] such that |F (itr)| ≥ V . Then

|T | � (GNV −2 + T min{GV −2, G3NV −6})(log 2NT )6.

Proof. This follows from the mean-value theorem and Huxley’s large value theorem,
see e.g. [IK04, Theorem 9.7 and Corollary 9.9].

��

We will say that a set of tuples (t, χ) with χ a Dirichlet character and t a real
number is well-spaced whenever it holds that if (t, χ) = (u, χ′) then either χ = χ′ or
|t − u| ≥ 1.

Lemma 2 (Hybrid large-value theorem). Let q ∈ N, N, T ≥ 1 and V > 0. Let
F (s, χ) =

∑
n≤N anχ(n)n−s be a Dirichlet polynomial, and let G =

∑
n≤N |an|2.

Let T be a set of well-spaced tuples (tr, χ) with tr ∈ [−T, T ] and with χ a primitive
character of modulus q such that |F (itr, χ)| ≥ V . Then

|T | � (GNV −2 + qT min{GV −2, G3NV −6}) · (log 2qNT )18.

Proof. This follows e.g. from [IK04, Theorems 9.16 and 9.18 with k = q and Q = 1].
��

Lemma 3 (Fourth moment estimate). Let T ≥ 2. Then
∫

|t|≤T
|ζ(1

2 + it)|4dt � T (log T )4.
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Proof. See e.g. [Tit86, formula (7.6.1)]. ��

Lemma 4 (Hybrid fourth moment estimate). Let T ≥ 2 and q ≥ 2. Then

∑

χ

∫

|t|≤T
|L(1

2 + it, χ)|4dt � Tϕ(q) log(Tq)4,

where the sum is over all characters modulo q.

Proof. See e.g. [Mon71, Theorem 10.1]. ��

Lemma 5 (Subconvexity estimate). One has, for |t| ≥ 2,

ζ(1/2 + it) � |t|1/6(log |t|)2.

Proof. See e.g. [IK04, formula (8.22)]. ��

Lemma 6 (Hybrid Weyl subconvexity). For cube-free q, primitive characters
χ (mod q) and |t| ≥ 2,

L(1/2 + it, χ) �ε (qt)1/6+ε

for any ε > 0.

Proof. See [PY19, Theorem 1.1]. ��

Of course the Lindelöf and Generalized Lindelöf Hypotheses would give us re-
spectively that for any ε > 0, for |t| ≥ 2 and any character χ (mod q),

ζ(1/2 + it) � |t|ε, L(1/2 + it, χ) � (q|t|)ε.

Lemma 7 (Hybrid mean-value theorem). Let a(n) be an arbitrary sequence of coef-
ficients and N, q ≥ 1 be integers and T ≥ 1 real. Then, for any given ε > 0,

∑

χ (mod q)

∫

|t|≤T

∣∣∣
∑

n≤N

a(n)χ2(n)nit
∣∣∣
2
dt � qε(qT + N)

∑

n≤N

|a(n)|2.

Proof. We notice that given a character ψ (mod q) there are at most � qε characters
χ such that χ2 = ψ. Therefore the left-hand side of the claim is bounded by

� qε
∑

ψ (mod q)

∫

|t|≤T

∣∣∣
∑

n≤N

a(n)ψ(n)nit
∣∣∣
2
dt

and the result follows from the standard hybrid mean-value theorem, see e.g. [Mon71,
Theorem 6.4]. ��
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3.2 Asymptotic estimates.

Lemma 8. Fix ε ∈ (0, 1
100). Let K0 be a positive constant. Suppose that W : R → C

is such that, for all k, 	 ∈ {0, 1, 2, 3, 4}, one has

|W (k)(y)| ≤ K0
H�ε/4

(1 + |y|)�
, for all y ∈ R. (16)

Let z ≥ H1+ε. Then

2H2
∑

d2
1,d2

2≤z

μ(d1)μ(d2)

d21d
2
2

∑

λ≥1

∣∣∣W
(

Hλ

(d21, d
2
2)

)∣∣∣
2
= CH1/2π

∫ ∞

0
|W (y)|2√ydy + O(H1/2−ε/5),

(17)

where C is as in (4) and where the implied constant depends only on K0 and ε.

Proof. The proof consists of two steps.
The first step is to show that the sum in (17) can be completed into a sum over

all d1, d2 without affecting the claimed asymptotic. We use the information (16) for
k = 0 and 	 = 0, 1 to see that, for any ν > 0,

∑

λ≥1

|W (λ/ν)|2 �
∑

1≤λ≤νHε/4

1 +
∑

λ>νHε/4

Hε/2ν2

λ2
� νHε/4. (18)

Hence

2H2
∑

d1>z1/2

or
d2>z1/2

μ(d1)μ(d2)
d2

1d
2
2

∑

λ≥1

∣∣∣W
( Hλ

(d2
1, d

2
2)

)∣∣∣
2

� H1+ε/4
∑

d1>z1/2

or
d2>z1/2

(d1, d2)2

d2
1d

2
2

.

Writing (d1, d2) = d0 and di = δid0 and utilizing symmetry and the lower bound for
z, we see that this is

� H1+ε/4
∑

d0≥1

1
d2

0

∑

δ1≥H(1+ε)/2/d0
δ2≥1

1
δ2
1δ

2
2

� H1+ε/4
∑

d0≥1

1
d2

0

min
{

1,
d0

H(1+ε)/2

}
� H1/2−ε/5.

Thus the left-hand side of (17) is

2H2
∑

d1,d2≥1

μ(d1)μ(d2)
d2

1d
2
2

∑

λ≥1

∣∣∣W
( Hλ

(d2
1, d

2
2)

)∣∣∣
2
+ O(H1/2−ε/5). (19)

The second step is to use contour integration to simplify (19). Define g(x) =
|W (ex)|2ex, which is smooth and decays exponentially as |x| → ∞. Now

ĝ(ξ) =
∫ ∞

−∞
|W (ex)|2exe(−xξ)dx =

∫ ∞

0
|W (y)|2y−2πiξdy,
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and standard partial integration arguments show that (i) ĝ(ξ) is entire and (ii)
ĝ(ξ) = O(H2ε/(|ξ| + 1)3) uniformly for |�(ξ)| < 1/(2π). Fourier inversion implies,
for r > 0,

|W (r)|2 = r−1 1
2πi

∫

(c)
rsĝ

( s

2πi

)
ds,

where the integral is over �(s) = c, and −1 < c < 1.
Hence, taking c = −1/4,

2H2
∑

d1,d2≥1

μ(d1)μ(d2)
d2

1d
2
2

∑

λ≥1

∣∣∣W
( Hλ

(d2
1, d

2
2)

)∣∣∣
2

=
H

iπ

∑

d1,d2

μ(d1)μ(d2)
d2

1d
2
2

∑

λ≥1

(d1, d2)2

λ

∫

(−1/4)
Hsλs(d1, d2)−2sĝ

( s

2πi

)
ds.

The range of s is such that the sums over both λ and d1, d2 can be taken inside the
integral, and the above simplifies to

H

iπ

∫

(−1/4)
Hsζ(1 − s)

∏

p

(
1 − 2

p2
+

1
p2+2s

)
ĝ
( s

2πi

)
ds

=
H

iπ

∫

(−1/4)
Hsζ(1 − s)ζ(2 + 2s)

∏

p

(
1 − 2

p2
+

2
p4+2s

− 1
p4+4s

)
ĝ
( s

2πi

)
ds.

The Euler product in the last line converges absolutely for �s > −3/4. Therefore
using Lemma 5 (noting that the same bound holds also for ζ(c + it) with c ≥ 1/2)
and bounds on ĝ we can push the contour integral above to the left to an integral
over �(s) = −3/4 + ε. Because of the singularity from ζ(2 + 2s) at s = −1/2 the
above then simplifies to

H1/2ζ(3/2)
∏

p

(
1 − 3

p2
+

2
p3

)
ĝ
(

− 1
4πi

)
+ O(H1/4+3ε)

= H1/2

∫ ∞

0
|W (y)|2√y dyζ(3/2)

∏

p

(
1 − 3

p2
+

2
p3

)
+ O(H1/2−ε/5).

This verifies the lemma. ��

We also have a minor variant:

Lemma 9. Fix ε ∈ (0, 1
100). Let S(x) = sin πx

πx , defined by continuity at x = 0, and
let z ≥ H1+ε. Then

2H2
∑

d2
1,d

2
2≤z

μ(d1)μ(d2)
d2

1 · d2
2

∑

λ≥1

S
( Hλ

(d2
1, d

2
2)

)2
= CH1/2 + O(H1/2−ε/8). (20)
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Proof. We first note that

∫ ∞

0
S(y)2

√
y dy =

1
π

. (21)

This identity follows from [GR14, formula 3.823].
Thus (20) is a variant of (17). Lemma 8 does not apply directly because S does

not decay quickly enough. To overcome this issue, we let h be a smooth bump
function such that h(x) = 1 for |x| ≤ 1 and h(x) = 0 for |x| ≥ 2. We introduce the
function

W (y) = S(y)h(y/Hε/4)

which satisfies the hypothesis of Lemma 8 for our ε. On the other hand for such W

2H2
∑

d2
1,d

2
2≤z

μ(d1)μ(d2)
d2

1 · d2
2

∑

λ≥1

(
S
( Hλ

(d2
1, d

2
2)

)2
− W

( Hλ

(d2
1, d

2
2)

)2
)

� H2
∑

d2
1,d

2
2

1
d2

1d
2
2

∑

λ≥1

1
(Hλ/(d2

1, d
2
2))2

1
( Hλ

(d2
1, d

2
2)

≥ Hε/4
)
.

