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ABSTRACT As the automotive industry moves forward, security of vehicular networks becomes
increasingly important. Controller area network (CAN bus) remains as one of the most widely-used
protocols for in-vehicle communication. In this work, we study an intrusion detection system (IDS)
which detects anomalies in vehicular CAN bus traffic by analyzing message identifier sequences. We
collected CAN bus data from a heavy-duty truck over a period of several months. First, we identify
the properties of CAN bus traffic which enable the described approach, and demonstrate that they hold
in different datasets collected from different vehicles. Then, we perform an experimental study of the
IDS, using the collected CAN bus data and procedurally generated attacks. We analyze the performance
of the IDS, considering various attack types and hyperparameter values. The analysis yields promising
sensitivity and specificity values, as well as very fast decision times and acceptable memory footprint.

INDEX TERMS anomaly detection, intrusion detection, network security, controller area network, CAN
bus, vehicular network, in-vehicle network

I. INTRODUCTION

Automotive industry is moving in a direction where connect-
edness and autonomy become essential features of vehicles.
Connected vehicles and vehicles with autonomous driving
capabilities are expected to bring benefits such as decreased
number of traffic accidents, decreased traffic congestion, de-
creased fuel consumption and emissions, and increased mo-
bility for people who cannot operate vehicles. Furthermore,
realization of connected and autonomous vehicles might
lead to widespread adoption of shared vehicles concept,
which, in turn, could significantly reduce the total number
of vehicles and the amount of parking space needed. Unfor-
tunately, connectivity and autonomous driving capabilities
come at a cost. Vehicles become more complex due to the
inclusion of new hardware, software, and communication
protocols. From a security point of view, this translates
to the attack surface becoming larger. Moreover, it is not
hard to imagine possible motivations for launching cyber-
attacks on vehicles. These facts lead to legitimate concerns
about security, and are the motivation behind numerous
publications on the topic. Cui et al. [1], Thing et al. [2], and
Yağdereli et al. [3] provide an overview of cyber-security
aspect of connected and autonomous vehicles, including

classification of applicable cyber-attacks and correspond-
ing countermeasures. Parkinson et al. [4] also present an
overview of the problem, and compile an extensive list of
challenges to be addressed. Dominic et al. [5] investigate
possible motivations for attacks, and assess risks.

Focus of this work is on the security of in-vehicle
networks, which is only one aspect of this multifaceted
problem. Communication capabilities in vehicles are of-
ten classified into two major groups: vehicle-to-everything
(V2X) and in-vehicle. V2X communications take place
between a vehicle and external entities such as other ve-
hicles or infrastructure, whereas in-vehicle communications
take place between on-board components such as sensors,
actuators, electronic control units (ECU). Unlike V2X com-
munication which has to rely on wireless technologies,
in-vehicle communication takes place almost exclusively
over wired networks using technologies such as Controller
Area Network (CAN bus), FlexRay, Local Interconnect Net-
work (LIN), Automotive Ethernet, Media Oriented Systems
Transport (MOST), Byteflight, and Low-Voltage Differential
Signaling (LVDS). CAN bus is one of the oldest and most
widely adopted technologies for in-vehicle communications,
and the security solution studied in this work is specifically
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targeted at this technology.
Contributions of this work are as follows:

• Previous work suggested intrusion detection in ve-
hicular CAN bus via whitelisting message identifier
sequences. We build upon previous work by treating
the length of message identifier sequences as a hyper-
parameter, and propose a variant which is less prone
to false alerts. We build a prototype implementation,
and perform an experimental study of the developed
intrusion detection system using data collected from a
vehicle.

• We identify the domain-specific property of vehicular
CAN bus data which makes whitelisting of message
identifier sequences a viable approach, and demonstrate
that it holds for different vehicles.

• We introduce an open CAN bus dataset collected from
a heavy-duty truck.

The rest of the paper is organized as follows. Section II is
aimed at providing background information about Controller
Area Network and its security, as well as about intrusion
detection systems. Section III presents related work. The
studied intrusion detection system is described in Sec-
tion IV. Materials and methods are presented in Section V.
Results of the experiment are presented in Section VI.
In Section VII, we summarize and discuss our results.
Section VIII concludes the paper.

II. BACKGROUND
In this section we provide background information about
CAN bus and security aspects of its usage in in-vehicle
communication, as well as intrusion detection systems, and
their application to vehicular CAN bus.

