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Abstract

Background: Individuals who are obese in childhood have an elevated risk of disease in

adulthood. However, whether childhood adiposity directly impacts intermediate markers

of this risk, independently of adult adiposity, is unclear. In this study, we have simulta-

neously evaluated the effects of childhood and adulthood body size on 123 systemic mo-

lecular biomarkers representing multiple metabolic pathways.

Methods: Two-sample Mendelian randomization (MR) was conducted to estimate the

causal effect of childhood body size on a total of 123 nuclear magnetic resonance-based

metabolic markers using summary genome-wide association study (GWAS) data from

up to 24 925 adults. Multivariable MR was then applied to evaluate the direct effects of

childhood body size on these metabolic markers whilst accounting for adult body size.

Further MR analyses were undertaken to estimate the potential mediating effects of these

circulating metabolites on the risk of coronary artery disease (CAD) in adulthood using a

sample of 60 801 cases and 123 504 controls.

Results: Univariable analyses provided evidence that childhood body size has an effect

on 42 of the 123 metabolic markers assessed (based on P< 4.07� 10�4). However, the
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majority of these effects (35/42) substantially attenuated when accounting for adult body

size using multivariable MR. We found little evidence that the biomarkers that were po-

tentially influenced directly by childhood body size (leucine, isoleucine and tyrosine) me-

diate this effect onto adult disease risk. Very-low-density lipoprotein markers provided

the strongest evidence of mediating the long-term effect of adiposity on CAD risk.

Conclusions: Our findings suggest that childhood adiposity predominantly exerts its det-

rimental effect on adult systemic metabolism along a pathway that involves adulthood

body size.

Key words: Childhood adiposity, Mendelian randomization, metabolic biomarkers, Young Finns Study, cardiometa-

bolic disease

Introduction

The rising prevalence of childhood obesity contributes

greatly to global healthcare burdens.1,2 Data from the

International Childhood Cardiovascular Cohort

Consortium suggest that children who are obese who then

remain obese as adults have an increased risk of cardiome-

tabolic disease in adulthood. In contrast, children with

obesity who do not go on to be obese as adults may have a

risk similar to that of non-obese children.3 Separating the

effects of childhood and adult body size in populations is

extremely challenging, however, particularly given that

individuals who are overweight during childhood typically

remain so as adults.4,5 Furthermore, as diseases such as

coronary artery disease (CAD) are preceded by metabolic

dysregulation,6–8 and because obesity itself is difficult to

reduce,9 it is also increasingly important to identify molec-

ular biomarkers responsible for mediating effects of adi-

posity on disease risk.

We recently demonstrated that the challenge of separat-

ing effects of adiposity at different life stages can be

addressed using human genetics by applying an approach

known as multivariable Mendelian randomization

(MR).10–12 This method exploits the random assortment of

genetic alleles within a population to disentangle the

effects of multiple closely related exposures (e.g. body size

at different life stages) on disease risk. Moreover, under

the principles of MR, these genetic variants are inherited

quasi-randomly at conception and are thus robust to con-

founding and reverse causation.13,14

As illustrated in Figure 1A, MR can be applied in a uni-

variable setting to estimate the effects of childhood body

size on complex traits and disease outcomes (e.g. a circu-

lating biomarker or CAD). This is referred to as the ‘total

effect’ of child body size, which does not account for adult

body size in the model. Previously, we identified strong evi-

dence of a total effect of child body size on adult CAD risk

Key Messages

• Children with obesity typically have a higher risk of developing cardiometabolic disease in later life, which can be

preceded by metabolic dysfunction. However, there is increasing evidence that lifestyle changes can be enforced to

help to mitigate this conferred risk by reducing weight during adolescence.

• In this study, we evaluated whether childhood adiposity has any lasting effect on 123 nuclear magnetic resonance-

based measures of systemic metabolism using an approach known as multivariable Mendelian randomization.