We split the sum over d1 and d2 into the complementary ranges (d2
1, d

2
2) ≤ H1−ε/4

and (d2
1, d

2
2) > H1−ε/4. In the second case we utilize that λ > Hε/4−1(d2

1, d
2
2), and

we see that the above is

�
∑

(d1,d2)2≤H1−ε/4

(d1, d2)4

d2
1d

2
2

+ H1−ε/4
∑

(d1,d2)2>H1−ε/4

(d1, d2)2

d2
1d

2
2

.

Writing (d1, d2) = d0 and di = δid0, the above is

�
∑

d0≤H1/2−ε/8

∑

δ1,δ2

1
δ2
1δ

2
2

+ H1−ε/4
∑

d0>H1/2−ε/8

1
d2

0

∑

δ1,δ2

1
δ2
1δ

2
2

� H1/2−ε/8. (22)

On the other hand,

∫ ∞

0
S(y)2

√
y dy −

∫ ∞

0
W (y)2

√
y dy �

∫ ∞

Hε/4

y−3/2 dy � H−ε/8.

Combining this with the bound (22) and the identity (21) verifies (20) with error
term of order H1/2−ε/5 + H1/2−ε/8 � H1/2−ε/8. ��
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3.3 Initial reductions on second moments. The following lemma will be
used in the proof of Proposition 2.

Lemma 10. If F : R → C is square-integrable and H ≤ X, then

∫ 2X

X
|F (x + H) − F (x)|2dx � sup

θ∈[ H

3X
, 3H

X
]

∫ 3X

X
|F (u + θu) − F (u)|2du

Proof. The proof can be found in a paper by Saffari and Vaughan [SV77, Page 25]
but for the convenience of the reader we include the proof here.

First note that by the triangle inequality we have, for any v ≥ H,

|F (x + H) − F (x)|2 � |F (x + v) − F (x)|2 + |F (x + v) − F (x + H)|2.

Integrating this over x ∈ [X, 2X] and v ∈ [2H, 3H],

H

∫ 2X

X
|F (x + H) − F (x)|2 dx

�
∫ 3H

2H

∫ 2X

X
|F (x + v) − F (x)|2 dxdv

+
∫ 3H

2H

∫ 2X

X
|F (x + v) − F (x + H)|2 dxdv.

By a change of variables the right-hand side is equal to

∫ 3H

2H

∫ 2X

X
|F (x + v) − F (x)|2 dxdv +

∫ 2H

H

∫ 2X+H

X+H
|F (y + w) − F (y)|2 dydw

≤
∫ 3H

H

∫ 3X

X
|F (x + v) − F (x)|2 dxdv =

∫ 3X

X

∫ 3H

H
|F (x + v) − F (x)|2 dvdx.

Changing the order of integration was justified by Fubini’s theorem. Letting v = θx
in the inner integral of the last expression above, we see the right-hand side is equal
to
∫ 3X

X

∫ 3H/x

H/x
|F (x + θx) − F (x)|2x dθdx � X

∫ 3X

X

∫ 3H/X

H/3X
|F (x + θx) − F (x)|2 dθdx.

Collecting everything and swapping the order of integration again, we obtain

H

∫ 2X

X
|F (x + H) − F (x)|2 dx � X

∫ 3H/X

H/3X

∫ 3X

X
|F (u + θu) − F (u)|2 dudθ,

which immediately implies the claim. ��
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We will frequently use the following immediate consequences of the orthogonality
of characters: for any sequence bn of complex numbers,

1
ϕ(q)

∑

χ (mod q)
χ
=χ0

∣∣∣∣∣
∑

n

bnχ(n)

∣∣∣∣∣

2

=
∑

n1 ≡ n2 (mod q)
(n1n2,q)=1

bn1bn2 − 1
ϕ(q)

∑

n1,n2
(n1n2,q)=1

bn1bn2

=
∑

a (mod q)
(a,q)=1

∣∣∣∣∣∣

∑

n ≡ a (mod q)

bn − 1
ϕ(q)

∑

(n,q)=1

bn

∣∣∣∣∣∣

2 (23)

and

1
ϕ(q)

∑

χ (mod q)

∣∣∣∣∣
∑

n

bnχ(n)

∣∣∣∣∣

2

=
∑

n1 ≡ n2 (mod q)
(n1n2,q)=1

bn1bn2 =
∑

a (mod q)
(a,q)=1

∣∣∣∣∣∣

∑

n=a (mod q)

bn

∣∣∣∣∣∣

2

. (24)

3.4 Point-counting lemmas.

Lemma 11. Let a, b ∈ N be such that
√

b/a is irrational. Let η ∈ (0, 1] and M ≥ 1.
The number of m ∼ M such that

∥∥∥m

√
b

a

∥∥∥ ≤ η (25)

is bounded by

� ηM +
√

ηM(ab)1/4 + 1.

Proof. We can clearly assume that η1/2(ab)1/4 ≤ M1/2 since otherwise the claim is
trivial. Assume we have a (reduced) rational approximation r/q with r ∈ Z and
q ∈ N such that

∣∣∣∣∣

√
b

a
− r

q

∣∣∣∣∣ ≤ 1
q2

. (26)

Now, writing each m ∈ (M, 2M ] as m = kq + 	 with 0 ≤ 	 ≤ q − 1, we see that the
number of solutions to (25) with m ∼ M is at most

∑

�M/q�≤k≤2M/q

∣∣∣
{

0 ≤ 	 ≤ q − 1:
∥∥∥(kq + 	)

√
b

a

∥∥∥ ≤ η
}∣∣∣

�
(

M

q
+ 1

)
max
ξ∈[0,1]

∣∣∣
{

0 ≤ 	 ≤ q − 1:
∥∥∥	

√
b

a
+ ξ

∥∥∥ ≤ η
}∣∣∣

�
(

M

q
+ 1

)
max
ξ∈[0,1]

∣∣∣
{

0 ≤ 	 ≤ q − 1:
∥∥∥

	r

q
+ ξ

∥∥∥ ≤ η + 1/q
}∣∣∣

�
(

M

q
+ 1

)
(q · η + 1) � Mη +

M

q
+ qη + 1.
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Now since
√

b/a =
√

ab/a is a quadratic irrational, the partial denominators
in its continued fraction expansion have size at most 2

√
ab (see for instance [RS92,

p. 44]). In particular this means that for any given R ≥ 1, we can find q ∈ [R, 3
√

abR]
such that (26) holds for some r coprime to q. Taking R = M1/2/(η1/2(ab)1/4) ≥ 1,
we see that the number of solutions is indeed

� Mη + M1/2η1/2(ab)1/4 + 1. ��

Lemma 12. Let a, b ∈ N be such that
√

b/a is irrational, and let M1, M2, T ≥ 1.
The number of solutions to

|am2
1 − bm2

2| ≤ bM2
2

T
with m1 ∼ M1 andm2 ∼ M2

is

� M1M2

T
+

((M1M2)1/2(ab)1/4

T 1/2
+ 1

)
· 1M2<T .

Proof. Dividing by b and factoring, we see that we need to count the number of
solutions to

∣∣∣∣

(
m1

√
a

b
− m2

)(
m1

√
a

b
+ m2

)∣∣∣∣ ≤ M2
2

T

Dividing by the second factor, we see that it suffices to count the number of solutions
to

∣∣∣∣m1

√
a

b
− m2

∣∣∣∣ ≤ M2

T
.

If M2 ≥ T , we have M1 choices for m1 and after that O(M2/T ) choices for m2, so
in total M1M2/T solutions which is fine.

If M2 < T , then once m1 is chosen there are at most two choices for m2. Therefore
it suffices to count the number of integers m1 ∼ M1 such that

∥∥∥∥∥m1

√
b

a

∥∥∥∥∥ ≤ M2

T
.