A. CONTROLLER AREA NETWORK
Controller Area Network (CAN bus) was originally de-
veloped for interconnecting electronic control units (ECU)
within automobiles, and the first version of the protocol
was published in 1986 [6]. Today, it is a widely adopted
technology for in-vehicle communication, and it also has
applications in other contexts. Second version of the proto-
col CAN 2.0 was standardized in ISO 11898-1 (Part 1: Data
link layer and physical signalling) [7] in 1993.

CAN bus is known for providing robustness, flexibility,
speed at relatively low cost. Even very cleverly designed
systems can in time turn into insecure systems, simply
due to the changes in their environments and invalidation
of design-time assumptions. As vehicles become connected
and autonomous, total lack of security mechanisms in CAN
bus becomes a cause for concern. No claims can be made
on the confidentiality, integrity, authenticity, and freshness
of messages in the presence of a malicious attacker. CAN
bus features a cyclic redundancy check (CRC) against non-
malicious bit errors.

CAN 2.0 defines four types of frames: DATA, REMOTE,
ERROR, and OVERLOAD. Data (e.g. steering angle, wheel

speeds) are carried in DATA frames. An ECU can request
data from another ECU by sending a REMOTE frame. Fig. 1
shows the structure of DATA frames in CAN 2.0A.

Arbitration field holds the CAN identifier and Remote
Transmission Request (RTR) bit. Arbitration field is the
part of a frame which is used for deciding priority when
two or more nodes attempt to transmit at the same time.
By convention, lower value has higher priority. A security
related consequence of this mechanism is that, persistent
injection of messages with low values in arbitration field
can lead to denial of service. Due to the lack of security
features, an attacker who gains access to the network is
free to replay previous messages or inject crafted messages.
Combined with the priority mechanism, carefully timed
injections can effectively turn into deletion or overwriting of
messages. A CAN 2.0A identifier is a 11-bit value, whereas
CAN 2.0B allows 29-bit identifiers. DATA and REMOTE
frames are distinguished from each other via the RTR bit.
A REMOTE frame is a request for data associated with the
CAN identifier which is the CAN identifier of the REMOTE
frame. In other words, a request (REMOTE frame) and
corresponding reply (DATA frame) have the same CAN
identifier. In REMOTE frames, data field is empty.

We make a small digression here to define the message
identifier concept, which we use throughout this paper.
In the presence of REMOTE frames, we define message
identifier as the concatenation of CAN identifier and RTR
bit:

msg_identifierremote = CAN_identifier ||RTR. (1)

If there are no REMOTE frames in the network, we define
message identifier to be the same as CAN identifier. A
message identifier uniquely defines a message type (e.g.
DATA frame carrying wheel speed data) in the network.

CAN bus protocol defines the structure of a DATA frame,
but not the representation of data within the data field,
which is decided by vehicle manufacturers. The information
necessary for interpreting the data field (e.g. starting bit,
length, byte order, offset, resolution) may be kept private
by the vehicle manufacturers.

In vehicular networks there usually is a predefined rela-
tionship between an ECU, and the message types it will
send or process. CAN messages are broadcast over the
network, and receivers themselves decide whether to process
or discard a message, based on the CAN identifier.

J1939 [8] is a higher-layer protocol built on physical and
data link layers of CAN 2.0, and as such it inherits the
vulnerabilities of CAN 2.0 [9]. In J1939, the 29-bit identifier
of CAN 2.0B is given internal structure to support additional
functionality. There are no remote frames in J1939 (i.e. RTR
bit is always zero).

B. INTRUSION DETECTION SYSTEM
An intrusion detection system (IDS) monitors a system or
network for malicious activity. Detection methodology, tech-
nology type, and time of detection are important describing
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FIGURE 1. Structure of a DATA frame (CAN 2.0A). Each small segment represents a single bit in the frame. Number of bytes in the data field is specified via the
four DLC bits, and can take any value in the range 0–8 (inclusive).

features for an IDS [10]. We will briefly touch each of these
features, and bring them into the context of an IDS for
vehicular CAN bus.

Based on their detection methodology, IDSs can be
classified into three major categories: Signature-based De-
tection, Anomaly-based Detection, and Stateful Protocol
Analysis [10]. Anomaly-based Detection is the most relevant
category for vehicular CAN bus intrusion detection, and
almost all the existing work we encountered so far falls
into this category. Signature-based Detection is in princi-
ple applicable to CAN bus intrusion detection; however,
it would require a comprehensive list of attack message
sequences to be compiled, and then converted into attack
signatures. Stateful Protocol Analysis is rarely used for
intrusion detection in vehicular CAN bus. Most messages
in a vehicular CAN bus are periodically broadcast, and this
does not leave too much room for performing detections
by tracing protocol state, for example, by trying to match
requests (remote frames) with replies (corresponding data
frames).

