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Abstract Solution methods for convex mixed integer nonlinear programming (MINLP)
problems have, usually, proven convergence properties if the functions involved are differ-
entiable and convex. For other classes of convex MINLP problems fewer results have been
given. Classical differential calculus can, though, be generalized to more general classes of
functions than differentiable, via subdifferentials and subgradients. In addition, more gen-
eral than convex functions can be included in a convex problem if the functions involved
are defined from convex level sets, instead of being defined as convex functions only. The
notion generalized convex, used in the heading of this paper, refers to such additional prop-
erties. The generalization for the differentiability is made by using subgradients of Clarke’s
subdifferential. Thus, all the functions in the problem are assumed to be locally Lipschitz
continuous. The generalization of the functions is done by considering quasiconvex functions.
Thus, instead of differentiable convex functions, nondifferentiable f ◦-quasiconvex functions
can be included in the actual problem formulation and a supporting hyperplane approach is
given for the solution of the considered MINLP problem. Convergence to a global mini-
mum is proved for the algorithm, when minimizing an f ◦-pseudoconvex function, subject
to f ◦-pseudoconvex constraints. With some additional conditions, the proof is also valid for
f ◦-quasiconvex functions, which sums up the properties of the method, treated in the paper.
The main contribution in this paper is the generalization of the Extended Supporting Hyper-
plane method in Eronen et al. (J Glob Optim 69(2):443–459, 2017) to also solve problems
with f ◦-pseudoconvex objective function.
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1 Introduction

Mixed-integer problems are generally nonconvex, because of the inherent nature of the integer
variables. Classifying mixed integer problems into linear, convex or nonconvex is, therefore,
somewhat confusing. However, the classification is done on the integer relaxed problem
[20]. This is quite convenient since the integer requirements are, in all state of the art mixed-
integer nonlinear programming (MINLP) solvers, handled separately by a branch-and-bound
(or corresponding) procedure, while solving relaxed subproblems.

Several algorithms to solve smooth (continuously differentiable) convex MINLP prob-
lems, have been published over the last few decades. The methods behind the solvers are
often divided into branch-and-bound (BB), decomposition, cutting plane and outer approxi-
mation methods. In direct BB methods [14,21,27] and decomposition methods [15], integer
relaxed convex subproblems are solved in each node of a BB tree. In cutting plane [33,34]
and outer approximation methods [4,9,13,19], the original MINLP problem is relaxed into a
series of mixed integer linear programming (MILP) problems. The linearly relaxed subprob-
lems are built up of cutting planes and/or supporting hyperplanes and sequentially solved as a
series of subproblems, which finally give the solution to the original convexMINLP problem.
In the outer approximation methods [3,9,13], NLP problems are additionally solved in order
to obtain the solution points where the supporting hyperplanes are generated. In the extended
supporting hyperplane (ESH) methods [12,19] a line search procedure is used to obtain these
points. In the extended cutting plane (ECP) methods [32–34] no NLP problems are solved,
since the cutting planes are already generated at the solution points obtained from the sub-
problems. Usually, MILP subproblems are solved but, if the objective function is quadratic,
it is often more efficient to solve MIQP subproblems instead of MILP, especially since
subsolver packages like CPLEX (https://www.ibm.com/analytics/data-science/prescriptive-
analytics/cplex-optimizer) and GUROBI (http://www.gurobi.com/) give this opportunity,
today. Replacing MILP subproblems with MIQP is not only possible in the ESH and ECP
methods. This is an opportunity for all MINLP methods, originally based on solving MILP
subproblems. As shown in [33], all linearly relaxed subproblems need not be solved to opti-
mality, but in order to finally guarantee the optimality of the MINLP solution at least, the last
subproblem must be solved to optimality. In a comparison of solving smooth convex block
layout problems in [6], it was found, that only one MILP subproblem needed to be solved to
optimality in a main part of the instances, resulting in a very efficient procedure, at least for
this subclass of convex problems.

Many smooth convex algorithms are already in commercial use in different solution
packages, such as GAMS (https://www.gams.com/), AIMMS (https://aimms.com/), AMPL
(https://ampl.com/) and LINDO (https://www.lindo.com/). Reviews of several solution
approaches can be found in [3,4,16]. Comparisons of the efficiency and performance of
the solvers on smooth convex problems, are additionally given, for example, in [6,19].

Despite a large number of solvers, with proven convergence properties for differentiable
convex problems, the development of new algorithms for solving convex MINLP problems
is still an important activity. This is not only true because of the large number of applied
problems that can be formulated in a general convex context, but especially because convexity
induces several fundamental properties, which have to be taken into account, in order to be
able to rigorously solve generalized convex MINLP problems. In addition, new algorithms
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for solving nonconvex problems need solve sequences of convex problems [1,22,30], forcing
additional requirements to be handled, by the convex subsolver. Since convexity for functions
and sets does not induce exactly the same reverse properties, the development of generalized
algorithms is more demanding than it turns out to be at first glance.

Today, themajority of the state of the art solvers, for convexMINLPproblems, have proven
convergence properties for problems including differentiable convex functions. However, for
example, replacing gradients with subgradients, in such an algorithm does not automatically
ensure that the same convergence properties are fulfilled, even if the constraints are convex,
but nonsmooth. For example, an endless cycling behavior between the solution points from the
NLP problem and theMILPmasters’ problemwas obtained in the linear outer approximation
(LOA) algorithm [13] by such a replacement in [10]. This was the case, despite the fact that
the convergence properties of the LOA algorithm for smooth convex functions were still
ensured. Therefore, it is important to note that nonsmooth techniques can successfully be
applied to smooth problems, but not always vice versa.

Nonsmooth convex functions, such as abs-functions and max-functions are simple exam-
ples of nondifferentiable functions, frequently appearing in a wide variety of problems.
Nondifferentiable functions are commonly used in optimal control problems, in mechanics,
economics, data mining, machine learning, medical diagnosis etc. [2], showing the impor-
tance of being able to handle such functions rigorously, in a solver. Generalized convex
functions, such as fractional functions composed of a convex nominator and a positive linear
denominator, typically appear as the objective function in cyclic problems. Such fractional
functions, give rise to convex level sets, are quasiconvex and often pseudoconvex but not nec-
essarily convex. Nonsmooth convex spline functions, used for tightening the underestimation
and improving the efficiency of certain global optimization solvers [22,23], exemplify the
importance of also being able to solve nonsmooth convex subproblems in global optimization
algorithms.

In order to solve such problems rigorously, we introduce in this paper an algorithm for
solving generalized convex MINLP problems. The notation generalized convex, used in the
heading of the paper refers to the additional convex properties that are taken into account in the
algorithm. In the method considered, we assume all functions to be at least locally Lipschitz
continuous and f ◦-pseudoconvex. With some additional assumptions the functions may
be f ◦-quasiconvex. Thus, in addition to differentiable convex functions, nondifferentiable,
pseudo and quasiconvex functions can be handled with the actual method.