The result now follows from Lemma 11. ��

4 The range H1+ε ≤ z ≤ min{X/H1/2+ε, H1/2−εX1/2} in the
t-aspect: Proof of Proposition 1

In what follows we let S be the sinc function as defined in Lemma 9. Proposition 1
follows immediately combining the following proposition with Lemma 9.
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Proposition 5. Let Xε ≤ H ≤ X2/3−ε and H1+ε ≤ z ≤ min{X1−ε/H1/2, H1/2−ε

X1/2}. Then, as X → ∞,

1
X

∫ 2X

X

∣∣∣
∑

d2≤z

μ(d)
∑

x/d2<n≤(x+H)/d2

1 − H
∑

d2≤z

μ(d)
d2

∣∣∣
2
dx

= (1 + O(H−ε/2))2H2
∑

k2
1,k2

2≤z

μ(k1)μ(k2)
k2

1k
2
2

∑

λ≥1

S
( Hλ

(k2
1, k

2
2)

)2
+ O(H1/2−ε/3).

Proof. We prove a smoothed version of the claim first. Let σ : R → R be an abso-
lutely integrable function such that σ̂ is supported in the interval [−BHε/2, BHε/2]
for some constant B to be specified later. We first show that as X → ∞,

1
X

∫ ∞

−∞
σ
( x

X

) ∣∣∣
∑

d2≤z

μ(d)
∑

x/d2<n≤(x+H)/d2

1 − H
∑

d2≤z

μ(d)
d2

∣∣∣
2
dx

= 2σ̂(0)H2
∑

k2
1 ,k2

2≤z

μ(k1)μ(k2)
k2

1k
2
2

∑

λ≥1

S
( Hλ

(k2
1, k

2
2)

)2
+ O(H1/2−ε/3). (27)

Here
∑

x/d2<n≤(x+H)/d2

1 = H/d2 + ψ(x/d2) − ψ((x + H)/d2), (28)

where ψ(y) = y − [y]− 1/2 with [y] the integral part of y. For ψ we have the Fourier
expansion (see e.g. [IK04, (4.18)])

ψ(y) = − 1
2πi

∑

0<|n|≤N

1
n

e(yn) + O(min{1, 1/(N‖y‖)}). (29)

We take N = X10 and plug (29) into (28). The arising error term is O(1/X5) unless
‖x/d2‖ < X−5 or ‖(x + H)/d2‖ < X−5. Given this, it is easy to see that the error
term leads to acceptable contribution to the left hand side (27).

Hence, the left hand side of (27) can be replaced by

1
4π2X

∫ ∞

−∞
σ
( x

X

) ∣∣∣
∑

d2≤z

μ(d)
∑

0<|n|≤N

1
n

e
(nx

d2

)(
1 − e

(
nH

d2

)) ∣∣∣
2
dx.

Expanding, this equals

1
4π2

∑

d2
1,d

2
2≤z

∑

0<|n1|,|n2|≤N

μ(d1)μ(d2)
1

n1n2

×
(

1 − e

(
n1H

d2
1

))(
1 − e

(
n2H

d2
2

))
σ̂
(

− X
(n1

d2
1

− n2

d2
2

))
. (30)
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Owing to the support of σ̂ this implies that we may restrict the sum in (30) to those
integers for which

∣∣∣
n1

d2
1

− n2

d2
2

∣∣∣ ≤ BHε/2

X
. (31)

We consider separately those (n1, n2, d1, d2) for which n1d
2
2 = n2d

2
1 and those for

which this does not hold. In the first case parameterizing solutions in n1 and n2 by
n1 = λd2

1/(d2
1, d

2
2) and n2 = λd2

2/(d2
1, d

2
2) for λ ∈ Z \ {0}, we obtain

σ̂(0)
4π2

∑

d2
1,d

2
2≤z

μ(d1)μ(d2)
∑

λ
=0

(d1, d2)4

d2
1d

2
2λ

2

∣∣∣∣1 − e

(
λH

(d1, d2)2

)∣∣∣∣
2

+ O

(
1

X5

)
,

where the error term comes from adding |ni| > N (for which surely |λ| > X8). Here
∣∣∣∣1 − e

(
λH

(d1, d2)2

)∣∣∣∣ = 2
∣∣∣∣sin

(
λπH

(d2
1, d

2
2)

)∣∣∣∣ ,

so we get the desired main term involving S(λH/(d2
1, d

2
2)).

Therefore it remains to show that the contribution of terms with n1d
2
2 = n2d

2
1 is

negligible. Splitting nj and dj dyadically, we need to bound, for any D1, D2 ≤ z1/2

and any N1, N2 ≤ N ,

min

{
1

N1
,

H

D2
1

}
min

{
1

N2
,

H

D2
2

} ∑

n1∼N1
n2∼N2

#

{
(d1, d2) : dj ∼ Dj , 0 <

∣∣∣n1

d21
− n2

d22

∣∣∣ ≤ BHε/2

X

}

(32)

and we need a bound that is O(H1/2−ε/2). Now

#{(d1, d2) : dj ∼ Dj , 0 <
∣∣∣
n1

d2
1

− n2

d2
2

∣∣∣ ≤ BHε/2

X
}

� #
{

(d1, d2) : dj ∼ Dj , 0 <
∣∣∣n1d

2
2 − n2d

2
1

∣∣∣ ≤ 16
BD2

2H
ε/2

XN2
· D2

1N2

}
.

(33)

Notice that there are no solutions unless

N1D
2
2 � N2D

2
1. (34)

We split into two cases according to whether
√

n2/n1 is quadratic irrational or
instead rational. In the first case we can apply Lemma 12, which shows that the
number of solutions (33) is

� Hε/2D1D
3
2

XN2
+ 1 +

D
1/2
1 D

3/2
2 N

1/4
1 Hε/4

X1/2N
1/4
2

.
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By (34) we can multiply the first term by (D1/D2)(N2/N1)1/2 and the third term
by (D1/D2)1/2(N2/N1)1/4 to obtain

� Hε/2D2
1D

2
2

X(N1N2)1/2
+ 1 +

D1D2H
ε/4

X1/2
.

Using this bound in (32), and summing over n1 and n2, we note that the max-
imum is attained for Nj = D2

j /H and thus the contribution to (32) from
√

n2/n1

quadratic irrational is bounded by

� Hε/2

(
D1D2H

X
+ 1 +

D1D2

X1/2

)
= O(H1/2−ε/2)

since D1 · D2 ≤ z ≤ min{X/H1/2+ε, H1/2−εX1/2}.
In case

√
n2/n1 is rational, there exist m, 	1, 	2 ∈ Z such that n1 = m	2

1 and
n2 = m	2

2. Hence, writing r2
1 = 	2

1d
2
2 and r2

2 = 	2
2d

2
1, we see that the contribution to

(32) for
√

n2/n1 rational is bounded by

� Hε/1000 min
{

1
N1

,
H

D2
1

}
min

{
1

N2
,

H

D2
2

}

×
∑

m

#
{

(r1, r2) : rj ≤ Dj

√
Nj/m, 0 < |r2

1 − r2
2| ≤ BHε/2D2

1D
2
2

mX

}
.

(35)

Factoring r2
1 − r2

2 = (r1 − r2)(r1 + r2) and dividing by the second factor, we see that
the number of solutions (r1, r2) is

� BHε/2D2
1D

2
2

mX
log X

Summing over m � min{N1, N2} and using this bound in (35), the maximum in
the resulting bound for (35) is attained for Nj = D2

j /H. Hence we obtain that (35)
is at most H2+ε/2+ε/500/X ≤ H1/2−ε/2 since H ≤ X2/3−ε.

Let us now dispose of the smoothing σ: Take B to be a sufficiently large absolute
constant that there exist integrable functions σ− and σ+ such that σ̂− and σ̂+ have
support [−BHε/2, BHε/2], and

σ− ≤ 1[1,2] ≤ σ+, and
∣∣∣
∫

σ±(x) dx − 1
∣∣∣ ≤ H−ε/2.

(We allow σ− and σ+ to take negative values.) An explicit construction of such
functions is given by the Beurling–Selberg majorant and minorant [Mon01, p. 273].
Applying (27) and these bounds,

1
X

∫ ∞

−∞
1[1,2]

( x

X

)∣∣∣
∑

d2≤z

μ(d)
∑

x/d2≤n≤(x+H)/d2

1 − H
∑

k2≤z

μ(k)
k2

∣∣∣
2
dx

= (1 + O(H−ε/2))2H2
∑

k2
1,k2

2≤z

μ(k1)μ(k2)
k2

1k
2
2

∑

λ≥1

S
( Hλ

(k2
1, k

2
2)

)2
+ O(H1/2−ε/3).

��
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5 The range z ≥ H4/3+ε in the t-aspect: Proof of Proposition 2

We would like to establish that

1
X

∫ 2X

X

∣∣∣
∑

x<nd2≤x+H
d2>z

μ(d) − H
∑

z<d2≤2X

μ(d)
d2

∣∣∣
2
dx � H1/2−ε/8.

Splitting into dyadic ranges according to the size of d, it essentially suffices to show
that, for each D ∈ [z1/2, (2X)1/2], we have

1
X

∫ 2X

X

∣∣∣
∑

x<nd2≤x+H
d∼D

μ(d) − H
∑

d∼D

μ(d)
d2

∣∣∣
2
dx � H1/2−ε/4. (36)

Let

A(x) :=
∑

nd2≤x
d∼D

μ(d) − x
∑

d∼D

μ(d)
d2

.