• The vast majority of effects between childhood adiposity and circulating metabolites drastically attenuated when

accounting for adulthood adiposity (35 out of 42). This suggests that adiposity influences these markers due to a

persistent, long-term effect of remaining overweight for many years in life.

• Circulating metabolites related to very-low-density lipoprotein particles provided the strongest evidence of mediating

the long-term effect of adiposity on coronary artery disease risk, whereas high-density lipoprotein-related metabolites

provided very weak evidence of a mediatory role.

• The biomarkers which showed the strongest evidence of an independent effect of childhood adiposity (amino acids

leucine, isoleucine and tyrosine) provided little evidence that they have a downstream influence on disease risk in

adulthood.
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[odds ratio (OR): 1.49 per change in child body size category,

95% confidence interval (CI): 1.33 to 1.68].10 Multivariable

MR allows the effects of child and adult body size to be si-

multaneously estimated (Figure 1B and C), making it possible

to estimate the ‘direct effect’ of childhood body size that is

not mediated via adult body size (Figure 1B). Similarly, the

‘indirect effect’ can also be estimated, which is the contribu-

tion mediated along the causal pathway via adult body size

(Figure 1C). For example, in the previous analysis on CAD

risk, effect estimates from the univariable analysis attenuated

to the null when accounting for adult body size (OR: 1.02,

95% CI : 0.86 to 1.22), suggesting that child obesity affects

CAD only indirectly via adult obesity. Observational associa-

tions between childhood obesity and adult CAD may there-

fore be explained by individuals remaining obese into

adulthood. There is strong support from the literature for this

indirect effect on CAD,15 although fewer studies have investi-

gated the independent effect of child adiposity on intermedi-

ate traits measured in adulthood such as circulating

biomarkers of systemic metabolism.

In this study, we aimed to comprehensively estimate the

direct and indirect effects of childhood body size on de-

tailed biomarkers of systemic metabolism measured via

targeted metabolomics in adulthood,16 and the potential

role of these biomarkers in mediating risk for CAD. First,

we sought to externally validate our derived genetic scores

using data from the Young Finns Study (YFS) to reinforce

their capability to separate child and adult body size. Next,

in two-sample MR, we estimated the total effect of child-

hood body size on 123 metabolism-related biomarkers us-

ing univariable MR. These markers were selected as they

were all captured on the nuclear magnetic resonance

(NMR) panel analysed in the study by Kettunen et al.,16

which have been broadly and variably associated with mul-

tiple cardiometabolic disease endpoints.17 For metabolic

markers with the strongest evidence of a genetically pre-

dicted effect in this analysis, we applied multivariable MR

to examine evidence of direct or indirect effects after ac-

counting for adult body size. We next evaluated which bio-

markers may potentially mediate the indirect effect of

childhood body size on CAD risk that we found evidence

of in our previous work.10 Finally, we investigated poten-

tial downstream consequences on a wide range of 126

traits and outcomes for markers that may be directly influ-

enced by childhood body size.

Methods

Data sources

Validation of genetic instruments for childhood and adult

body size

We previously identified genetic instruments for childhood

and adult body size by undertaking a genome-wide associa-

tion study (GWAS) of 453 169 individuals of European de-

scent from the UK Biobank study.18 Details have been

described previously10 and are described in detail in

Supplementary Note S1 (available as Supplementary data at

IJE online). In total, there were 295 and 557 genetic instru-

ments detected for childhood and adult body size, respec-

tively, based on conventional genome-wide corrections (i.e.

P< 5� 10�8) (Supplementary Tables S1 and S2, available

as Supplementary data at IJE online). Univariable and mul-

tivariable evaluations of these instruments provided strong

evidence that they are unlikely to suffer from weak instru-

ment bias based on derived F-statistics (Supplementary

Table S3, available as Supplementary data at IJE online). A

comparison of instruments for body size at both time points

identified 75 single-nucleotide polymorphisms (SNPs) with

P< 5� 10�8 at both time points and a comparison of their

estimates can be found in Supplementary Table S4 (avail-

able as Supplementary data at IJE online).