The solution approach, studied in the paper, has its origin in the cutting plane method [18]
and the supporting hyperplane method [31], which were introduced for solving differentiable
convex NLP problems. The cutting plane approach was extended to smooth convex MINLP
problems in [34] and further extended to handle smooth pseudoconvex functions both in the
objective function and the constraints in [32,33]. In [10,11] the cutting plane approach was
generalized to be able to handle nonsmooth f ◦-pseudoconvex functions and a regularized
cutting plane method for solving nonsmooth convex MINLP problems has been given in [8].
In [26] supporting hyperplanes were introduced as alternatives to cutting planes when solving
differentiable convexMINLP problems and in [19] a convergence proof for the differentiable
convex case has been given and the method was named the extended supporting hyperplane
method. The convergence proof, for the supporting hyperplane approach, was extended to
cover problems including nonsmooth f ◦-pseudoconvex constraints, in [12]. In this paper,
we finally generalize the supporting hyperplane approach to MINLP problems including
f ◦-pseudoconvex functions both in the objective function as well as in the constraints. The
proof is also valid for f ◦-quasiconvex functions, with the restriction, that the supports, then
need to be generated at points where the subgradients are nonzero.
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In themethod considered in this paper, the supporting hyperplanes are generated at solution
points obtained from one or two different line searches: one for the objective function and one
for the constraints. Supports to the constraints are generated on the boundary of the feasible
region and supports to the objective function on boundaries of decreasing level sets of the
objective function. The supports to the objective function thus form convex cones, used in
the solution approach. Nevertheless, interior points for the line searchers are needed. If an
optimal integer relaxed solution point of the problem is given or can be calculated, this point
can be used as an interior point in both line searches. However, an interior point obtained
from solving a feasibility problem is preferable, since such a problem can easily be solved,
for example, with a linear programming (LP) based hyperplane approach, such as the one
given in Sect. 5 of this paper. In a case where the objective function is convex, the point
obtained from a feasibility problem is needed only in the line search for the constraints, but
is usable for the objective function line search as well. However, if the objective function is
f ◦-pseudoconvex an optimal integer relaxed solution point is, in principle, needed for the
objective function. Such an NLP point can be calculated using the approaches presented in
[25] or in [11,33]. However, in the paper we will show that the given hyperplane method is
able to solve a corresponding NLP problem, by itself, and thus any other feasible interior
point for the objective function as well. With a modified approach to that presented in [33], a
sequentially improved interior point for the objective function can also be obtained and thus
it is not necessary to give a presolved interior point for the objective function in the given
solution approach. In the next sections, wewill prove that themethod converges to an ε-global
optimal value, when solving problems with an f ◦-pseudoconvex objective function and f ◦-
pseudoconvex constraints. The bisection method is used in all the line searches to ensure
successful solutions. In the considered numerical examples, the use of different interior
points and solution strategies are illustrated. Furthermore, the given numerical examples
include comparisons between the supporting hyperplane approach and the cutting plane
approach in [11,33]. The solver in [35] has been used in these computations. We also include
a comparison when solving a nonsmooth f ◦-pseudoconvex MINLP problem and its smooth
nonconvex reformulation with several MINLP algorithms available in GAMS.

To make the paper easier to read, some notations and basic information on generalized
convexity and nonsmooth optimization has been provided in the first chapter. More infor-
mation on generalized convexity can be found, for example, in the textbooks [28,29] and on
nonsmooth optimization, in the references [2,7,24]. In addition, the textbook [5] can be rec-
ommended as related backgroundmaterial when considering solution approaches for solving
generalized convex NLP problems.

2 Preliminaries

In this section some basic definitions and results are given on the function classeswe consider.

Definition 1 A function f : Rn → R is locally Lipschitz continuous at a point x ∈ R
n if

there exist scalars K > 0 and δ > 0 such that

| f ( y) − f (z)| ≤ K‖ y − z‖ for all y, z ∈ B(x; δ), (1)

where B(x; δ) ⊂ R
n is an open ball with center x and radius δ.

For a locally Lipschitz continuous function a gradient may not exist everywhere. However,
a Clarke subgradient can be defined at any point.
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Definition 2 [7] Let f : Rn → R be locally Lipschitz continuous at x ∈ R
n . The Clarke

generalized directional derivative of f at x in the direction d ∈ R
n is defined by

f ◦(x; d) := lim sup
y→x
t↓0

f ( y + td) − f ( y)
t

and the Clarke subdifferential of f at x by

∂ f (x) := {ξ ∈ R
n | f ◦(x; d) ≥ ξ T d for all d ∈ R

n}.
Each element ξ ∈ ∂ f (x) is called a subgradient of f at x.

Note that for a smooth (i.e. continuously differentiable) function f : Rn → R we have
∂ f (x) = {∇ f (x)} for any x ∈ R

n .

Theorem 1 Let f : Rn → R be locally Lipschitz continuous at x ∈ R
n. Then

(i) ∂ f (x) is a nonempty, convex and compact set.
(ii) ∂ f (x) ⊂ B(000; K ), where K is a Lipschitz constant of f at x.
(iii) f ◦(x; d) = max {ξ T d | ξ ∈ ∂ f (x)} for all d ∈ R

n.
(iv) f ◦(x; d) is an upper semicontinuous function of (x, d).

Proof The proofs can be found in [7, pp. 26–27]. ��
The following fundamental theorempresents an easyway to determine the subdifferentials

of a function.

Theorem 2 Let f : Rn → R be locally Lipschitz continuous at x ∈ R
n. Then

∂ f (x) = conv
{
ξ ∈ R

n | ∃(xi ) ⊂ R
n\Ω f s.t. xi → x and ∇ f (xi ) → ξ

}
,

where conv denotes the convex hull of a set and Ω f is the set of points on which function f
is not differentiable.

Proof The proof can be found in [7, p. 63]. ��
The function classes being considered can now be defined starting with a recall of the

definition of the classical pseudoconvexity.

Definition 3 A function f : Rn → R is pseudoconvex, if it is smooth and for all x, y ∈ R
n

f ( y) < f (x) implies ∇ f (x)T ( y − x) < 0.

In Definition 3, it can also be written ∇ f (x)T ( y − x) = f ′(x; y − x), where f ′ is the
classical notation of the directional derivative. This will make the definition analogous to the
following generalization.

Definition 4 A locally Lipschitz continuous function f : R
n → R is f ◦-pseudoconvex

( f ◦-quasiconvex) if for all x, y ∈ R
n

f ( y) < (≤) f (x) implies f ◦(x; y − x) < (≤)0.

It is known that a convex or pseudoconvex function is f ◦-pseudoconvex. Furthermore,
an f ◦-pseudoconvex function is f ◦-quasiconvex. The level sets of all these function classes
are convex. These results can be found in [2]. Furthermore, if 000 ∈ ∂ f (x) implies that x is
a global minimum of f , then f ◦-quasiconvex function is f ◦-pseudoconvex. This result is
proven in e.g. [12].

With the following lemma it can be seen that in Definition 4 we could use appropriate
compact sets instead of points x and y.
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Lemma 1 Let f : Rn → R be f ◦-pseudoconvex. Let A,C ⊂ R
n be nonempty compact sets

such that there exists a ∈ R such that f ( y) < a ≤ f (x) for all x ∈ A and y ∈ C. Then,
there exists δ > 0 such that

sup
x∈A

ξ∈∂ f (x)
y∈C

ξ T ( y − x) = −δ.

Proof The proof can be found in [11] Lemma 2.10. ��

We need an additional assumption to prove the corresponding result for f ◦-quasiconvex
function. In addition, another lemma is first needed.

Lemma 2 Let f : R
n → R be f ◦-quasiconvex and x, y ∈ R

n. If f ( y) < f (x) and
000 /∈ ∂ f (x), then f ◦(x; y − x) < 0.

Proof The proof is similar to that of Lemma 1 in [12]. ��

Lemma 3 Let f : Rn → R be f ◦-quasiconvex. Let A,C ⊂ R
n be nonempty compact sets

such that there exists a ∈ R such that f ( y) < a ≤ f (x) for all x ∈ A and y ∈ C. Suppose
that 000 /∈ ∂ f (x) for all x ∈ A. Then, there exists δ > 0 such that

sup
x∈A

ξ∈∂ f (x)
y∈C

ξ T ( y − x) = −δ.

Proof We can write

sup
x∈A

ξ∈∂ f (x)
y∈C

ξ T ( y − x) = sup
x∈A
y∈C

sup
ξ∈∂ f (x)

ξ T ( y − x).

By Lemma 1(ii)

sup
ξ∈∂ f (x)

ξ T ( y − x) = f ◦(x; y − x).

Recall that an upper semicontinuous function attains its maximum value on a compact set.
Thus, there exists x̂ ∈ A and ŷ ∈ C such that

sup
x∈A
y∈C

f ◦(x; y − x) = f ◦(x̂; ŷ − x̂).