Using this definition and Lemma 10, we see that the left-hand side of (36) is

1
X

∫ 2X

X
|A(x + H) − A(x)|2dx � 1

X

∫ 3X

X
|A(u(1 + θ)) − A(u)|2du (37)

for some θ ∈ [ H
3X , 3H

X ]. Choose w such that ew = 1 + θ, so that w � H
X . By contour

integration

A(ey) =
1

2πi

∫ 2+i∞

2−i∞

eys

s
ζ(s)M(2s)ds − ey

∑

d∼D

μ(d)
d2

, (38)

where

M(s) :=
∑

d∼D

μ(d)
ds

.

Moving the contour to the line �s = 1/2 we notice that the residue from s = 1
cancels with the second term on the right-hand side of (38), and we obtain

A(ew+x) − A(ex)
ex/2

=
1
2π

∫

R

ew(
1
2+it) − 1
1
2 + it

eitxζ(1
2 + it)M(1 + 2it)dt.

Therefore, by Plancherel,

∫ ∞

0
|A(eu+w) − A(eu)|2 · du

eu
�

∫

R

∣∣∣
ew(

1
2+it) − 1
1
2 + it

∣∣∣
2
· |ζ(1

2 + it)M(1 + 2it)|2dt.

(39)
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Combining (37) and (39) we get after a change of variable,

1
X

∫ 2X

X
|A(x + H) − A(x)|2dx � X

∫ ∞

0
|A(u(1 + θ)) − A(u)|2 du

u2

� X

∫

R

∣∣∣
ew(

1
2+it) − 1
1
2 + it

∣∣∣
2
· |ζ(1

2 + it)M(1 + 2it)|2dt

� X

∫

R

min
{(H

X

)2
,

1
|t|2

}
· |ζ(1

2 + it)M(1 + 2it)|2dt.

(40)

By Lemma 5 the part with |t| ≥ X2 contributes

� X

∫ ∞

X2

|t|−5/3+εdt = O(1).

On the other hand, the contribution of |t| ≤ X2 to the right-hand side of (40) is at
most

� H2

X

∫

|t|≤2X/H
|ζ(1

2 + it)M(1 + 2it)|2dt

+ X

∫ X2

X/H

1
T 2

· 1
T

∫

T≤|t|≤2T
|ζ(1

2 + it)M(1 + 2it)|2dtdT

� H
(

sup
X/H≤T≤X2

1
T

∫

|t|≤T
|ζ(1

2 + it)M(1 + 2it)|2dt
)

+ O(1). (41)

Let us now prove the claim on the assumption of the Lindelöf Hypothesis. Ap-
plying Lindelöf and then the mean-value theorem (Lemma 7 with q = 1), we have
for any choice of δ > 0,

H

T

∫

|t|≤T
|ζ(1/2 + it)M(1 + i2t)|2 dt � HT δ

T

∫

|t|≤T
|M(1 + i2t)|2 dt

� HT δ

T
(T + D) · 1

D
� HT δ

D
+

HT δ

T
.

Recall we have D ≥ z1/2 ≥ H(1+ε)/2, H ≤ X2/3−ε and X/H ≤ T ≤ X2. Hence the
above is

� H1/2−ε/2T δ +
H2−δ

X1−δ
� H1/2−ε/4 +

H2−δ

H(1−δ)/(2/3−ε)
� H1/2−ε/4,

for δ sufficiently small. Applying this bound to (41) yields the claim.
Let us now prove the unconditional part of the proposition. First notice that the

values of t for which |M(1+2it)| ≤ D−1/2+ε/16 contribute to (41) by Cauchy–Schwarz
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and the fourth moment bound (Lemma 3) O(H1+ε/16D−1+ε/8) = O(H1/2−ε/4), and
therefore their contribution is always acceptable. Writing

S(V ) = {t ∈ [−T, T ] : V ≤ |M(1 + 2it)| < 2V },

by dyadic splitting, it suffices to show that, for each V ∈ [D−1/2, 1] and T ∈
[X/H, X2], we have

H

T
V 2

∫

S(V )
|ζ(1/2 + it)|2dt � H1/2−ε/3.

Now by Lemma 1 we have

|S(V )| � (V −2 + T min{D−1V −2, D−2V −6})(log 2X)6. (42)

Consider first the case when the first term dominates here. Then by Lemma 5
we have

H

T
V 2

∫

S(V )
|ζ(1/2 + it)|2dt � H

T
T 1/3+ε/2 � H

T 2/3−ε/2
� H5/3

X2/3−ε/2
≤ H1/2−ε/3

since H ≤ X4/7−ε.
Consider now the case that the second term dominates in (42). Then, by Cauchy–

Schwarz and the fourth moment estimate (Lemma 3),

H

T
V 2

∫

S(V )

|ζ(1/2 + it)|2dt � H

T
V 2|S(V )|1/2

(∫

|t|≤T

|ζ( 1
2
+ it)|4dt

)1/2

� HV 2 min{D−1V −2, D−2V −6}1/2(log 2X)5 � H min{D−1/2V, D−1V −1}(log 2X)5

� H(D−1/2V )1/2(D−1V −1)1/2(log 2X)5 � HD−3/4(log 2X)5 � Hz−3/8(log 2X)5 � H1/2−ε/3

since z ≥ H4/3+ε. This finishes the proof of Proposition 2. ��

6 The range (x/q)1+ε ≤ z < x−ε√qx in the q-aspect: Proof of
Proposition 3

By (23) Proposition 3 follows immediately from the following proposition.

Proposition 6. Let ε ∈ (0, 1/100). Let q be prime with x1/3+30ε ≤ q ≤ x1−ε and
let (x/q)1+ε ≤ z ≤ x−ε√qx. Then

1
ϕ(q)

∑

χ (mod q)
χ
=χ0

∣∣∣
∑

d2≤z
nd2≤x

μ(d)χ(d2)χ(n)
∣∣∣
2

= C
√

qx + O((x/q)−ε/16√qx) (43)

with C as in (4).
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The proof of Proposition 6 is based on two Propositions that we now describe.
Proposition 7 below will be used to introduce a smoothing into (43). Note that it
gives an upper bound that is o(

√
qx) whenever z = o(

√
qx/(log x)6) and the interval

I has length o(x/(log x)12).

Proposition 7. Let q be prime with q ≤ x, let z ≤ x. Let I ⊂ [1, 2x] be an interval.
Then

1
ϕ(q)

∑

χ (mod q)
χ
=χ0

∣∣∣
∑

d2≤z
nd2∈I

μ(d)χ(d2)χ(n)
∣∣∣
2

� (log x)6 ·
(
z +

√
|I|q

)
. (44)

We will use the following proposition to evaluate the smoothed analogue of (43).

Proposition 8. Let ε > 0 be given. Let f be a smooth function such that f is
compactly supported on [0, 1] and f(u) = 1 for (x/q)−ε/4 ≤ u ≤ 1 − (x/q)−ε/4 and
for each integer k ≥ 0, we have f (k)(u) � (x/q)εk/4. Let (x/q)1+ε ≤ z ≤ x−ε√qx.

Then for x1/3+30ε ≤ q ≤ x1−ε,

1
ϕ(q)

∑

χ (mod q)
χ
=χ0

∣∣∣
∑

n≥1
d2≤z

f
(nd2

x

)
μ(d)χ(d2)χ(n)

∣∣∣
2

= C
√

qx + O((x/q)−ε/10√qx),

where C is as in (4).

One way to construct f satisfying the assumptions of the proposition is to take
φ(t) to be a smooth function which vanishes for negative t and has φ(t) = 1 for t
greater than 1, and then set f(u) = φ((x/q)ε/4u)φ((x/q)ε/4(1 − u)).

With these two propositions at hand we are ready to prove Proposition 6.

6.1 Proof of Proposition 6. For m ∈ N, set

Am :=
∑

d2|m
d2≤z

μ(d),

and let f be as described below Proposition 8. Then

1
ϕ(q)

∑

χ (mod q)
χ
=χ0

∣∣∣
∑

n≤x

Anχ(n)
∣∣∣
2

= S1 + O(
√

S1S2 + S2),

where

S1 :=
1

ϕ(q)

∑

χ (mod q)
χ
=χ0

∣∣∣
∑

n

Anχ(n)f
(n

x

)∣∣∣
2
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and

S2 :=
1

ϕ(q)

∑

χ (mod q)
χ
=χ0

∣∣∣
∑

n∈I

Anχ(n)
(
1 − f

(n

x

))∣∣∣
2

where I = I1 ∪ I2 with I1 := [1, x · (x/q)−ε/4] and I2 := [x − x · (x/q)−ε/4, x].
For i = 1, 2, define

Bi(χ; t) =
∑

n∈Ii
n<t

Anχ(n).