IDSs can also be categorized based on technology type.
Host-based and Network-based are the two most well-
known categories. In case of CAN bus, the distinction
between the two categories is not as meaningful as it is for
the general case. A CAN bus IDS running on an individual
ECU would fall into the host-based category. But because
CAN bus messages are broadcast, it would also be able
to generate alerts for the whole network. However, a more
natural place for a network-based IDS is outside of any of
the ECUs on the CAN bus.

Based on time of detection, IDSs can be categorized into
two: on-line IDS and off-line IDS. An on-line IDS detects
intrusions in real time, allowing the possibility of immediate
actions such as dropping a frame before it reaches its
intended destination. Such actions are not possible with an
off-line IDS, because detections do not necessarily occur
before the admittance of the frame causing the detection
into the protected host or network, often due to the fact
that processing is carried out on replicated data. Time of
detection is strongly related to the placement of the IDS
within the network topology. In the context of vehicular
CAN bus, there are two factors at play which favor off-
line IDS behaviour over on-line. First factor is latency. An
off-line IDS can be introduced into a CAN bus without
introducing any significant additional latency. Second factor

is the safety and legal consequences of using an on-line IDS
which discards suspicious frames. Totally eliminating false-
positives is very difficult if not impossible. Dropped frames
may affect a vehicle’s operation, possibly compromising
its safety. This possibility could prevent such an IDS from
being certified for use in traffic.

C. VEHICULAR CAN BUS SECURITY
Attacks can be carried out on vehicular CAN bus via
compromised gateway ECUs, or via the addition of a new
device to the network (e.g installing an attacker controlled
device during maintenance). Nie et al. [11], Miller and
Valasek [12], and Woo et al. [13] demonstrate remote attacks
where the attackers gain access to the vehicular CAN bus.

There are two main approaches to securing vehicular
CAN bus communication. These are explained in the fol-
lowing subsections.

1) Security Features
In this approach, one seeks to increase the security of the
network by adding security features into the communication
protocol. These security features may be intended for CAN
bus itself, or they may be part of a higher-level protocol
built on top of it. One important challenge associated with
this approach is the computational overhead due to the use
of cryptographic methods, which leads to higher latencies
and/or increased hardware costs. Also, as is generally the
case for security solutions which involve changes at the
protocol level, transition costs and backward compatibility
are limiting factors.

2) Security Tools
In this approach, one seeks to increase the security of
the network by introducing a security tool, such as an
intrusion detection system, into the network. Most, if not
all, existing vehicular CAN bus IDSs do anomaly-based
detection, but they seek anomalies in a variety of different
places including:

• Message payload (interpreted)
• Message payload (not interpreted)
• Frequency of messages
• Ordering of messages

If the message payload can be interpreted by the IDS,
abrupt changes in values and inconsistencies between data
contained in temporally close messages of different types
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can be used as the basis for anomaly detection. If the
representation of data within the data field is not published
by the manufacturer and is unknown, interpretation of data
is not possible; however, it is still possible to find anomalies
in message payload (i.e. data field of the CAN frame) by
inspecting certain properties such as entropy, or Hamming
distances between consecutive payloads. When either peri-
odicity or ordering is present in CAN bus traffic as emergent
properties (e.g. due to majority of CAN bus message types
being periodic), then injection (resp. deletion) of messages
into (resp. from) normal traffic leads to detectable anomalies
in frequencies and ordering of messages. Anomaly detection
based on (1) frequencies of messages, and (2) ordering of
messages, are related approaches, but the latter works with
reduced and qualitative information, rather than full quanti-
tative information about time distances between messages,
as is the case with the former. Since request messages and
reply messages are always ordered by causality, it makes
sense to treat them separately, especially when anomalies are
sought in ordering of messages. This is the reason behind the
inclusion of RTR bit in the definition of message identifier
in Equation 1.