By Lemma 2 f ◦(x̂; ŷ − x̂) < 0, which completes the proof. ��

The following result allows us to treat locally Lipschitz continuous functions as Lipschitz
continuous ones.

Lemma 4 If f : Rn → R is locally Lipschitz continuous on a compact set L, then it is
Lipschitz continuous on the set L.
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3 ESH for the problem with an f ◦-pseudoconvex objective function

In this section, the extended supporting hyperplane method [12,19] is generalized to solve a
problem with an f ◦-pseudoconvex objective function and f ◦-pseudoconvex constraint func-
tions. Unlike with a convex objective function, we can not transform the f ◦-pseudoconvex
objective function f to the constraint function f − μ ≤ 0 and minimize μ, since generally
f − μ may not be f ◦-pseudoconvex even if f is. Consider the problem:

min f (x) (P)

s.t. gm(x) ≤ 0, ∀m = 1, . . . , M

x ∈ L ∩ Y,

where f and gm are f ◦-pseudoconvex functions and L ⊂ R
n is a convex compact polytope

defined by linear constraints. Integer variables are defined by the index set IZ ⊆ {1, 2, . . . , n}
and the set Y = {x | x ∈ R

n, xi ∈ Z if i ∈ IZ}. Naturally, all the functions are locally Lips-
chitz continuous. Denote

F(x) = max
m=1,...,M

{gm(x)} ,

N = {
x ∈ R

n | F(x) ≤ 0
}

and

I0(x) = {m | gm(x) = F(x) = 0} .

The key idea of the ESHmethod is to approximate the nonlinear feasible set by supporting
hyperplanes. The point at which a hyperplane is created is found through a line search. The
one end point of the line search is the obtained solution point of an MILP subproblem. The
other end point denoted by xNLP is any point from the set N ∩ L which must be given to
or initially solved by the algorithm. This point is also called the feasible point and it can be
found e.g. by the algorithm presented in Sect. 5.

A line search may be done on the objective function as well. Let fr be the current upper
bound for the objective function and I pr = {

x1r , x
2
r , . . . , x

p
r
}
be the set of the found points

x j
r that satisfies f (x j

r ) = fr . On the one end point of the line search f should attain a value
that is lower than or equal to fr . Define

x f r
NLP =

{
xNLP, if f (xNLP) < fr
x p
r := 1

p

∑p
j=1 x

j
r , if f (xNLP) ≥ fr .

(2)

The line search for the objective function is done between the solution point of an MILP
subproblem and x f r

NLP. Note that if xNLP is an optimum of the integer relaxed version of

(P), then x f r
NLP = xNLP for all r . Any xNLP ∈ N ∩ L can be used as x f r

NLP as long as
f (xNLP) < fr . When f (xNLP) ≥ fr the point x

p
r is used in the line search. Since the level

sets of the f ◦-pseudoconvex function f are convex, we have f (x p
r ) ≤ fr .

The problem (P) is solved as a sequence of MILP problems. At iteration k we solve the
problem

min μ (MILPk)

s.t. fr + ξ Ti

(
x − xif

)
≤ μ, i ∈ I kf (3)

ξ Ti

(
x − xig

)
≤ 0, i ∈ I kg

x ∈ L ∩ Y, μ ∈ [μL, μU] ,
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where fr is the current upper bound, μL, μU are user given bounds, ξ i ∈ ∂ f (xif ) if i ∈ I kf
and ξ i ∈ ∂gmi (x

i
g), where mi ∈ I0(xig), if i ∈ I kg . Furthermore,

I kf =
{
i < k | F

(
xiMILP

)
≤ εg

}
and I kg =

{
i < k | F

(
xiMILP

)
> εg

}
,

where εg > 0 is a tolerance parameter given by the user and (xiMILP, μ
i ) is the solution

point of (MILPi ). Points xig are found through a line search between points xiMILP and

xNLP. Points xif are solutions points xiMILP or, if necessary, they are found through a line

search between points xiMILP and x f r
NLP. At first I

1
f = I 1g = ∅ but after the first iteration

I kf ∪ I kg = {1, 2, . . . , k − 1} and I kf ∩ I kg = ∅.

Algorithm 3.1 The ESH algorithm

Give the tolerance parameters εg , ε f > 0, give xNLP ∈ N ∩ L (can be found by e. g. the algorithm in

Sect. 5), set I kg = I kf = ∅ and k = r = 1. Set f1 = ∞ or if an integer feasible point x0MILP is known let

f1 = f
(
x0MILP

)
, I kf = {0}, I pr =

{
x0MILP

}
and add f0 + ξT

(
x − x0MILP

)
≤ μ, where ξ ∈ ∂ f

(
x0MILP

)
,

to (MILP1).

1. Solve the problem (MILPk ). Denote the solution by
(
xkMILP, μk

)
.

2. If μk ≥ fr − ε f then stop: fr is the optimal value and the first element of I pr is the final solution.

3. If F
(
xkMILP

)
> εg , do a line search between xNLP and xkMILP to find xkg such that F

(
xkg

)
= εg

2 .

Add to the problem (MILPk+1) the linear constraint ξT
(
x − xkg

)
≤ 0, where ξ ∈ ∂gm

(
xkg

)
and

gm
(
xkg

)
= F

(
xkg

)
. Update I k+1

g = I kg ∪ {k} and I k+1
f = I kf .

4. If F
(
xkMILP

)
≤ εg then

4.1 If f
(
xkMILP

)
< fr , update r = r + 1. Set xkf = xkMILP, fr = f (xkf ) and I pr =

{
xkf

}
. Update the

constraints of type (3) by using the new value fr .

4.2 If f
(
xkMILP

)
= fr , then set xkf = xkMILP and I pr = I pr ∪

{
xkf

}
.

4.3 If fr < f
(
xkMILP

)
≤ fr + εg , set xkf = xkMILP.

4.4 If f
(
xkMILP

)
> fr + εg , calculate x f r

NLP from (2). Find xkf such that f
(
xkf

)
= fr + εg with a

line search between x f r
NLP and xkMILP.

4.5 Add to the problem (MILPk+1) the linear constraint fr + ξT (x − xkf ) ≤ μ, where ξ ∈ ∂ f
(
xkf

)
.

Update I k+1
f = I kf ∪ {k} and I k+1

g = I kg .

5. Set k = k + 1 and go to step 1.

Algorithm 3.1 handles constraints in the same manner as the ESH algorithm in [12]. The
f ◦-pseudoconvex objective function is handled in a closely related way to how the αECP
method handles it in [33]. The point x f r

NLP guarantees that in step 4.4we can always find a point
on the contour

{
x ∈ R

n | f (x) = fr + εg
}
. This implies that we can add a constraint of type

(3) whenever F(xkMILP) ≤ εg . However, we do not need to use the constraint f (x) − fr ≤ 0
that was used in [33].

Algorithm 3.1 produces two sequences of values of the objective function. The sequence
( fr(k)) corresponds to objective function values of εg-feasible solutions of the primal problem
(P), while the sequence (μk) corresponds to the objective function values of the linearly
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relaxed problem (MILPk). The εg-feasibility will be satisfied in step 4 of the algorithm,
while the final termination will occur in step 2, when the gap between fr and μk is less than
or equal to ε f , i.e fr − μk ≤ ε f . In Algorithm 3.1 and throughout the text we have used εg
and ε f as absolute tolerances for feasibility and for the gap between fr and μk , respectively.
In a numerical algorithm these can be represented by relative tolerances.

4 The convergence proof

In what follows, we show that if εg > 0 and ε f = 0Algorithm 3.1 converges to an εg-feasible
global minimum value. A point x ∈ L ∩ Y is an εg-feasible global minimum if F(x) ≤ εg
and there does not exist y ∈ N ∩ L ∩ Y such that f ( y) < f (x). Then f (x) is an εg-feasible
global minimum value.