By partial summation,
∑

n∈I2

Anχ(n)
(
1 − f

(n

x

))
=

∫

I2

(
1 − f

( t

x

))
dB2(χ; t)

=
1
x

∫

I2

f ′
( t

x

)
B2(χ; t)dt + B2(χ; x).

Hence,
1

ϕ(q)

∑

χ
=χ0

∣∣∣
∑

n∈I2

Anχ(n)
(
1 − f

(n

x

))∣∣∣
2

� 1
ϕ(q)

∑

χ
=χ0

∣∣∣
1
x

∫

I2

f ′
( t

x

)
B2(χ; t)dt

∣∣∣
2
+

1
ϕ(q)

∑

χ
=χ0

∣∣∣B2(χ; x)|2

≤ (x/q)ε/4 · 1
ϕ(q)

∑

χ
=χ0

1
x

∫

I2

|B2(χ; t)|2dt +
1

ϕ(q)

∑

χ
=χ0

∣∣∣B2(χ; x)|2. (45)

Now by Proposition 7 we have, for t ∈ I2,
1

ϕ(q)

∑

χ
=χ0

|B2(χ; t)|2 � (log x)6 ·
(
x−ε√qx +

√
(t − (x − x · (x/q)−ε/4)) · q

)
.

Therefore (45) is

� (log x)6 · (x/q)ε/4 · 1
x

·
(
x · (x/q)−ε/4 · x−ε√qx + x3/2(x/q)−3ε/8√q

)

+(log x)6(x/q)−ε/8√qx � (log x)6(x/q)−ε/8 · √
qx.

A similar argument shows that
1

ϕ(q)

∑

χ
=χ0

∣∣∣
∑

n∈I1

Anχ(n)
(
1 − f

(n

x

))∣∣∣
2

� (log x)6(x/q)−ε/8 · √
qx.

as well. By (a + b)2 � |a|2 + |b|2 we conclude that

S2 � (log x)6(x/q)−ε/8√qx

as needed. On the other hand we can compute S1 by using Proposition 8 and this
yields the claimed estimate. ��
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6.2 Proof of Proposition 7. By Pólya’s formula (see [MV77, Lemma 1]) for
I = [a, b] and any χ = χ0 of modulus q,

∑

n∈I/d2

χ(n) =
τ(χ)
2πi

∑

1≤|n|≤q

χ(n)fI/d2(n) + O(log q),

where

fI/d2(n) =
1
n

·
(
e
( na

d2q

)
− e

( nb

d2q

))
� gI/d2(n) :=

{ |I|
d2q if |n| ≤ d2q

|I| ,
1
n otherwise.

We split d and n into dyadic intervals and bound the left-hand side of (44) by

(log x)2 sup
D≤z1/2

1≤N≤q

∑

χ (mod q)

∣∣∣
∑

d∼D

μ(d)χ(d2)
∑

n∼N

χ(n)fI/d2(n)
∣∣∣
2
+ O(z(log q)2). (46)

The error term is clearly acceptable. We bound the main term of (46) using a majo-
rant principle—by going through the first equality in (24) we can replace coefficients
μ(d) and fI/d2(n) by their majorants. Hence we get the bound

� (log x)2 sup
D≤z1/2

1≤N≤q

∑

χ

∣∣∣
∑

d

χ2(d)V
( d

D

)
·
∑

n

χ(n)V (n/N)gI/D2(N)
∣∣∣
2

with V a smooth function supported on [1/2, 4].
The contribution of the principal character and quadratic character is � z(log x)4

which is acceptable. On the remaining non-principal and non-quadratic characters
we apply Cauchy–Schwarz giving the upper bound

� (log x)2 sup
D≤z1/2

1≤N≤q

gI/D2(N)2
( ∑

χ2 �=χ0

∣∣∣
∑

n

χ2(n)V
(

n

D

)∣∣∣
4)1/2( ∑

χ�=χ0

∣∣∣
∑

n

χ(n)V
(

n

N

)∣∣∣
4)1/2

.

(47)

We claim that
∑

χ2 
=χ0

∣∣∣
∑

n

χ2(n)V
( n

D

)∣∣∣
4

� qD2 · (log x)4

and
∑

χ
=χ0

∣∣∣
∑

n

χ(n)V
( n

N

)∣∣∣
4

� qN2 · (log x)4. (48)

We explain the second bound in (48); the first bound is similar. Let Ṽ be the Mellin
transform of V . Using contour integration, the decay of Ṽ , and Hölder, we get, for
every A ≥ 1,

∑

χ
=χ0

∣∣∣
∑

n

χ(n)V
( n

N

)∣∣∣
4

=
∑

χ
=χ0

∣∣∣
∫

R

L(1/2 + it, χ)Ṽ (1/2 + it)N1/2+it dt
∣∣∣
4
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�A N2
∑

χ
=χ0

(∫

R

∣∣∣L(1/2 + it, χ)
∣∣∣(1 + |t|)−Adt

)4

�A N2
∑

χ
=χ0

∫

R

∣∣∣L(1/2 + it, χ)
∣∣∣
4
(1 + |t|)−A dt.

A dyadic decomposition of the integration range and the fourth moment bound for
Dirichlet L-functions (Lemma 4) yield the second part of (48).

Using (48) in (47), we obtain an upper bound

� (log x)6 sup
D≤z1/2

1≤N≤q

gI/D2(N)2qDN

� (log x)6 sup
D≤

√
|I|/q

1≤N≤q

gI/D2(N)2qDN + (log x)6 sup√
|I|/q<D≤z1/2

1≤N≤q

gI/D2(N)2qDN.

Recalling the definition of gI/D2(N), we see that on the last line, the first N -
supremum is attained for N = 1 and the second N -supremum is attained for
N = D2q/|I|, and we get the bound

� (log x)6 sup
D≤

√
|I|/q

qD + (log x)6 sup√
|I|/q<D≤z1/2

|I|/D � (log x)6
√

|I|q

and the claim follows. ��
6.3 Proof of Proposition 8. We apply Poisson summation (see e.g. [IK04,
formula (4.26)]) in the sum over n, getting

∑

n

χ(n)f
(nd2

x

)
= τ(χ) · x

qd2

∑

�

χ(	)f̂
( x	

d2q

)
.

Therefore we have to asymptotically estimate

q

ϕ(q)
· x2

q2

∑

χ
=χ0

∣∣∣
∑

d2≤z
�∈Z

μ(d)
d2

χ(d2)χ(	)f̂
( x	

d2q

)∣∣∣
2

(49)

=
x2

q

∑

n1,n2∈Z

d2
1,d

2
2≤z

d2
1n1 ≡ d2

2n2 (mod q)
(d1d2n1n2,q)=1

μ(d1)
d2

1

μ(d2)
d2

2

· f̂
(xn2

d2
1q

)
f̂
(xn1

d2
2q

)
+ O(zx2ε/3), (50)

and where O(zx2ε/3) comes from the principal character and from replacing ϕ(q) by
q. We note that since z ≤ x−ε√qx this contribution is acceptable. Notice that we
can add and remove the restrictions d1, d2 > x1/2−ε/6/

√
q and |n1|, |n2| ≤ xε/3 · zq/x

at will because they cost us a negligible error term that is �A x−A for any given
A > 0. Moreover note that n1 and n2 now traverse all of Z.
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We now separate the set of tuples (n1, n2) into

M :=
{
(k2

1m, k2
2m): m ∈ Z squarefree, k1, k2 ∈ N

}

and the complement. The (n1, n2) ∈ M contribute to a main term that is relatively
easy to compute. On the other hand we will bound the contribution of (n1, n2) ∈ M.

6.3.1 The main term (n1, n2) ∈ M. The conditions d2
1n1 ≡ d2

2n2 (mod q) and
(n1n2, q) = in the sum in (50) imply that if (n1, n2) ∈ M then d2

1k
2
1 ≡ d2

2k
2
2 (mod q)

and therefore d1k1 ≡ ±d2k2 (mod q). This implies that d1k1 = d2k2 since djkj ≤√
z ·

√
xε/3zq/x = xε/6z ·

√
q/x and this is ≤ q/3 because z ≤ x−ε√qx. We conclude

that the contribution of (n1, n2) ∈ M is given by

x2

q

∑

k1,k2

∑

d1k1=d2k2
d2
1,d

2
2≤z

(d1d2k1k2,q)=1

μ(d1)μ(d2)
d2

1 · d2
2

∑

(m,q)=1

μ2(m)f̂
(xk2

2m

d2
1q

)
f̂
(xk2

1m

d2
2q

)
. (51)

We now parametrize the equation d1k1 = d2k2 by dividing by (d1, d2) on both sides
so that

k1 =
d2	

(d1, d2)
and k2 =

d1	

(d1, d2)
with 	 ∈ N.

Plugging this and noticing that each non-negative integer can be written uniquely
as 	2m with m squarefree, we can re-write (51) as

2x2

q

∑

d2
1,d

2
2≤z

(d1d2,q)=1

μ(d1)μ(d2)
d2

1 · d2
2

∑

�≥1
(�,q)=1

∣∣∣f̂
( x	

q(d2
1, d

2
2)

)∣∣∣
2
.