Validation analyses of these genetic instruments were

undertaken using measured body mass index (BMI) data

from the Cardiovascular Risk in YFS.19 Full details of these

Figure 1. Schematic causal graphs used to illustrate (A) univariable Mendelian randomization (MR) analyses used in this study to estimate total

effects between childhood body size and circulating metabolites, (B) multivariable MR analyses to estimate direct effects of childhood body size of cir-

culating metabolites and (C) applying the same multivariable framework to estimate the indirect effects on circulating metabolites mediated along

the causal pathway via adult body size. The highlighted arrows on these graphs illustrate the causal effect of childhood body size on the outcome be-

ing estimated in MR analyses. The textured arrows and grey shading indicate the effects that MR is typically robust to in comparison to observational

analyses.
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cohorts can be found in Supplementary Note S2 (available

as Supplementary data at IJE online).

Summary-level data from genome-wide association studies

Summary GWAS data on a total of 123 circulating metab-

olites measures from NMR quantified in �24 925 adults

from 14 cohorts (mean age range: 23.9–61.3 years) were

available from the Kettunen et al. (2016) study16 (accessi-

ble at http://www.computationalmedicine.fi/data). A high-

throughput NMR spectroscopy metabolomics platform

was used to quantify the 123 metabolite measures, includ-

ing lipids and constituents of 14 lipoprotein subclasses (to-

tal of 86 measurements), sizes of three lipoprotein

particles, two apolipoproteins, 14 fatty acids and their sat-

uration, 9 amino acids, 11 small molecules (involved in

glycolysis, citric acid cycle and urea cycle) and 1 inflamma-

tory marker. Details of the NMR metabolomics experi-

mentation and performance have been described

previously16,20,21 and applications in large-scale epidemio-

logical studies have recently been reviewed.17 These 123

traits were selected to encompass a broad range of meta-

bolic pathways using a platform originally described by

Soininen et al.20 and have also been broadly and variably

associated with multiple cardiometabolic disease.17

Summary GWAS data on CAD in a sample of 184 305

(60 801 cases and 123 504 controls) were obtained from

the Nikpay et al. (2015)22 study (accessible at http://www.

cardiogramplusc4d.org/data-downloads/).

Statistical analysis

Validating genetic instruments in an external cohort of

young Finns

We first evaluated validation of the genetic scores derived

from the UK Biobank study that was particularly war-

ranted given that these instruments are based on self-

reported recall data. This was undertaken by investigating

the capability of both childhood and adult scores to predict

obesity in childhood and adulthood using age- and sex-

adjusted logistic-regression models in the YFS. Age- and

sex-specific international BMI percentiles23 were used to

extrapolate cut-off points for age 3- to 18-year groups that

equate to a BMI of 30 kg/m2 in adulthood (Supplementary

Table S5, available as Supplementary data at IJE online).3

The comparison of the UK Biobank categories for body

size with those in the YFS can be found in Supplementary

Table S6 (available as Supplementary data at IJE online).

Receiver operating characteristic (ROC) curves were gen-

erated for these analyses to determine the area under

the curve (AUC) coefficients. Differences in AUC between

age- and sex-adjusted logistic-regression models were esti-

mated with the use of the DeLong algorithm.24

Univariable MR

We applied two-sample MR to estimate the total effect of

genetically predicted childhood body size on the 123 circu-

lating biomarkers using statistical packages within the

MR-Base platform25 (Figure 1A). This was undertaken us-

ing the inverse variance weighted (IVW) method, which

uses all SNP–outcome estimates regressed on those for the

SNP–exposure associations to provide an overall weighted

estimate of the causal effect based on the inverse of the

square of the standard error for the SNP–outcome associa-

tion. We applied a conservative Bonferroni correction (i.e.