Whatever the nature of the anomaly looked for by the
CAN bus IDS is, there is often some machine learning
method involved in the process. The purpose of involving
machine learning is to give the IDS the capability of
generalization, so that it can make correct decisions when
fed with previously unseen data. Need for generalization is
often inevitable in other domains; however, in this work, we
claim that CAN bus traffic data has a domain-specific prop-
erty (Section VI-A) which allows whitelisting, an approach
based on pure memorization, to be practical. While it is
the cryptographic algorithms which create the performance
bottleneck for the previously mentioned "Security Features"
approach, for anomaly-based detection, usually the machine
learning method is the bottleneck. Decision time of an on-
line IDS must be fast enough to keep up with the 250-
500 kbit/s bit rate of CAN bus. And while achieving that
decision time, hardware requirements of the IDS in terms
of processing speed and memory must remain reasonable,
or the practicality of the solution will be questioned.

A shortcoming of relying on an IDS for securing vehic-
ular CAN bus is the limitations regarding available actions
in case of a detection. Automated preventive actions may
not be possible due to the reasons mentioned at the end
of Section II-B. A human specialist will not be available
to respond to the alert raised by the IDS, unless the
vehicle is served by an Information Security Operations
Center (ISOC). Even when specialist response is available,
human intervention may not be fast enough to prevent the
attack from succeeding. In case of a detected intrusion, one
reasonable response is to alert the driver and recommend a
safe-stop, or perform an automated safe-stop. However, the
vehicle has to have fail-safe or fail-operational capabilities
to allow the safe-stop despite the ongoing attack.

III. RELATED WORK
Kleberger et al. [14] and Bozdal et al. [15] both give an
overview of in-vehicle network security. The latter focuses
exclusively on CAN bus.

Wang and Sawhney [16] propose a security framework
which provides message authentication for CAN bus. Halabi
and Artail [17] use symmetric-key encryption to build
security mechanisms on top of CAN bus. These works
serve as examples for the "Security Features" approach
(Section II-C1).

IDS proposed by Lee et al. [18] can fit in both Anomaly-
based Detection and Stateful Protocol Analysis categories in
terms of its detection methodology, as it detects anomalies
in timings associated with replies to remote frames.

Marchetti and Stabili [19] propose an IDS which bases
its decisions on the Hamming distances between consecu-
tive payloads with same identifiers. Müter and Asaj [20]
detect anomalies in entropy of identifier and data fields.
Both works detect anomalies in message payloads without
interpreting them.

As stated in Section II-C2, several works make use
of machine learning methods for anomaly-based intrusion
detection. Song et al. [21] use a deep convolutional neural
network for their IDS, which takes as input individual bits
of CAN identifiers. They also present a comparison of
their results with the results obtained using other machine
learning algorithms. IDS proposed by Casillo et al. [22] uses
Bayesian Networks. IDS proposed by Tian et al. [23] uses
Gradient Boosting Decision Trees. Taylor et al. [24] use
a one-class support vector machine for their IDS. In this
same work [24], they consider a set of features and their
combinations, concluding that mean time between packets
is the most effective among the considered features.

Gmiden et al. [25] and Moore et al. [26] both propose
IDSs which detect anomalies in inter-message time intervals.

Marchetti and Stabili [27] propose an IDS which detects
anomalies in the ordering of message identifiers. In this
work, we follow the same approach.

IV. DESCRIPTION OF THE STUDIED IDS
The intrusion detection system we study in this paper is
a generalization of the intrusion detection system proposed
in [27]. Marchetti and Stabili [27] consider sequences of
length 2, whereas this work treats sequence length k as
a hyperparameter. We also propose and study a stateful
version of this IDS.

We define the term k-sequence as a length k sequence of
message identifiers (Section II-A). We describe the IDS by
describing the two different phases it operates in: training
phase and testing phase. In both phases IDS takes in as
input and processes CAN bus messages one at a time.
Every k-sequence encountered during the training phase
is memorized and stored in an internal data structure we
will refer to as the whitelist. Contents of whitelist at
the end of the training phase correspond to the learned
model. Learning is limited to memorization and the IDS
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does not have the capability for generalization. Algorithm 1
describes the behaviour of the IDS in the training phase. In
testing phase, the IDS generates a Boolean output decision
for each CAN bus message it processes. The message
being processed forms a new k-sequence together with
the messages which were processed before it. If this k-
sequence is not in whitelist, then an intrusion is detected
and decision is set to False. Algorithm 2 describes the
behaviour of the IDS in the testing phase.