Note that we can drop the condition (d1d2, q) = 1 as q is prime and d1, d2 < q.
Likewise since 	 ≥ q contribute OA(x−A), we can drop the condition (	, q) = 1 and
apply Lemma 8 with W = f̂ and H = x/q to see that the above is

C
√

qx · π

∫ ∞

0
|f̂(y)|2√y dy + O((x/q)−ε/8√xq).

Let F (u) = 1[0,1](u). We have,

f̂(y) − F̂ (y) � min{(x/q)−ε/4, |y|−1},

with the bound (x/q)−ε/4 for the difference between these two Fourier transforms
following from the fact that ‖f − F‖L1 � (x/q)−ε/4, and the bound 1/|y| following
from the fact that the total variation of the function f −F is bounded by an absolute
constant. Likewise

f̂(y) � (1 + |y|)−1 and F̂ (y) � (1 + |y|)−1.
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Hence
∫ ∞

0
|f̂(y)|2√y dy −

∫ ∞

0
|F̂ (y)|2√y dy

�
∫ ∞

0
min{(x/q)−ε/4, y−1}(1 + y)−1√y dy � (x/q)−ε/8.

Putting these estimates together, and using the relation |F̂ (ξ)| = |S(ξ)| and the
integral identity (21), we see that (51) is

C
√

qx + O((x/q)−ε/8√xq).

6.3.2 The off-diagonal (n1, n2) ∈ M. Let us focus on bounding the contribution
of (n1, n2) ∈ M. We recall that the contribution of d1 ≤ x1/2−ε/6/q1/2 to (49) is
negligible and likewise the contribution of d2 ≤ x1/2−ε/6/q1/2 is negligible. We now
partition d1, d2 into intervals [D1, 2D1] and [D2, 2D2] with x1/2−ε/6/q1/2 ≤ D1, D2 ≤√

z. The total contribution of (n1, n2) ∈ M with d1 ∈ [D1, 2D1] and d2 ∈ [D2, 2D2]
to (49) is bounded by

x2

q
· 1
D2

1D
2
2

∑

(n1,n2) 
∈M
V
( n1

N1

)
V
( n2

N2

) ∑

d2
1n1 ≡ d2

2n2 (mod q)
(d1d2n1n2,q)=1

V
( d1

D1

)
V
( d2

D2

)
(52)

with V a smooth non-negative compactly supported function such that V (x) ≥ 1 for
x ∈ [−2, 2] and D1, D2 > x1/2−ε/6/q1/2 and N1 ≤ xε/3D2

2q/x and N2 ≤ xε/3D2
1q/x.

We now split into two cases according to the size of D1D2:

6.3.3 Case D1D2 ≥ x1+2ε/q. In this case we do not use the condition (n1, n2) ∈
M. Dropping this condition and using Dirichlet characters we can re-write (52) as

x2

qϕ(q)
1

D2
1D

2
2

∑

χ2 
=χ0

(∑

n1

χ(n1)V
( n1

N1

))(∑

n2

χ(n2)V
( n2

N2

))

×
(∑

d1

χ2(d1)V
( d1

D1

))(∑

d2

χ2(d2)V
( d2

D2

))
+ O

(x2

q2
· N1N2

D1D2

)
(53)

and where the O(·) term corresponds to the contribution of the characters with
χ2 = χ0. Note that this contribution is acceptable since

x2

q2
· N1N2

D1D2
� x2ε/3D1D2 � x2ε/3z � x−ε/3√qx.

Now we express each of the sums in (53) using a contour integral, and using Hölder’s
inequality this allows us to bound (53) by

x2

q2
·
√

N1N2D1D2

D2
1D

2
2

∑

χ

∫

|u|≤xε/3

|L(1
2 + iu, χ)|4du + x−ε/3√qx.



GAFA VARIANCE OF SQUAREFREE INTEGERS 139

By the fourth moment bound (Lemma 4) the first term is

� x2

q2
·
√

N1N2D1D2

D2
1D

2
2

qxε/2 � x5ε/6 x√
D1D2

� x−ε/6√qx

since D1D2 ≥ x1+2ε/q.

6.3.4 Case D1D2 < x1+2ε/q. In this case we notice that since D1, D2 > x1/2−ε/6/
√

q

we have D1, D2 ≤ (x/q)1/2x3ε and in particular N1, N2 � x7ε. We notice that if
(n1, n2) ∈ M and n1d

2
1 ≡ n2d

2
2 (mod q) then n1d

2
1 = n2d

2
2 + q	 with 0 < |	| �

x1+13ε/q2. We now fix n1, n2, 	—there are � x1+27ε/q2 possible choices. We shall
show that the number of solutions in |d1|, |d2| � (x/q)1/2x3ε to n1d

2
1 − n2d

2
2 = q	 is

bounded by � x9ε which will be sufficient.
First of all note that we can assume that (n1, n2, q	) = 1. Indeed, q cannot divide

n1n2 as n1n2 = o(q), and so letting g = (n1, n2, q	) we have g | 	 and the problem
reduces to one where (n1, n2, 	) is replaced with (n′

1, n
′
2, 	

′) = (n1, n2, 	)/g and now
(n′

1, n
′
2, q	

′) = 1.
Notice that f(x1, y1) = n1x

2
1 − n2y

2
1 is a primitive binary quadratic form with

discriminant d = 4n1n2 > 0. Denote by εn1n2 the real number x0/2+y0
√

n1n2 where
(x0, y0) is the solution in positive integers to the equation x2

0−4n1n2y
2
0 = 4 for which

x0 + y0

√
d is least. Note that εn1n2 ≥ 3/2.

Let (x1, y1) be a solution to f(x1, y1) = q	 with x1, y1 � (x/q)1/2x3ε. We notice
that in this situation

(x1, y1) ∈
⋃

1≤m≤log x

T+
m ∪ T−

m

where

T+
m =

{
(x, y) ∈ Z

2: f(x, y) = q� and
√

n1x >
√

n2y and ε2m−2
n1n2 ≤

∣∣∣
√

n1x +
√

n2y√
n1x − √

n2y

∣∣∣ < ε2m
n1n2

}

and

T−
m =

{
(x, y) ∈ Z

2: f(x, y) = q� and
√

n1x <
√

n2y and ε2m−2
n1n2 ≤

∣∣∣
√

n1x +
√

n2y√
n1x − √

n2y

∣∣∣ < ε2m
n1n2

}

= {(x, y) ∈ Z
2 : (−x, −y) ∈ T+

m}.

The reason for this is that
√

n1x1 +
√

n2y1 � x7ε(x/q)1/2 and

|√n1x1 − √
n2y1| =

q	√
n1x1 +

√
n2y1

� q3/2

x1/2+7ε
� 1.

Moreover by Lemma 13 of [MW02] we have #T+
m = #T+

1 for all m ≥ 1, and trivially
#T−

m = #T+
m for all m ≥ 1.

The solutions belonging to T+
1 are primary for the quadratic form n1x

2
1 −n2x

2
2 of

discriminant 4n1n2 (see p. 101 of [SW06] for the definition of primary). By Theorem
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4.1 of [SW06] the number of (x1, y1) for which there exists a quadratic form g of
discriminant 4n1n2 such that g(x1, y1) = q	 and such that (x1, y1) is primary for g,
is either 0 or given by

m
∏

p|m

(
1 − 1

p

(
4n1n2/m2

p

))
·
∑

k| q�

m2

(
d0

k

)
,

for particular integers m and d0 with m2 | (q	, 4n1n2). Using the divisor bound
#{k: k | n} �ε nε/100, we find that this is

� (n1n2)1/2+ε/100(q	)ε/100 � x8ε.

We conclude therefore that #T+
1 � x8ε and therefore the number of solutions

(x1, y1) with |x1|, |y1| � (x/q)1/2x3ε to the equation f(x1, y1) = q	 is bounded
by � log x · #T+

1 � x9ε as claimed. It follows therefore that the total number of
solutions to n1d

2
1 − n2d

2
2 = q	 with ni ∼ Ni, di ∼ Di for i = 1, 2 is � x1+36ε/q2.

We conclude therefore that (52) is

� x2

q
· 1
D2

1D
2
2

· x1+36ε

q2
� x1+40ε

q
� x−ε√qx

since q > x1/3+30ε. ��

7 The range z ≥ (x/q)4/3+ε in the q-aspect: Proof of Proposition 4

Splitting into dyadic segments and recalling (23), we can bound the left-hand side
of (15) by a constant times

log x sup√
z≤D≤√

x

1
ϕ(q)2

∑

χ
=χ0

∣∣∣
∑

nd2≤x
d∼D

μ(d)χ(n)χ(d2)
∣∣∣
2
.