P< 0.05/123¼4.07� 10�4) as a heuristic to allow a man-

ageable number of metabolic biomarkers that are most

strongly influenced by genetically predicted childhood

body size to be followed up in this study. However, down-

stream analyses were also repeated on all 123 biomarkers

and are included in the Supplementary Materials (available

as Supplementary data at IJE online) for readers interested

in investigating these findings based on a less conservative

threshold.

We also undertook various sensitivity analyses in this

study to improve the robustness of the findings. This in-

cluded applying the MR directionality test (also referred to

as the ‘Steiger method’) to support evidence that our ge-

netic instrument influences our exposure before our out-

come as opposed to the opposite direction of effect.26

Moreover, we calculated the intercept term for the MR-

Egger method for all univariable analyses to indicate

whether directional horizontal pleiotropy may be driving

results.27

Observational effect estimates and comparison with

genetic estimates

A linear-regression model was fitted for each variable,

with a categorized BMI variable based on the same propor-

tions as those derived in the initial UK Biobank analysis as

the explanatory variable and the biomarker measure as the

outcome. In the YFS, analyses were performed for those

who had data on both childhood/young adulthood BMI

and adulthood BMI (N¼ 1508).

Multivariable MR

Multivariable MR using the IVW method was subse-

quently applied in a two-sample setting using the Kettunen

et al. (2016) circulating metabolites GWAS data. This sta-

tistical method fits multiple risk factors as exposures (e.g.

childhood and adult body size in this study) to simulta-

neously estimate their genetically predicted effects on an

outcome (e.g. a circulating biomarker). This allowed us to
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estimate the ‘direct’ effect of childhood body size (i.e. the

effect after accounting for adult body size) as well as its ‘in-

direct’ effect (i.e. the effect mediated by adult body size) on

each metabolic biomarker (as depicted in Figure 1B and

C). We applied this model using all genetic variants for

both childhood and adult body size after undertaking link-

age disequilibrium clumping based on r2< 0.001 to ensure

independence of our instruments. Furthermore, we con-

ducted multivariable MR-Egger analyses to evaluate the

horizontal pleiotropy for direct and indirect effects.28

Evaluating potential downstream consequences on disease

outcomes

All circulating biomarkers identified in the initial univariable

MR analysis were also further evaluated to determine whether

they may mediate the total effect of adiposity on CAD risk.

This was undertaken as before using the IVW method and

adjusting the resulting p-values based on the 123 tests under-

taken. For metabolic markers where childhood body size pro-

vided evidence of a direct effect based on our multivariable

MR analyses based on this conservative threshold, we also

evaluated their putative downstream effects in a hypothesis-

free manner on 126 diverse traits and disease outcomes cu-

rated previously29 (Supplementary Table S7, available as

Supplementary data at IJE online). Our selection criterion in

this study was GWASs that had analysed �100 000 genetic

variants and a study sample size of n>1000, consisting of a

population of individuals of European or mixed ancestral de-

scent and who reported all summary statistics necessary to un-

dertake MR analyses. Due to the broad range of disease

endpoints that the 123 metabolic markers in this study have

been previously associated with, this phenome-wide analysis

encompassed a broad range of traits and outcomes.17

This included various types of cardiovascular disease [e.g.

ischaemic stroke (n¼ 29633)], autoimmune disease [e.g. in-

flammatory bowel disease (n¼ 34652)] and neuropsychiatric

diseases [e.g. amyotrophic lateral sclerosis (n¼ 36 052)].30–32

All analyses were undertaken using R (version 3.5.1)

and SAS (version 9.4). Forest plots were created using the

R package ‘ggplot2’.33

Results

Validation of genetic scores in the YFS

The validation study in the YFS demonstrated that our ge-

netic score for childhood body size is a stronger predictor

of childhood obesity compared with our adult body-size

score [AUCs (95% CI) 0.74 (0.65–0.83) vs 0.62 (0.53–

0.72), P¼ 0.02]. Conversely, the adult genetic score was a

stronger predictor of adulthood obesity based on a conven-

tional threshold of BMI� 30 kg/m2 [0.62 (0.58–0.65)]