When considering the convergence ofAlgorithm 3.1 there is a useful result that has already
been proven in [12].

Lemma 5 If εg > 0, then the algorithm will find a point xkMILP such that F(xkMILP) ≤ εg
after a finite number of iterations.

Proof This is stated in [12] after Theorem 7. ��
The algorithm in [12] assumes a convex objective function and, thus, it is different from

Algorithm 3.1. Despite this, Lemma 5 is valid also when having an f ◦-pseudoconvex objec-
tive function and the proof is similar to that in [12]. The reason for this is that at the iteration
k when F(xkMILP) > εg only the constraints are considered in Algorithm 3.1.

The convergence proof of Algorithm 3.1 proceeds as follows. If the algorithm stops it is
shown that the current upper bound fr is an εg-feasible minimum value. If the algorithm does
not stop after a finite number of iterations it is shown that the sequence (μk − fr ) converges
to zero. Furthermore, this will imply that fr converges to an εg-feasible minimum value.

Notice that the index r is a function of the index k by Algorithm 3.1. For simplicity, we
will write r instead of r(k). Let x ∈ L and k ∈ N be arbitrary. Denote

μk
x = fr + max

i<k

{
ξ Ti

(
x − xif

)}
, (4)

where ξ i ∈ ∂ f (xif ) is used in the (MILPk). Equivalently, μk
x is the minimum of the problem

(MILPk) with added constraint x = x. Clearly, if x is feasible in (MILPk) then μk
x ≥ μk

since μ is minimized in (MILPk).
The following theorem justifies the stopping criterion of Algorithm 3.1 when ε f = 0.

Theorem 3 If μk ≥ fr , then the current upper bound fr is an εg-feasible global minimum
value.

Proof On the contrary, suppose there exists x̂ ∈ N ∩ L ∩ Y such that f (x̂) < fr . Let
C = {

x̂
}
, A = {x ∈ R

n | f (x) ≥ fr } ∩ L and a = fr . By Lemma 1 there exists δ > 0 such
that

μk
x̂ = fr + max

i∈I kf

{
ξ Ti

(
x̂ − xif

)}
≤ fr + sup

z∈A
ξ∈∂ f (z)

{
ξ T (x̂ − z)

}
= fr − δ.

Since x̂ is feasible this implies μk ≤ μk
x̂ < fr contradicting the assumption. ��
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Theorem 3 proves the convergence if the algorithm stops after a finite number of iterations.
The next step of the proof of the convergence is to consider the case when the algorithm does
not stop after a finite number of iterations.

In the following lemmawe explicitlywrite r = r(k) tomake the proof easier to understand.

Lemma 6 The sequence (μk − fr(k)) is increasing.

Proof Let xkMILP be the solution to the problem (MILPk). Then

μk − fr(k) = max
i∈I kf

{
ξ Ti

(
xkMILP − xif

)}
≥ max

i∈I k−1
f

{
ξ Ti

(
xkMILP − xif

)}
,

where ξ i ∈ ∂ f (xif ). Furthermore, by (4)

max
i∈I k−1

f

{
ξ Ti

(
xkMILP − xif

)}
= μk−1

xkMILP
− fr(k−1) ≥ μk−1 − fr(k−1).

Thus, μk − fr(k) ≥ μk−1 − fr(k−1) for all k ∈ N. ��
By the stopping criterion of Algorithm 3.1, the sequence (μk − fr(k)) is bounded above

by 0. This implies with Lemma 6 that the sequence converges. The following lemma proves

that it converges to 0. Denote I f :=
{
i | i ∈ I kf for some k

}
= ⋃∞

k=1 I
k
f .

Lemma 7 If the algorithmdoes not stop after a finite number of iterations, thenμk− fr → 0.

Proof Since εg > 0 the algorithm will find an εg-feasible point after a finite number of
iterations by Lemma 5. Then a new index is added to the set I f . Since the algorithm does
not stop, the sequence (xkMILP)k∈I f must be infinite.

By the Bolzano–Weierstrass Theorem, the sequence (xkMILP)k∈I f has an accumulation
point on the compact set L . Furthermore, there is a convergent subsequence which is a
Cauchy sequence. Then, for given ε > 0 there exists j > i such that i, j ∈ I f and x j

MILP ∈
B(xiMILP; ε

K ), where K is a Lipschitz constant of f on L . Thus, for any ξ ∈ ∂ f (xif )

μ j − fr ≥ ξ T
(
x j
MILP − xif

)
= ξ T

(
x j
MILP − xiMILP

)
+ ξ T

(
xiMILP − xif

)

> −
∥∥∥ξ T

∥∥∥
∥∥∥x j

MILP − xiMILP

∥∥∥ + 0 ≥ −K
ε

K
= −ε,

where inequality ‖ξ‖ ≤ K is obtained from Theorem 1(ii). Hence, the sequence (μk − fr )
has a convergent subsequence which converges to 0. Since the sequence is increasing and
bounded above it converges. Thus, μk − fr → 0. ��
Theorem 4 If μk − fr → 0, then ( fr ) converges to an εg-feasible global minimum value.

Proof Since f has a lower bound on the compact set L , and ( fr ) is decreasing, ( fr ) converges
to, say, at f̂ . On the contrary, suppose that this is not an εg-feasible global minimum value.
Thus, there exists x̂ ∈ N ∩ L ∩ Y such that f (x̂) < f̂ . In Lemma 1 choose C = {

x̂
}
,

A =
{
x ∈ R

n | f (x) ≥ f̂
}

∩ L and a = f̂ . Then for some δ > 0,

μk − fr ≤ μk
x̂ − fr ≤ sup

z∈A
ξ∈∂ f (z)

{
ξ T (x̂ − z)

}
= −δ

for all k ∈ N. This contradicts with the assumption μk − fr → 0, which proves the theorem.
��
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Finally, the theorem of convergence, that sums up the previous results, is given.

Theorem 5 Algorithm 3.1 converges to an εg-feasible global minimum value.

Proof If μk ≥ fr for some k ∈ N, then the minimum is obtained by Theorem 3. On the
other hand, if μk < fr for all k ∈ N then the algorithm does not stop after a finite number
of iterations. By Lemma 7 (μk − fr ) converges to 0. By Theorem 4, this implies that the
algorithm converges to an εg-feasible global minimum value. ��

Algorithm 3.1 can also solve problems with f ◦-quasiconvex constraint functions if an
additional condition holds true. The only proof that considers constraint functions is that of
Lemma 5. In [12] it was noted that the lemma is true for f ◦-quasiconvex functions gm , if
000 /∈ ∂gm(x) when a supporting hyperplane is created from gm at x. Thus, if the condition

000 /∈ ∂gm(x) for all x ∈ L ∩
{
y ∈ R

n | gm( y) = εg

2

}
∩

{
y ∈ R

n | F( y) = εg

2

}
(5)

holds for all m = 1, . . . , M , the constraint functions can be f ◦-quasiconvex. This is rather
nonrestrictive as the condition must hold on a single level curve only for a certain constraint
function.

We can also consider problems with an f ◦-quasiconvex objective function with the help
of Lemmas 2 and 3. These imply that convergence proofs are valid for the f ◦-quasiconvex
objective function if 000 /∈ ∂ f (xkf ) for any point x

k
f where linearization of type (3) is created.

This holds true if 000 /∈ ∂ f (x) for all x ∈ {
x | F(x) ≤ εg

}
.

In Algorithm 3.1 step 4.2 one could also leave out the old linearizations instead of updating
them. However, in this case and if fr is updated infinitely many times we need to additionally
require that the solution sequence has an unique accumulation point as in [11]. When the
linearizations are updated this is not needed.