Expressing the condition nd2 ≤ x using a contour integral (see [MV07, Cor. 5.3])
the above is bounded by

� log x sup√
z≤D≤√

x

1

ϕ(q)2

∑

χ�=χ0

∣∣∣
∫

|t|≤x
L( 12 + it, χ)M(1 + 2it, χ2) · x1/2+it

1/2 + it
dt
∣∣∣
2
+ O((x/q)1/2−ε/8),

(in fact a better error term can be obtained but we do not need to keep track of it)
where

M(1 + 2it, χ2) =
∑

d∼D

μ(d)χ2(d)
d1+2it

.
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Applying Cauchy–Schwarz and splitting according to the values of t we can bound
the main term above as

� x(log x)3 sup√
z≤D≤√

x
1≤T≤x

1
ϕ(q)2

∑

χ
=χ0

1
T

∫ T

−T
|L(1

2 + it, χ)|2 · |M(1 + 2it, χ2)|2dt. (54)

Let us now prove the claim on the assumption of the Generalized Lindelöf Hy-
pothesis. Applying Generalized Lindelöf and then the hybrid mean-value theorem
(Lemma 7) we have for any choice of δ > 0,

x

ϕ(q)2
∑

χ
=χ0

1
T

∫ T

−T
|L(1

2 + it, χ)|2|M(1 + 2it, χ2)|2 dt

� x(qT )δ

q2T

∑

χ
=χ0

∫ T

−T
|M(1 + 2it, χ2)|2 dt

� xT δq2δ

q2T
(qT + D) · 1

D
� T δq2δ

(
x

qD
+

x

q2T

)
.

(55)

Since q, T ≤ x ≤ (x/q)O(1), for sufficiently small δ we have T δq2δ ≤ (x/q)ε/100.
Recalling also that D ≥ z1/2 ≥ (x/q)(1+ε)/2 and q ≥ x1/3+ε, we see that (55) is

� xε/100

((x

q

)1/2−ε/2
+

x

q2

)
� (x/q)1/2−ε/3.

Applying this estimate to (54) yields the claim.
Let us now consider the unconditional part of the claim. Let

ST,q(V ) := {(t, χ): V ≤ |M(1 + 2it, χ2)| ≤ 2V |t| ≤ T χ (mod q)}.

Note that for D ≥ √
z ≥ (x/q)1/2+ε, the values of t ∈ [−T, T ] for which |M(1 +

2it, χ2)| ≤ D−1/2+ε/4 contribute to (54) by Cauchy–Schwarz and the fourth moment
bound (Lemma 4) O((log x)5xD−1+ε/2/q) = O((x/q)1/2−ε/2). Additionally, |M(1 +
2it)| ≤

∑
d∼D 1/d ≤ 2. Therefore it suffices to show that for each

√
x ≥ D ≥ √

z,
V ∈ [D−1/2, 1], and T ∈ [1, x], we have

xV 2

ϕ(q)

∑

χ
=χ0

1
T

∫

t : (t,χ)∈ST,q(V )
|L(1

2 + it, χ)|2dt � (x/q)−ε/8(log x)−4 · √
qx. (56)

By Lemma 2 we have,

|ST,q(V )| � (V −2 + qT min{D−1V −2, D−2V −6}) · (log x)18. (57)

Here |ST,q(V )| is the measure of ST,q(V ), where the set of χ (mod q) is endowed with
the counting measure. Consider first the case when the first term dominates. Then,
by Lemma 6, we see that the left-hand side of (56) is

� xV 2

ϕ(q)
· |ST,q(V )|

T
· (qT )1/3+ε/4 � x

ϕ(q)
· 1
T

· (qT )1/3+ε/3
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� x

q2/3−ε/2
� (x/q)−ε/8(log x)−4 · √

qx

since q > x3/7+ε. Note that the factor (log x)18 in (57) was absorbed in the exponent
of qT .

Consider now the case that the second term dominates in (57). Then by Cauchy–
Schwarz and the hybrid fourth moment estimate (Lemma 4),

xV 2

ϕ(q)

∑

χ
=χ0

1
T

∫

t : (t,χ)∈ST,q(V )
|L(1

2 + it, χ)|2dt

� xV 2

Tϕ(q)
· |ST,q(V )|1/2 ·

( ∑

χ
=χ0

∫ T

−T
|L(1

2 + it, χ)|4dt
)1/2

� (log x)11 · xV 2 · min{D−1V −2, D−2V −6}1/2

� (log x)11 · x min{D−1/2V, D−1V −1}
� (log x)11 · x · (D−1/2V )1/2 · (D−1V −1)1/2

� x(log x)11 · D−3/4 � (x/q)−ε/8(log x)−3√qx

since D ≥ √
z ≥ (x/q)2/3+ε/2.

8 Conditional estimates: Proof of Theorem 3

The proof of Theorem 3 splits into two parts since two assertions are made.

8.1 Proof that the Riemann Hypothesis implies (7). The proof follows
the same ideas as the proof of Proposition 2. The claim (7) is already proved for
H ≤ X2/3−ε, so we may assume H > X2/3−ε. We return to (41) and consider first
the case D ≥ H(1−δ)/2. Note that the Riemann Hypothesis implies

M(1 + 2it) �δ D−1/2+δ/2, (58)

for |t| ≤ X2. Now (41), Cauchy–Schwarz and the fourth moment bound for the
Riemann zeta function (Lemma 3) imply

1
X

∫ 2X

X

∣∣∣
∑

x<nd2≤x+H
d∼D

μ(d) − H
∑

d∼D

μ(d)
d2

∣∣∣
2
dx �δ (log X)2H/D1−δ.

For D ≥ H(1−δ)/2, the right-hand side is �δ (log X)H1/2+δ−δ2/2. Splitting dyadically
for D ∈ [H(1−δ)/2, X1/2] and using the tail bound

∑

d2>2X

μ(d)
d2

�δ
1

X3/4−δ/10
,
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valid under Riemann Hypothesis, we see that the Riemann Hypothesis implies

1
X

∫ 2X

X

∣∣∣
∑

x<nd2≤x+H
d2≥H1−δ

μ(d) − H
∑

d2≥H1−δ

μ(d)
d2

∣∣∣
2
dx

� (log X)2 sup
H(1−δ)/2≤D≤X1/2

1
X

∫ 2X

X

∣∣∣
∑

x<nd2≤x+H
d∼D

μ(d) − H
∑

d∼D

μ(d)
d2

∣∣∣
2
dx

+
1
X

∫ 2X

X

∣∣∣H
∑

d2>2X

μ(d)
d2

∣∣∣
2
dx �δ H1/2+δ.

(59)

On the other hand, estimating the n-sum on the left-hand side by H/d2 + O(1),
we see that

1
X

∫ 2X

X

∣∣∣
∑

x<nd2≤x+H
d2≤H1/2

μ(d) − H
∑

d2≤H1/2

μ(d)
d2

∣∣∣
2
dx � H1/2.

Hence the claim follows once we have shown that, for any D ∈ [H1/4, H(1−δ)/2],
we have

1
X

∫ 2X

X

∣∣∣
∑

x<nd2≤x+H
d∼D

μ(d) − H
∑

d∼D

μ(d)
d2

∣∣∣
2
dx �δ H1/2.

Notice that we can attach to the n variable a dummy function f(nD2/X) with f a
smooth function supported in [1/20, 20] and such that f(y) = 1 for y ∈ [1/10, 10].

Similarly to the proof of Proposition 2, write

A(x) :=
∑

nd2≤x
d∼D

f
( n

X/D2

)
μ(d) − x

∑

d∼D

μ(d)
d2

.

By contour integration we have, for ey ∈ [X, 2X] and w ≤ 1/100,

A(ey+w) − A(ey) =
1

2πi

∫ 1/2+i∞

1/2−i∞
eys · ews − 1

s
N1(s)M(2s)ds − ey(ew − 1)

∑

d∼D

μ(d)
d2

,

(60)

where

M(s) :=
∑

d∼D

μ(d)
ds

and N1(s) :=
∑

m

1
ms

· f
( m

X/D2

)
.

Write also

N2(s) :=
∫

R

1
us

· f
( u

X/D2

)
du
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and note that, for ey ∈ [X, 2X], we have by contour integration

1
2πi

∫ 1/2+i∞

1/2−i∞
eys · ews − 1

s
N2(s)M(2s)ds =

∑

d∼D

μ(d)
∫

R

f
( u

X/D2

)
1ey≤ud2≤ey+wdu

= ey(ew − 1)
∑

d∼D

μ(d)
d2

.

Plugging this into (60) and arguing as in the proof of Proposition 2, we see that, for
some w � H/X, we have

1
X

∫ 2X

X
|A(x + H) − A(x)|2dx

� X

∫

R

∣∣∣
ew(

1
2+it) − 1
1
2 + it

∣∣∣
2
·
∣∣(N1(1

2 + it) − N2(1
2 + it)

)
M(1 + 2it)

∣∣2 dt.