compared with the childhood score [0.57 (0.54–0.60),

P¼ 0.02]. ROC curves illustrating these results can be

found in Figure 2. These findings therefore support the

utility of these genetic instruments to separate the direct

and indirect effects of childhood body size, which builds

upon the genetic correlation results reported previously

(Supplementary Table S8, available as Supplementary data

at IJE online). This separation is likely driven by genetic

variants that have a statistically larger or smaller magni-

tude of effect on body size in the original GWAS compared

with adulthood (Supplementary Table S9, available as

Supplementary data at IJE online).

Figure 2. Receiver operator characteristic (ROC) curves to compare the predictive ability of genetic scores for childhood body size (blue) and adult

body size (red). (A) ROC curve to investigate the prediction of adiposity during childhood (N¼ 2427, age¼ 3–18 years) using cut-offs defined in

Supplementary Table 4 (available as Supplementary data at IJE online) and (B) ROC curve to investigation prediction of adiposity during adulthood

based on BMI� 30 kg/m2 (N¼ 1762, age¼ 34–49 years).
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Evaluating genetic and observational evidence of

a total effect between childhood adiposity and

systemic metabolism.

Two-sample univariable MR analyses of summary GWAS

data provided strong evidence of a total effect between ge-

netically predicted childhood body size and 42 circulating

metabolites measured in adulthood (based on

P< 4.07� 10�4; Supplementary Table S10, available as

Supplementary data at IJE online). Due to the high correla-

tion that exists between these circulating metabolites, the

multiple-testing correction applied in this analysis may be

overly stringent; estimates for childhood body size on all

123 markers are therefore plotted in Supplementary Figure

S1 (available as Supplementary data at IJE online). Results

suggested that childhood adiposity has an inverse relation-

ship with high-density lipoprotein (HDL) cholesterol-

related markers and a positive relationship with those re-

lated to very-low-density lipoprotein (VLDL) cholesterol

and triglycerides. There was also strong evidence of a total

effect of genetically predicted childhood body size on sev-

eral amino acids, as well as on glycoprotein acetyls that is a sta-

ble marker of cumulative inflammation (Beta ¼ 0.34, SE ¼
0.06, P¼ 2.83�10�8). Intercept terms based on the MR-Egger

method did not provide strong evidence that horizontal pleiot-

ropy was driving these effects (Supplementary Table S11, avail-

able as Supplementary data at IJE online) and the MR

directionality test supported the direction of effect of childhood

body size influencing these circulating biomarkers

(Supplementary Table S12, available as Supplementary data at

IJE online).

Observational estimates based on childhood BMI (age

6–12 years) and circulating metabolites based on analyses

Figure 3. A forest plot depicting the observational (orange) and genetic (green) effect estimates between childhood body size (per change in body

size category) and circulating metabolites (per standard deviation unit change). Observational estimates were derived using data from the childhood

time point from the Young Finns Study, whereas genetic estimates are based on two-sample Mendelian randomization (MR) analyses using sum-

mary data. The observational estimates in this figure have been scaled using a scale factor to have the same magnitude of dispersion around the cen-

tral estimates as the MR results for comparative purposes.
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undertaken in the YFS were comparable to those identified

from univariable MR analyses as illustrated in Figure 3

(full results also available in Supplementary Table S13,

available as Supplementary data at IJE online). Further

analyses at the young adult (age 18–24 years) and adult

(mean age: 40.2 years, range: 34–46 years) time points in

the YFS suggested that the magnitude of effect for BMI on

circulating metabolites typically increased over the life

course.

Using multivariable MR to determine whether

childhood adiposity has a direct or indirect effect

on circulating metabolites.