5 Feasibility problem

In this section we consider finding a feasible point for (P) needed in Algorithm 3.1. That is,
the point xNLP ∈ N ∩ L . Due to tolerances, we will find only an εF -feasible point. In order
to guarantee that it is applicable for Algorithm 3.1 the εF should be smaller than the given
tolerance εg for Algorithm 3.1. The integer relaxed feasibility problem of (P) is:

min μ

s.t. gm(x) ≤ μ, ∀m = 1, . . . , M (FP)

x ∈ L , μ ∈ [μL , μU ] ,

where μL and μU are given bounds on μ. If the final solution of (FP) results in μ > εF , the
problem (P) does not have any εF -feasible point. On the other hand, if in solving (FP) we
encounter a point (x, μ) satisfying F(x) ≤ εF , then (P) has an εF -feasible solution. In this
case, we may stop solving (FP) and declare the point x to be a feasible point.

Denote I (x) = {m | gm(x) = F(x)}. We obtain the solution of the feasibility problem
(FP) by solving a sequence of LP problems

min μ

s.t. ξ Ti (x − xi ) ≤ μ, i < k (LPk)

x ∈ L , (6)
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where ξ i ∈ ∂gmi (x
i ) is arbitrary and mi ∈ I (xi ). Throughout this section ξ i is the subgra-

dient that was chosen in the i th iteration. The first problem (LP1) is simply (FP) without the
nonlinear constraints. The algorithm to find a feasible point is presented next.

Algorithm 5.1 The feasibility algorithm

Give a tolerance parameter εF ≥ 0 and set k = 1.

1. Solve the problem (LPk ). Denote the solution by (xk , μk ).
2. If F(xk ) ≤ εF then stop: xk is the εF -feasible point.
3. Let mk ∈ I (xk ) and ξTk ∈ ∂gmk (x

k ). Create a new problem (LPk+1) by adding the linear constraint

ξTk (x − xk ) ≤ μ to the problem (LPk ).
4. Set k = k + 1 and go to step 1.

There are three distinct cases of problem types:

1. F(x) > εF for all x ∈ L . The original problem (P) has no εF -feasible solution.
2. There does not exist a point x ∈ L such that F(x) < εF , but there exists y ∈ L such that

F( y) = εF .
3. There exists x ∈ L such that F(x) < εF .

In the convergence proofs we will assume that εF = 0. Then, it is clear that in case 1
Algorithm 5.1 will not stop. In case 2 the algorithm may not stop, but it will converge to a
feasible point. In case 3 the algorithm finds a feasible point after a finite number of iterations.
Case 3 (with εF = 0) can be restated so that the problem (P) satisfies the Slater constraint
qualification. We continue analysing the cases 2 and 3. Hence, from now on we assume that
a feasible point exists.

In the convergence analysis, it is first proved that the optimal valuesμk of (LPk) are always
negative. If the algorithm does not stop after a finite number of iterations, the sequence (μk)

converges to zero. This implies that any accumulation point of the sequence (xk) is a feasible
point.

Clearly, the sequence (μk) is increasing since for the feasible sets Ωk of problem (LPk)
we have Ωk+1 ⊆ Ωk for all k ∈ N. In a similar manner to Eq. (4), denote

μk
x = max

i<k

{
ξ Ti (x − xi )

}
, (7)

where x ∈ L . Then problem (LPk) can also be written as

min μk
x

s.t. x ∈ L .

Consequently, μk
x ≥ μk for any x ∈ L .

The following two lemmas sum up the results needed for the convergence in cases 2 and
3.

Lemma 8 Consider Algorithm 5.1. We have for all k ∈ N

1. μk < 0
2. μk ≤ μ0 for some μ0 < 0, if the Slater constraint qualification holds true.
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Proof Let x ∈ L and F(x) ≤ 0. A linearization in Algorithm 5.1 in step 3 is made from the
constraint function gmi only at xi where gmi (x

i ) > 0 ≥ gmi (x). The f ◦-pseudoconvexity
of the constraint functions implies ξ Ti (x − xi ) < 0 for all i < k. Thus,

μk ≤ μk
x = max

i<k

{
ξ Ti (x − xi )

}
< 0,

proving the first part of the lemma.
Suppose then that there exists x ∈ L such that F(x) < 0. By choosing a = 0, A =

{ y ∈ R
n | gm( y) ≥ 0} ∩ L and C = {x} in Lemma 1 we get for every m ∈ {1, . . . , M} a

constant δm > 0 such that

sup
z∈A

ξ∈∂gm (z)

{
ξ T (x − z)

}
= −δm .

Thus, for any k ∈ N

μk ≤ μk
x ≤ max

m
{−δm} < 0

and we may choose μ0 = maxm {−δm}. ��
Lemma 9 If Algorithm 5.1 does not stop after a finite number of iterations then the sequence
(μk) converges to zero.

Proof By Lemma 8, we have μk < 0 for all k ∈ N. Thus, (μk) has an upper bound 0. Since
the sequence (μk) is increasing and bounded above, it converges.

The infinite sequence (xk) has an accumulation point x̂ on the compact set L by the
Bolzano–Weierstrass Theorem. Let ε > 0 be arbitrary and xi , x j ∈ B(x̂, ε

2K ), i > j , where
K is a Lipschitz constant of F on L . Then by Theorem 1 (ii)

μi ≥ ξ Tj (x
i − x j ) ≥ − ∥∥ξ j

∥∥
∥∥∥xi − x j

∥∥∥ ≥ −K × 2
ε

2K
= −ε.

Hence, (μk) converges to zero. ��
The proof of convergence of case 2 is given below.

Theorem 6 Suppose Algorithm 5.1 does not stop after a finite number of iterations. Then
any accumulation point of the sequence (xk) is feasible in the problem (P).

Proof First, we prove that the sequence (F(xk)) converges to 0. On the contrary, we suppose
there exist ε > 0 and subsequence (xk j ) such that for all j ∈ N we have F(xk j ) ≥ ε. Let
m ∈ {1, 2, . . . , M}. By choosing

Am = {
x ∈ R

n | gm(x) ≥ ε
} ∩ L ⊆ {

x ∈ R
n | F(x) ≥ ε

} ∩ L and

C =
{
x ∈ R

n | F(x) ≤ ε

2

}
∩ L

in Lemma 1 we obtain

sup
y∈Am

ξ∈∂ f ( y)
x∈C

ξ T (x − y) = −δm < 0

for some δm > 0. Denote −δ = maxm {−δm}. We deduce that for any j ∈ N and x ∈ C

inequality μ
k j
x ≤ −δ holds. Hence, μk j ≤ μ

k j
x ≤ −δ for all j ∈ N contradicting Lemma 9.
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Let x be an accumulation point of the sequence (xk). Then there exists a subsequence
(xki ) such that limi→∞ xki = x. By continuity of F we have F(x) = limi→∞ F(xki ) = 0.

��
Finally, we give the proof that a feasible point is found in a finite number of steps if the

Slater constraint qualification holds true.

Theorem 7 If the problem (P) satisfies the Slater constraint qualification, Algorithm 5.1
finds a feasible point after a finite number of iterations.

Proof Suppose that Algorithm 5.1 does not converge after a finite number of iterations. By
Lemma 8 there exists μ0 < 0 such that

μk ≤ μ0 < 0 for all k ∈ N. (8)

This contradicts with Lemma 9. ��
If the constraint functions are f ◦-quasiconvex we need an additional assumption. The

assumption is that

000 /∈ ∂gm(x) if m ∈ I (x) and x ∈ L ∩ {
y ∈ R

n | gm( y) ≥ 0
}

(9)

for all m = 1, . . . , M . Note that this is a more strict condition than (5), which was needed to
guarantee the global convergence of ESH for the problems with f ◦-quasiconvex constraint
functions. When the condition (9) holds, we may use Lemma 3 instead of Lemma 1 in the
previous proofs. Furthermore, Lemma 3 is valid with the choice A = {x}, where F(x) > 0,
and B = { y}, where y ∈ L ∩ {z ∈ R

n | F(z) ≤ 0}. Then, f ◦(x; y − x) < 0 and with
this Lemma 8 can be proven for f ◦-quasiconvex functions. Hence, we could prove the
convergence of Algorithm 5.1 in the same way we did with the f ◦-pseudoconvex constraint
functions.