(61)

By Poisson summation

N1(1
2 + it) =

∑

m

1
m1/2+it

· f
( m

X/D2

)
=

∑

�

∫ ∞

−∞

1
u1/2+it

· f
( u

X/D2

)
e(	u)du

= N2(1
2 + it) +

X

D2

∑

�
=0

∫ 20

1/20

(
D2

yX

)1/2+it

f(y)e
(

	yX

D2

)
dy.

By partial integration (taking antiderivatives of e(	yX/D2)), this implies that, for
|t| < X/D2+δ/100,

|N1(1
2 + it) − N2(1

2 + it)| �A X−A,

for any A > 0. Therefore the part of the integral (61) with |t| < X/D2+δ/100 is
completely negligible.

On the other hand the part with |t| ≥ X10 contributes only O(1) to the left-hand
side of (61) by estimating |Nj(1/2 + it)| and |M(1 + it)| trivially.

Furthermore, assuming the Riemann Hypothesis, we have by contour integration,
for |t| ∈ [X/D2+δ/100, X10],

|N1(1
2 + it)| � sup

|t|/2≤|u|≤2X10
|ζ(1

2 + iu)| �δ Xδ/100

and

|M(1 + 2it)| �δ D−1/2+δ/100.

Furthermore, by partial integration we have, for |t| ∈ [X/D2+δ/100, X10],

|N2(1
2 + it)| �δ Xδ/100
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Hence the part with |t| ∈ [X/D2+δ/100, X10] contributes to (61)

�δ X

∫

X/D2+δ/100≤|t|≤X10

1
|t|2 Xδ/50D−1+δ/50 dt �δ DXδ/10 �δ H1/2

since D ≤ H(1−δ)/2 and H ≥ X1/2. ��
8.2 Proof that (7) implies the Riemann Hypothesis. Suppose that (7)
holds for H = X1−δ. Then, by Cauchy–Schwarz,

∫

R

Φ
( x

X

)( 1
H

∑

x<m≤x+H

μ2(m)
)
dx =

6XΦ̂(0)
π2

+ Oδ(X1/4+3δ).

with Φ an arbitrary, but not identically zero smooth function compactly supported
in [1/2, 3] (one could even enforce that Φ̂(0) = 0 to simplify the above expression
but we didn’t find any significant advantage in doing this). Therefore,

1
2πi

∫ 2+i∞

2−i∞

ζ(s)
ζ(2s)

Xs · ΨH/X(s)ds − 6XΦ̂(0)
π2

= Oδ(X1/4+3δ), (62)

where uniformly in 1/100 < �s < 100, for any given A > 1,

ΨH/X(s) :=
1
s

· X

H

∫

R

(
Φ
(
x − H

X

)
− Φ(x)

)
xsdx

=
1
s

∑

1≤j≤A

(−1)j

j!
·
(H

X

)j−1
∫

R

Φ(j)(x)xsdx + OA(X−δA)

= −1
s

∫

R

Φ′(x)xsdx + OA

(H

X
· (1 + |�s|)−A + X−δA

)
.

(63)

By integration by parts the main term is equal to Φ̃(s) where Φ̃(s) is the Mellin trans-
form of Φ. The reader may also verify that we have the exact relation ΨH/X(1) =
Φ̃(1).

Suppose that the Riemann Hypothesis fails. Then ζ(s)/ζ(2s) has a pole in the
strip 1

4 < σ < 1
2 (e.g. s = ρ/2 with ρ = β + iγ the zeros of ζ(s) with smallest γ > 0

among all zeros of ζ(s) with β ∈ (1
2 , 1)). Let Θ > 1

4 denote the supremum of the
real part of poles of ζ(s)/ζ(2s) lying in the strip 1

4 < σ < 1
2 . Choose δ > 0 to be

sufficiently small so that 1
4 + 3δ ≤ Θ − δ/2.

Pick now s0 a pole of ζ(s)/ζ(2s) with �s0 ∈ (Θ − δ/50, Θ] and the smallest
positive imaginary part. We can assume without loss of generality that Φ is chosen
so that Φ̃(s0) = 0. Indeed if it were the case that Φ̃(s0) = 0 then pick a c ∈ (0, 1)
such that Φ̃(c + s0) = 0 and consider xcΦ(x) in place of Φ(x).

We shall shift the contour in (62) to the line σ = Θ + δ/8. Note that for any
fixed values of X and H, from the definition (63) and integration by parts, we have
ΨH/X(s) �A (1 + |�s|)−A uniformly for 1/100 < �s < 100 for all A ≥ 1. Further-
more for �s ∈ [σ, 2] and s bounded away from 1 we get the bound ζ(s)/ζ(2s) �δ
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(1 + |�s|)C , where C is a constant which depends only on δ. (This follows because
we may bound ζ(s) using a convexity bound (see e.g. [Tit86, Sec. 5.1]) and we may
bound 1/ζ(2s) using the estimate log ζ(2s) �δ log(|�(2s)|+2) in this region, which
follows from a well-known estimate on the logarithmic derivative of the zeta function
(e.g. [Tit86, Thm 9.6 (A)]) and the fact that in this region |2s − ρ′| ≥ δ/8 whenever
ζ(ρ′) = 0.) Thus

1
2πi

∫

(2)

ζ(s)
ζ(2s)

Xs · ΨH/X(s)ds =
1

2πi

∫

(σ)

ζ(s)
ζ(2s)

Xs · ΨH/X(s)ds +
6
π2

XΨH/X(1).

Applying (62) and (63) we find

1
2πi

∫

(σ)

ζ(s)
ζ(2s)

· XsΦ̃(s)ds = Oδ(XΘ−δ/2) + Oδ(X1/4+3δ).

By choice of δ > 0 the error term is bounded by Oδ(XΘ−δ/2). Therefore setting

A(X) :=
∑

n

μ2(n)Φ
( n

X

)
− 6

π2
Φ̂(0)X · 1[1,∞)(X),

we have for X ≥ 1,

A(X) =
1

2πi

∫

(σ)

ζ(s)
ζ(2s)

· XsΦ̃(s)ds = Oδ(XΘ−δ/2).

Thus there exists a constant c = c(Θ, δ) such that,

|A(x)| ≤ cxΘ−δ/50 (64)

for all x ≥ 0 (note that for 0 < x < 1/100 we have that A(x) vanishes). Let us start
by observing that for �s > 1,

∫ ∞

0
A(x)x−s−1dx =

∑

n≥1

μ2(n)
∫ ∞

0
Φ
(n

x

)
x−s−1dx − 6Φ̂(0)

π2
· 1
s − 1

=
∑

n≥1

μ2(n) · n−sΦ̃(s) − 6Φ̃(1)
π2

· 1
s − 1

=
ζ(s)
ζ(2s)

· Φ̃(s) − 6Φ̃(1)
π2

· 1
s − 1

.

(65)

The function
∫ ∞
0 A(x)x−s−1dx is analytic in �s > Θ − δ/50 by (64). Therefore, by

(65) and analytic continuation,

ζ(s)
ζ(2s)

· Φ̃(s) − 6Φ̃(1)
π2

· 1
s − 1

(66)

is analytic in the region �s > Θ − δ/50. This however contradicts that (66) has a
pole at s0 and �s0 ∈ (Θ − δ/50, Θ]. ��
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[RS92] A. M. Rockett and P. Szüsz. Continued fractions. World Scientific Publishing
Co., Inc., River Edge, NJ, 1992.

[She14] G. Shevchenko. Fractional Brownian motion in a nutshell. arXiv preprint
arXiv:1406.1956, 2014.

[SV77] B. Saffari and R. C. Vaughan. On the fractional parts of x/n and related
sequences. II. Annales de l’institut Fourier (Grenoble), 27(2):v, 1–30, 1977.

[SW06] Z-H. Sun and K. S. Williams. On the number of representations of n by ax2 +
bxy + cy2. Acta Arithmetica, 122(2):101–171, 2006.

[Tit86] E. C. Titchmarsh. The theory of the Riemann zeta-function. The Clarendon
Press, Oxford University Press, New York, second edition, 1986. Edited and with
a preface by D. R. Heath-Brown.

http://arxiv.org/abs/1912.04683
http://arxiv.org/abs/1908.10346
http://arxiv.org/abs/1406.1956


GAFA VARIANCE OF SQUAREFREE INTEGERS 149

[Tol06] D. I. Tolev. On the distribution of r-tuples of squarefree numbers in short inter-
vals. Int. J. Number Theory, 2(2):225–234, 2006.

[Tsa85] K. M. Tsang. The distribution of r-tuples of squarefree numbers. Mathematika,
32(2):265–275 (1986), 1985.

[Vau05] R. C. Vaughan. A variance for k-free numbers in arithmetic progressions. Pro-
ceedings of the London Mathematical Society, 91(3):573–597, 2005.

[War80] R. Warlimont. Squarefree numbers in arithmetic progressions. Journal of the
London Mathematical Society, 2(1):21–24, 1980.

Ofir Gorodetsky

Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK.
ofir.goro@gmail.com

Kaisa Matomäki
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