Applying multivariable MR resulted in the majority of ef-

fect estimates identified in the previous analysis (35/42) at-

tenuating to include the null upon adjustment for adult

body size (Figure 4 and Supplementary Table S14,

available as Supplementary data at IJE online). This sug-

gests that evidence of a total effect between childhood

body size and these metabolic biomarkers, as detected in

the univariable analysis, is likely attributed to a long-term

persistent effect of adiposity across the life course (i.e. not

just during childhood). Of the remaining seven circulating

metabolites, the effects of which did not attenuate to the

null, there were three biomarkers whose beta effect size for

the direct effect of childhood body size was larger in mag-

nitude compared with an indirect effect. These three

markers were all amino acids, namely leucine (Beta¼ 0.15,

SE¼0.07, P¼ 0.04), isoleucine (Beta¼ 0.15, SE¼ 0.07,

P¼ 0.03) and tyrosine (Beta¼ 0.15, SE¼ 0.07, P¼ 0.03).

Repeating all analyses using the multivariable MR-Egger

provided directionally consistent effect estimates to those

derived using the IVW method (Supplementary Table S15,

available as Supplementary data at IJE online). We also

undertook IVW MVMR analyses on all remaining 123

Figure 4. A forest plot illustrating the effect estimates of genetically predicted childhood (yellow) and adult (blue) body size (per change in body size

category) on circulating metabolites (per standard deviation change) based on multivariable Mendelian randomization analyses. Points correspond-

ing to estimates whose confidence intervals overlapped with the null were not filled in.
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circulating metabolites in addition to the 42 that survived

the heuristic threshold based on Bonferroni corrections

(Supplementary Table S16, available as Supplementary

data at IJE online).

Assessing the putative mediatory effects of

adiposity-influenced metabolic biomarkers on

CAD

Univariable MR analyses provided evidence to suggest that

14 of the metabolic markers identified in the initial analy-

sis influence CAD risk at a level of P< 0.05/

42¼ 1.19�10�3. These were all VLDL-related bio-

markers, including serum total triglycerides (OR¼1.30,

95% CI: 1.17 to 1.43, P¼ 5.08�10�5). As expected, there

was a lack of evidence supporting the role of HDL choles-

terol-related biomarkers identified in the previous analysis

in conferring CAD risk (as is becoming increasingly evi-

dent34) (Figure 5 and Supplementary Table S17, available

as Supplementary data at IJE online). There was also no

evidence that any of the three amino acids that were

highlighted in previous analysis altered CAD risk [leucine

(OR¼ 1.00, 95% CI: 0.86 to 1.13, P¼0.99], isoleucine

(OR¼ 0.96, 95% CI: 0.74 to 1.18, P¼ 0.73) and tyrosine

(OR¼ 1.02, 95% CI: 0.90 to 1.14, P¼ 0.76)). As before,

intercept terms using the MR-Egger method did not pro-

vide strong evidence that directional horizontal pleiotropy

was responsible for these results (Supplementary Table

S18, available as Supplementary data at IJE online), nor

did the MR directionality test indicate that reverse causal-

ity was potentially a major issue for these analyses

(Supplementary Table S19, available as Supplementary

data at IJE online). We also repeated univariable MR anal-

yses to estimate the effect of all circulating metabolites

Figure 5. A forest plot illustrating the effect estimates of genetically predicted metabolites (per change in standard deviation increase) on coronary ar-

tery disease risk based on univariable Mendelian randomization analyses. Points corresponding to estimates whose confidence intervals overlapped

with the null were not filled in.
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(which had at least one genetic instrument based on

P< 5� 10�8) on CAD risk, not just the 42 that survived

conservative Bonferroni corrections (Supplementary Table

S20, available as Supplementary data at IJE online).