6 Numerical examples

In this section, we solve some problems having f ◦-pseudoconvex objective function with
Algorithm 3.1 and the αECP algorithm [11,33]. In order to understand the solution approach
of the αECP algorithm, we revise briefly its key features.

6.1 On the αECP algorithm

As presented in [11], the αECP algorithm takes an f ◦-pseudoconvex objective function f
into account by adding to the MINLP problem (P) the f ◦-pseudoconvex constraint

f (x) − fr ≤ 0 (10)

and using linearizations (3). The constant fr is an upper bound of the objective function. The
constraint (10) guarantees that we will eventually, by solving a sequence of MILP subprob-
lems, find a point where a linearization of type (3) can be done. Additional linearizations
can be generated at the point that is found through a line search between MILP solution and
the previously defined x p

r . Due to the use of the constraint (10), the line search is optional
in αECP, contrary to the case in the ESH algorithm. This gives a certain benefit to αECP,
since the objective function may also be restricted to be evaluated at integer points on the
integer variables only. On the other hand, if the objective function is allowed to be evaluated
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at relaxed values of the integer variables, then the line search procedure makes the algorithm
more efficient.

When a new upper bound fr is found, the old constraints of type (3) are omitted and a
new one is added. Furthermore, constraint (10) is updated as well as the α-cutting planes
(defined below) generated from it.

The f ◦-pseudoconvex constraint functions are handled by creating α-cutting planes

gm
(
xkMILP

)
+ αk × ξ T

(
x − xkMILP

)
≤ 0,

instead of traditional cutting planes. The constant αk is at first set to 1 and ξ ∈ ∂ f (xkMILP).
The α-cutting plane may cut off parts of the feasible region and this problem is resolved by
updating the αk values. The updating is no longer needed if αk satisfies inequality

αk ≥ gm
(
xkMILP

)

‖ξ‖ εz
, (11)

where εz > 0 is a user specified parameter. The constantsαk that do not satisfy inequality (11)
are multiplied by a factor greater than 1 whenever the feasible region of anMILP subproblem
is empty or a feasible solution to the MINLP problem is found. More details on the αECP
algorithm can be found in [11,33].

6.2 Example problems

The computational results with ESH and αECP are performed by the solver described in [35].
TheMILP andLP problems are solved by usingCPLEXversion 12.6.1 (https://www-01.ibm.
com/software/commerce/optimization/cplex-optimizer/) with default parameters. Problems
are solved by using 64-bit windows 7 computer with Intel i3-2100 3.1 GHz processor. In the
ESH and αECP algorithms we used the value 10−3 for the tolerances εg , ε f and 0.1 for the
parameter εz if not otherwise stated.

To illustrate the methods, we solve two simple problems. The first problem is

min
|x1 − 3| − 10x1
3x1 + x2 + 1

(P1)

s.t. (x1 − 7)2 − 5x2 ≤ 0

x1 − 1.8x2 ≤ 0

1 ≤ x1, x2 ≤ 8, x2 ∈ Z
+.

This problem was already solved with αECP in [11]. The objective function is f ◦-
pseudoconvex and its subdifferential is

∂ f (x1, x2) =

⎧
⎪⎪⎨

⎪⎪⎩

{
1

(3x1+x2+1)2
(−11x2 − 20, 11x1 − 3)

}
= {a1(x1, x2)} , x1 < 3

{
1

(3x1+x2+1)2
(−9x2, 9x1 + 3)

}
= {a2(x1, x2)} , x1 > 3

{λ × a1(x1, x2) + (1 − λ) × a2(x1, x2) | λ ∈ [0, 1]} , x1 = 3

.

Basically, when x1 �= 3 the subdifferential consists of the gradient and when x1 = 3 it is the
convex combination of limiting gradients as stated in Theorem 2. When solving the problem
with the algorithms we choose λ = 1.

For the ESH algorithm we used xNLP = (1, 8). The numbered MILP solutions and the
feasible set are illustrated in Fig. 1.
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Fig. 1 The feasible set of the first example. The dashed lines represent level curves of the objective function.
The dots represent MILP solution points when solving the problem by ESH or αECP

Table 1 Information on iterations when solving the first example problem with ESH

Iteration 1 2 3 4 5 6 7

x1 1.000 1.000 8.000 7.200 3.600 5.400 5.400

x2 1.000 8.000 5.000 4.000 2.000 3.000 3.000

f (x1, x2) −1.600 −0.667 − 2.500 − 2.549 − 2.565 − 2.554 − 2.554

μ −100 −100 − 6.083 − 2.543 − 2.557 − 2.553 − 2.554

fr ∞ ∞ − 0.667 − 2.500 − 2.549 − 2.549 − 2.554

At the first point, the only nonlinear constraint is violated and a supporting hyperplane
is done at it. At points 2, 3 and 4 the upper bound fr is improved and linearizations to the
objective function are done. At the fifth point the constraint is violated again and a supporting
hyperplane is done at it. The optimal solution is found at the sixth point but the stopping
criteria is satisfied first at the seventh iteration. Information on iterations are summarized in
Table 1. Note that the line search for the objective function was not needed. Every time a
feasible point was found, the objective function attained a new upper bound on it. Note also
that the algorithmvisits only at pointswhere the nonsmooth objective function is continuously
differentiable. Hence, traditional gradients could also have been used in this example.

Surprisingly, the αECP algorithm proceeds exactly as the ESH algorithm as far as MILP
solutions are concerned. Note that the constraint function is convex and α = 1 does not
require updating. At the first iteration, the generated cutting plane is the same as the sup-
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porting hyperplane. Actually, the constraint function is of the form f (x1) − x2 where f is
convex. Cutting planes generated from this kind of constraint function are also supporting
hyperplanes, as will be proven later. The cutting plane will be a supporting hyperplane at
the point (1, 7.2). The ESH algorithm creates a supporting hyperplane near this point since
the line search is done between (1, 1) and (1, 8). Since a new upper bound is found at each
iteration 2–4, αECP proceeds similarly to ESH. At the 5th iteration the cutting plane and the
supporting hyperplane are not the same but similar enough to end the algorithms at the same
point.

Next we will prove that in a special case a cutting plane is also a supporting hyperplane.

Theorem 8 Let a constraint function g : Rn+1 → R be of the form g(x, y) = f (x) − y,
where f : Rn → R is convex, x ∈ R

n and y ∈ R. Then a cutting plane is a supporting
hyperplane to the level set S = {

(x, y) ∈ R
n+1 | g(x, y) ≤ 0

}
.

Proof A cutting plane at (x1, y1) is

f (x1) − y1 + (∇ f (x1),−1)(x − x1, y − y1)
T ≤ 0.

By rearranging the terms we obtain

(∇ f (x1),−1)(x − x1, y − f (x1))T ≤ 0.

This is a supporting hyperplane to the level set S at point (x1, f (x1)), since S is a convex
set. ��

The second illustrative example is selected such that subgradients are needed. The second
problem is:

min max
{√

1 + |x1|,
√
1 + |x2|

}
(P2)

s.t. − 5 ≤ x1 ≤ 5,−5 ≤ x2 ≤ 5.

The objective function is f ◦-pseudoconvex and it is not differentiable at lines |x1| = |x2|.
The subdifferential is

∂ f (x1, x2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
( x1
2|x1|√1+|x1| , 0)

}
, |x1| > |x2|

{
(0, x2

2|x2|√1+|x2| )
}

, |x1| < |x2|
{
( λx1
2|x1|√1+|x1| ,

(1−λ)x2
2|x2|√1+|x2| ) | λ ∈ [0, 1]

}
, |x1| = |x2| �= 0

{
( λ1−λ2

2 , λ3−λ4
2 ) | ∑4

i=1 λi = 1, λi ≥ 0
}

, x1 = x2 = 0.