Lastly, we conducted a hypothesis-free analysis for

these three amino acids on 126 outcomes (Supplementary

Table S7, available as Supplementary data at IJE online) to

highlight any potential long-term effects they may mediate

between childhood body size and later-life disease risk. No

results survived multiple-testing corrections for tyrosine or

leucine (based on the 126 outcomes analyses i.e. P<0.05/

126¼ 3.97�10�4), including outcomes such as breast can-

cer and anorexia, which may be directly influenced by

childhood body size (Supplementary Table S21, available

as Supplementary data at IJE online). We were only able to

instrument isoleucine using a single genetic instrument, al-

though there were 10 outcomes that survived multiple-test-

ing corrections in this analysis (Supplementary Table S22,

available as Supplementary data at IJE online). However,

given that this genetic variant is located at the GCKR gene

locus, which is known to be highly pleiotropic,35,36 we fur-

ther evaluated the relationship between childhood and

adult body size on these 10 outcomes using multivariable

MR as undertaken previously. There was weak evidence

that childhood body size has a direct effect on these out-

comes (Supplementary Table S23, available as

Supplementary data at IJE online), which suggests that it is

unlikely that circulating isoleucine mediates any putative

effect of childhood adiposity on them.

Discussion

In this study, we investigated the direct and indirect influ-

ence of childhood adiposity on 123 circulating biomarkers

of systemic metabolism in adulthood. Based on conserva-

tive multiple-testing corrections, there was evidence that

genetically predicted body size in childhood has a total ef-

fect on 42 of these biomarkers in adulthood. However, ac-

counting for adult body size via multivariable MR

suggested that such effects of childhood adiposity are

mainly indirect, i.e. they are mediated via adult adiposity.

Further analyses suggested that several of these biomarkers

related to serum triglycerides and VLDL particles that may

putatively mediate the effects of adult adiposity on CAD

risk. In contrast, there were three amino acids (leucine, iso-

leucine and tyrosine) that were the only metabolic bio-

markers on which childhood adiposity may have a direct

effect, although there was no meaningful evidence that

these amino acids in turn altered CAD risk.

Leveraging data from large-scale GWAS provides a

powerful platform to study causal relationships between

modifiable risk factors and disease. Conventionally,

however, MR studies have been limited in their application

to temporally segmented effects,37 which may be attributed

in part to the lack of GWAS concerning the onset of and

subsequent disease progression.38 As such, interpretation

of findings in a univariable setting are confined to geneti-

cally predicted exposures based on cross-sectional stages in

the life course. Recent methodological developments in

MR allow multiple exposures to be investigated in a multi-

variable framework.11 Determining whether childhood

risk factors have a direct influence on adult disease risk

requires modelling them whilst accounting for a measure

of the same risk factor taken in adulthood.

Studies from the literature have previously reported

strong evidence that BMI causally influences circulating

metabolic biomarkers measured in young adulthood39 and

that such effects of BMI are driven by fat stored cen-

trally.40 Results from our univariable analysis of childhood

body size further demonstrate this, as there was evidence

of a total effect on 42 circulating metabolites based on

stringent Bonferroni corrections for multiple testing. In our

subsequent multivariable analysis, adjusting analyses for

adult body size resulted in 35 of these effects attenuating to

the null when accounting for adult body size. This suggests

that childhood body size indirectly influences levels of

these circulating metabolites via adult body size, as was the

case for our previous analysis of CAD.10 Corroborating ev-

idence of this cumulative, sustained effect of adiposity on

circulating metabolites was identified using observational

data from the YFS. In these analyses, we observed that the

magnitude of effect for BMI on these circulating metabo-

lites typically increased over the lifespan. Moreover, our

results highlight the importance of accounting for adult

measures when investigating the effect of early life expo-

sures on later life disease outcome using MR, which is not

always conventionally undertaken in the field.41,42 Even

when observational studies do account for adult body size,

they risk inducing collider bias into their analyses by condi-

tioning on a potential mediator,43 which multivariable MR

has been shown to be more robust to.11

Amongst the 42 circulating metabolites identified in the

initial univariable MR analysis, there were 14 biomarkers

that may putatively mediate the indirect effect of childhood

body size on CAD risk. Notably, these 14 biomarkers were

all VLDL- and triglyceride-related. VLDL particles pro-

duced by the liver are the major carriers of triglycerides in

plasma and are positively associated with both obesity and

CAD risk.44,45 A recent study also supports evidence that

VLDL metabolic markers mediate a substantial component

of the effect of obesity on myocardial infarction risk,46 al-

though further research is required to evaluate what pro-

portion of this effect triglyceride particles are responsible

for. Conversely, there was a lack of evidence from
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downstream analyses that any HDL-related measure iden-