If |x1| = |x2| we choose the subgradient with λ = 0, that is, the gradient of
√
1 + |x2|.

If x1 = x2 = 0 we choose the subgradient (0, 1
2 ). The progression of the ESH algorithm is

illustrated in Fig. 2. We start with the feasible point xNLP = (1, 0).
At the first iteration point (−5,−5) a new upper bound fr = √

6 is found and the
linearization

√
6 + (0,− 1

2
√
6
)((x1, x2) − (−5,−5))T ≤ μ ⇔ 1

2
√
6
x2 − 7

12

√
6 ≤ μ

is added to the MILP subproblem. The next three iteration points (−5, 5), (−5, 0) and (5, 0)
will be at the same contour and linearizations will be added from these points. The fifth
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Fig. 2 The integer relaxed feasible set of the second example. The dashed lines represent level curves of the
objective function. The dots represent MILP solution points when solving the problem by ESH

Table 2 Information on iterations when solving the first example problem with ESH

Iteration 1 2 3 4 5 6 7

x1 −5.000 − 5.000 − 5.000 5.000 0.000 2.000 −5.000

x2 −5.000 5.000 0.000 0.000 0.000 2.000 2.0 × 10−8

f (x1, x2) 2.449 2.449 2.449 2.449 1.000 1.732 2.449

μ −100.0 0.408 1.429 1.429 1.429 0.388 1.000

fr ∞ 2.449 2.449 2.449 2.449 1.000 1.000

Observe that the optimal solution is found at iteration 5 and the termination criteria is satisfied at iteration 7

iteration point (0, 0) is the global minimum point, but the algorithm needs to verify it. At that
point a new upper bound fr = 1 is found and all of the previous linearizations are updated
by adding 1 − √

6 on the left hand side. Furthermore, the point x f r
NLP is updated to (0, 0).

The sixth iteration point is (2, 2). Since f (2, 2) = √
3 > 1 a line search is done and it ends

to a point close to (0, 0). A linearization is done there. The seventh iteration point is close to
the third point. The value of x1 does not affect the optimum of MILP and CPLEX chose −5
for x1. The stopping criteria is satisfied at the seventh iteration and algorithm stops. Some
information on iterations are presented in Table 2. Linearizations generated at each iteration
are presented in Table 3.

Note that in this problem the solution process is not affected by the given feasible point
xNLP. The first 4 pointswill be on the same contour and the line search is not needed according
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Table 3 Linearizations generated by ESH in the second example problem

Order β1 β2 rhs2 rhs3

1 0.000 − 0.204 −1.429 0.0206

2 0.000 0.204 −1.429 0.0206

3 − 0.204 0.000 −1.429 0.0206

4 0.204 0.000 −1.429 0.0206

5 0.000 − 0.500 – − 1.000

6 0.000 − 0.500 – − 1.000

Linearizations are of the form β1× x1+β2× x2−μ ≤ rhsr . At the fifth iteration a new upper bound fr = 1.0
is found, r is updated to 3 and the previously generated linearizations are updated

to Algorithm 3.1. The fifth point is the global minimum and hence will replace any given
feasible point by Eq. (2). The solution process would be affected only if fr lower than

√
6

would be given at the start. In which case, the line search for the objective function could be
done at the first iteration point.

The solution process of αECP is depicted in Fig. 3. The first five points will be the same
as with ESH. At the fifth iteration the old linearizations of type (3) is removed and the one
generated at (0, 0) is added. At the sixth point (−5, 5) the constraint f − fr ≤ 0 is violated
and an α-cutting plane is added. An α-cutting plane is also added at iterations 7 and 8. At
the ninth iteration the MILP problem is infeasible and coefficients α are updated. This kind
of behavior continues, i.e., an α-cutting plane is created every time when the MILP problem
is feasible and the coefficients α are updated when it is not. The 17th MILP solution is an
εg-feasible solution and in subsequent iterations α-coefficients are updated until they satisfy
the criterion (11). Points after the 13th iteration are not shown in Fig. 3 since they all are
close to (0, 0).

The other problems considered are the cyclic scheduling problem from [17] and its mod-
ification solved in [11]. The objective in the original problem [17] is to maximize the profit
of a given number of furnaces, while the objective in [11] is to maximize the profit of the
least profitable furnace. Unlike in [11], we do not give an additional box constraint to the
cycle time, Tcycle, instead we let it be a positive variable. Also, we set the “big M” parameter
U = 100 in accordancewith [17]. Table 4 summarizes some basic properties of the problems.
While the problems P1 and P2 are simple examples with two variables, the problem P3 is
a more complicated cyclic scheduling problem [17] with 233 variables and 137 constraints.
Problem P4 is otherwise similar to P3, but the objective function is modified to a nonsmooth
form. Instead of summing the four pseudoconvex functions as in P3, the maximum of the
functions is calculated. This leads to an f ◦-pseudoconvex function. The magnitude of the
objective function in P3 and P4 is 104 so ε f = 0.1 was used instead of 10−3. In P3 and
P4 the inner point was found by solving the feasibility problem (FP). Since there are no
nonlinear constraints it will, in this case, be the first feasible point of the LP problem. The
results are summarized in Table 5. Algorithm 5.1 to solve the feasibility problem can easily
be integrated within the ESH Algorithm 3.1. Then also an inner point can initially be solved
with the integrated algorithm. This is, in fact, done in the solver [35], where an inner point
can be specified to be initially given or solved.

An optimum or the best known objective function value was obtained in each case. ESH
needed fewer MILP subproblems and fewer function evaluations in problems P2, P3, and P4.
However, ESH spent a bit more time than αECP solving the problem P3. In the problem P1,
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Fig. 3 The feasible set of the second example. The dashed lines represent level curves of the objective function.
The dots represent MILP solution points when solving the problem by αECP

Table 4 Basic information on
example problems

Problem Objective Constraints Variables

Linear Convex Cont. Int. Bin.

P1 f ◦-pseudo – – 1 1 –

P2 f ◦-pseudo 1 1 1 1 –

P3 Pseudo 137 – 60 28 145

P4 f ◦-pseudo 137 – 60 28 145Here Cont.=continuous,
Int.=integers and Bin.=binary

Table 5 Numerical results

Problem Method Optimal value f. eval. # MILP CPU-time (s)

P1 ESH −2.55 59 7 2.76

αECP −2.55 28 7 2.20

P2 ESH 1.00 34 7 1.85

αECP 1.00 125 26 2.97

P3 ESH −165,399 10,852 161 101

αECP −165,399 34,482 467 88

P4 ESH −39,071 11,038 164 107

αECP −39,071 40,343 557 126

The column “f.eval.” takes into account function evaluations, partial derivative evaluations and function eval-
uations used in the line searches
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Table 6 Numerical results on the problems P3 and P4 when using the relaxed optimum as the inner point or
“MIP sol = 1”-strategy

Problem Method Optimal value f.eval. # MILP CPU-time (s)

P3 ESH (rel) − 165,399 13,669 202 121

ESH (MIP = 1) − 165,399 9715 142 66

αECP (MIP = 1) − 165,399 34,093 464 96

P4 ESH (rel) − 39,071 14,630 216 160

ESH (MIP = 1) − 39,071 50,708 794 1630

αECP (MIP = 1) − 39,071 42,502 584 114

The column “f.eval.” takes into account function evaluations, partial derivative evaluations and function eval-
uations used in the line searches

αECP was faster and needed fewer function evaluations than ESH. As discussed previously,
the algorithms proceeded very similarly in this problem. Hence the ESH is less effective
since a few times it needed to use a line search.