tified in initial analyses influence CAD risk. These findings

therefore corroborate evidence from various studies and

trial outcomes that support HDL cholesterol or apolipo-

protein A-I as non-causal for CAD,47–50 although it may

still be useful for risk prediction.51,52

Our multivariable analysis also suggested that only 3 of

the 42 circulating metabolites highlighted by our univari-

able analyses may putatively be influenced directly by

childhood body size. These were the amino acids leucine,

isoleucine and tyrosine. Each of these biomarkers has been

associated with obesity and cardiometabolic health in pre-

vious studies,53–55 although our analysis suggests that child-

hood body size may directly influence their levels, potentially

in addition to adult body size. However, we found no strong

evidence in our study to suggest that these direct effects would

have downstream consequences on CAD risk in adulthood.

Our study has several limitations that should be taken into

account when interpreting the results. The childhood body-

size instruments used were derived using recall-questionnaire

data, which is why we have undertaken analyses in the YFS

cohort to provide additional evidence of validation. That said,

future GWASs of measured childhood adiposity will be prefer-

able to this score once large-scale sample sizes are available, al-

though, for the time being, our scores have been derived in a

sample size far larger than any study of measured childhood

adiposity. This score has also recently been shown to be a

stronger predictor of childhood BMI compared with adult-

hood-measured scores in the HUNT study in Norway as well

as the YFS.56 Additionally, future data sets will likely facilitate

analyses assessing the impact of weight change over the life

course on disease risk to be investigated, which may poten-

tially identify evidence of effects independently of childhood

and adult body size. Likewise, our genetic scores are based on

body size at specific time points [i.e. prepuberty and mid-adult-

hood (mean age�55years)], which therefore lack the precision

to identify critical windows throughout the lifecourse where

the effect of adiposity on disease begins to become immutable.

For example, there is previous evidence to suggest that being

overweight in late adolescence may still increase the risk of

CAD even after adjustment for adulthood BMI.57

Furthermore, we note that our body-size scores do not differ-

entiate between fat and lean mass, which is particularly impor-

tant to take into account for the branched-chain amino acids

analysed in this study such as leucine and isoleucine.

We also acknowledge that, although the premise of MR

is to use genetic instruments as proxies to mimic variation

in modifiable risk factors, the genetically predicted body

size may not directly equate to weight change due to life-

style changes such as diet or exercise as discussed in the

early MR papers with respect to the gene–environment

equivalence assumption of MR elsewhere.58 Furthermore,

the 123 circulating metabolites analysed in this study are

predominantly based on lipoprotein lipids, which leaves

scope to expand upon our analyses in the future, particu-

larly given that the number of metabolites with GWAS

data has been expanded upon by recent work.59 Lastly, we

have only used metabolic data from one source in this

work for MR analyses due to the availability of GWAS

summary statistics. Therefore, replication of our results is

warranted when those data become accessible.

In conclusion, our findings suggest that the influence of

early life adiposity on adult systemic metabolism is pre-

dominantly due to an indirect pathway via adulthood body

size. Atherogenic VLDL particles may further mediate

these effects of sustained adult adiposity on adult CAD

risk, whereas evidence of a mediatory role was not sup-

ported for amino acids or HDL particles. The impact of

childhood obesity on adult cardiometabolic disease risk

may therefore be mitigated by reducing adult adiposity or

by targeting intermediate traits like triglyceride-rich lipo-

proteins if such reductions are infeasible.

Supplementary data

Supplementary data are available at IJE online.
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