We also solved the problems by using the optimal point of the relaxed problem as the inner
point. These results are presented in Table 6. The relaxed problems were solved by αECP.
Generally, finding the minimum of the relaxed problem is more time consuming than finding
a feasible point. In P3 and P4 there are no nonlinear constraints and solving the feasibility
problem (FP) takes less than a second. For P3 finding the relaxed minimum takes about 15 s,
whereas for P4 it takes about 100 s.

For large problems it is sometimes beneficial to assign xkMILP the first feasible MILP
point instead of the optimal MILP point. This may reduce the time needed to solve MILP
problems to the optimum. Eventually, xkMILP has to be the optimum of the MILP subproblem
to guarantee the optimality of theMINLPproblem.Hence, the rule to choose xkMILP is updated
as the algorithm proceeds. Details on this procedure can be found for example in [33]. Results
on testing this strategy (“MIP sol”=1) can also be found in Table 6. Having MIP sol=1
resulted in a faster solving time when solving P3 with ESH and P4 with αECP. Otherwise,
the changes did not accelerate the solution process. In fact, it took significantly more time
to solve P4 with ESH and MIP sol=1. In this case, the algorithm, though, found an upper
bound −39,071.1, minimum being −39,071.3, at iteration 166 when 117 CPUs had been
used. If we set MIP sol=2, the algorithm finds, however, the solution −39,071.3 after 106
CPUs and 171 MILP problems.

6.3 Comparison with some standard MINLP solvers

The solution results, have so far, only been compared between the ESH and αECP methods,
since thesemethods have a theoretical guarantee to solve nonsmooth pseudoconvex problems
to optimality. A question that arises, in this case, is though, how these methods compare
with already available standard local MINLP or global MINLP solvers. In order to give some
answer to this question,wehave tested several available standard smoothMINLP solvers from
GAMS (https://www.gams.com/) to solve the nonsmooth f ◦-pseudoconvex problem P4. As
it is, in this case, possible to reformulate the nonsmooth problem, P4, to a corresponding
smooth but nonconvex form, P4ref, we have tested the solvers also on the reformulated
problem. The results are in Table 7. These calculations were done by a 64-bit windows 10
laptop computer with Intel i7-5600 2.6 GHz, which has turned out to be somewhat faster
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Table 7 Solution results when solving the nonsmooth f ◦-pseudoconvex cyclic scheduling problem and its
reformulated smooth nonconvex problem by some standard smooth GAMS solvers and GAECP

GAMS solver P4 nonsmooth f ◦-pseudoconvex cyclic
scheduling problem

P4ref smooth nonconvex cyclic
scheduling problem

Solution Best possible CPU(s) Solution Best possible CPU(s)

ALPHAECP −29,828 566 − 36,984 73

ANTIGONE NFS 1 − 35,097 − 41,840 1000

BARON NFS 1 − 35,901 − 35,902 387

BONMIN NFS 15 − 39,071 − 39,071 34

COUENNE NFS 1 − 35,038 − 281,414 1001

DICOPT NFS 1000 − 35,875 2

LINDOGLOBAL −31,675 − 225,754 1000 − 38,768 − 189,877 1000

SBB NFS 1000 − 39,071 − 39,072 289

SCIP −32,765 − 237,727 1003 − 35,910 − 213,800 1004

GAECP/ESH −39,071 71 − 34,212 8

GAECP/αECP −39,071 74 − 35,963 180

NFS in column “Solution” stands for no feasible solution

than the computer used in the previous examples. The reformulation of P4 to P4ref is done
as follows. First consider the nonsmooth f ◦-pseudoconvex problem P4

min max { f1(x), f2(x), f3(x), f4(x)} (P4)

s.t. x ∈ L .

When the functions fi are pseudoconvex then the max function is f ◦-pseudoconvex and
nonsmooth. Thus, problem P4 is a nonsmooth f ◦-pseudoconvex MINLP problem as some
of the variables are integers. We reformulate the problem P4 as follows

min μ (P4ref)

s.t. fi (x) ≤ μ, i = 1, 2, 3, 4

x ∈ L , −300,000 ≤ μ ≤ 0.

As the functions fi are pseudoconvex the constraint functions fi − μ are nonconvex but
smooth. Thus, the reformulated problem P4ref is a smooth nonconvex MINLP problem. It
is expected that only the global MINLP solvers can find the minimum of the reformulated
smooth problem.

From Table 7 we find that only three out of nine of the standard GAMS solvers found
a feasible solution to the nonsmooth f ◦-pseudoconvex problem P4 and none of the GAMS
solvers found an optimal solution to this problem within the set time limit. ANTIGONE,
BARON and COUENNE recognized unsupported function ‘max’ and did not proceed to
solve the problem. All GAMS solvers were, however, able to find a feasible solution to the
reformulated smooth nonconvex problem P4ref, but only two solvers BONMIN and SBB,
were able to find the optimal solution of this problem, within the selected time limit 1000 s.
Some of the local and all the global GAMS solvers, report both the best solution and the best
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possible (relaxed) solution. The upper and lower limits were proper, except in the case of the
solver BARON, that reported a best possible limit that was higher than the optimal solution,
when using the given parameter settings. For all solvers the GAMS options: nlp = ipopt,
mip = cplex, optcr = 0.00001 were used and else default parameters that can be found
in the GAMS solvers manual (https://www.gams.com/latest/docs/S_MAIN.html). The only
exception was SBB where we set nodlim = 5000. The GAMS release 25.0.2 was used.

When considering ESH and αECP we find that both solvers found the optimal or best
known solution to P4. In case of the smooth nonconvex problem P4ref neither of these
solvers have theoretical proofs to solve such problems to global optimality. But both ESH
and αECP found a feasible solution within given time limit.

These results suggest that even if a nonsmoothMINLP can be reformulated to be smooth, it
may still be easier to solve it as a nonsmooth MINLP problem with an appropriate algorithm.
In the studied problem the reason for this behaviour may be the fact that the reformulation of
the generalized convex MINLP problem resulted in a nonconvex MINLP problem. Observe,
however, that in the general case it might not be possible to reformulate a nonsmooth function
to an exact smooth form [2].

Remark When testing the other solution approaches on these problems, notice that the non-
smooth f ◦-pseudoconvex problem P4 is a modification of the cyclic scheduling problem
csched.gms in the GAMS Model Library. The objective in the original problem is to max-
imize the profit of a given number of furnaces, while the objective in P4 is to maximize
the profit of the least profitable furnace. The problems are, though, solved as minimization
problems and the sign of the objective has, thus, been changed. The parameters connected to
the problems are the same, as in the original csched2.inc file, except that we have defined the
subcycles k as /0*4/. That is we use the same number of subcycles as in [11,17,33]. These
parameters result in the optimal solution −165,398.7 for the problem P3 and −39,071.3 for
the problems P4 and P4ref. In case the number of subcycles is changed to /0*10/, as in the
parameter file for the problem in the GAMSModel Library, then the optimal solutions to P3
and P4, obtained with the ESH method, will be −166,102.0 and −39,613.1 respectively.

7 Conclusions

In this paper, the ESH algorithm in [12,19,31] was generalized to handle MINLP problems
with an f ◦-pseudoconvex objective function. In addition, if the constraint functions of the
problem are f ◦-pseudoconvex the algorithm was shown to converge to an εg-feasible global
minimumvalue. The solution procedurewas illustrated by solving some numerical examples.

The key technique of this generalization is to use linearizations of type (3). Similar types
of linearizations were also used to generalize αECP in order to handle pseudoconvex and f ◦-
pseudoconvex objective functions in [11,33]. In αECP an additional pseudoconvex objective
function constraint is used. In the current paper, it was shown that such a constraint is not
needed in ESH. It was further shown that a feasibility problem can be solved with similar
kinds of linearizations as in the ESH algorithm. The algorithm can be used to find an integer
relaxed feasible point needed in the ESH algorithm and, thus, be used in an initial step of the
integrated algorithm.
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