Algorithm 1 Processing of a message in training phase.
1: IDS Internal State
2: whitelist . A set of k-sequences
3: history . A FIFO queue with maximum length k

4: procedure PROCESSTR(msg)
5: history.enqueue(msg.ID) . ID: message identifier
6: if history.length() < k then
7: return
8: k_seq ← history.as_kseq() . A k-sequence
9: whitelist.add(k_seq)

10: return

Algorithm 2 Processing of a message in testing phase.
1: IDS Internal State
2: whitelist . A set of k-sequences
3: history . A FIFO queue with maximum length k

4: procedure PROCESSTE(msg)
5: decision← True . True indicates no detection
6: history.enqueue(msg.ID) . ID: message identifier
7: if history.length() < k then
8: return decision
9: k_seq ← history.as_kseq() . A k-sequence

10: decision← whitelist.contains(k_seq)
11: return decision

A decisioni is output as soon as the processing of an
input message Mi is complete, and before the processing of
next message begins. However, Mi will continue to appear
in k-sequences formed during the processing of subsequent
messages Mj , where i < j < i + k and k is the sequence
length hyperparameter. In the rest of the paper, we will
refer to this process as tainting. Because Mi taints its
neighbouring k-sequences, the actual decision on anomaly
detection for message Mi is given by

decision = decisioni ∧ decisioni+1 ∧ ...∧ decisioni+k−1.
(2)

Based on this observation, higher k values should lead to
higher sensitivity (i.e. higher true positive rate) values for the
IDS. Our results from Section VI-C support this hypothesis.

Stateful version of the IDS introduces an additional pa-
rameter talert, and maintains two additional state variables
status_alert and a timer timer_alert. A detection is
reported only if the IDS is already in alerted state; otherwise,
IDS enters alerted state but does not report a detection.

Training of the stateful IDS is the same as that of the original
IDS. Algorithm 3 describes the behaviour of the stateful
version in the testing phase.

Algorithm 3 Processing of a message in testing phase.
1: IDS Internal State
2: whitelist . A set of k-sequences
3: history . A FIFO queue with maximum length k
4: status_alert . A Boolean
5: timer_alert . An integer
6: procedure PROCESSTE(msg)
7: decision← True . True indicates no detection
8: history.enqueue(msg.ID) . ID: message identifier
9: if history.length() < k then

10: decision← True
11: else
12: k_seq ← history.as_kseq() . A k-sequence
13: if whitelist.contains(k_seq) then
14: decision← True
15: else
16: if status_alert then
17: if timer_alert > k + 1 then
18: decision← False
19: else. history is tainted by initial cause of alert
20: decision← True
21: else
22: decision← True
23: status_alert← True

24: if status_alert then
25: timer_alert← timer_alert+ 1

26: if (timer_alert > talert) or ¬ decision then
27: status_alert← False
28: timer_alert← 0

29: return decision

1) Attacker Capabilities and IDS Limitations
We assume that the attacker has total control over one
device which is on the CAN bus. Using the device under
its control, the attacker is able to read from the CAN
bus, and is also able to craft and send messages into the
CAN bus. Furthermore, we assume that the attacker has the
capability to stop any device on the CAN bus from sending
a message of the attacker’s choosing. With the addition of
this capability, the attacker is able to not only insert but
also delete a single message, without causing any additional
changes to message ordering. We define a basic attack as
the insertion or deletion of a single message, and a complex
attack as any combination of basic attacks immediately
following one another within the observed CAN bus traffic.

The most significant limitation of the studied IDS is that
it is by design oblivious to attacks which do not affect the
ordering of messages. Restating this in terms of attacker
capabilities, we say that the attacker is allowed to perform
any complex attack, as long as the attack affects message
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ordering. An example of a complex attack which preserves
message ordering is a special case of an overwrite: a deletion
of message type IDi, followed by an insertion of same
message type IDi. Such an overwrite attack can be used by
the attacker to effectively alter the payload of a message.
If IDi is the message identifier of a periodic message, this
attack can be carried out as follows. By observing the time
intervals between subsequent messages of type IDi, the
attacker learns the period associated with IDi, and calculates
the timing of next message of type IDi as ti. The device
controlled by the attacker starts sending a message of type
IDi (setting the data field to any value of attacker’s choice)
just before t = ti, effectively overwriting the legitimate
message, while leaving the ordering of messages intact. This
particular attack could be excluded by restricting the attacker
capability as follows: the attacker cannot carry out attacks
with precise timing (but can enforce the ordering of all basic
attacks within a complex attack). However, we accept the
stronger restriction instead: the attacker is not allowed to
perform attacks which preserve ordering of messages.

The benefit we seek with the stateful version of the IDS
is the reduction of false positive rates, and the sacrifice
we make is the relaxation of the threat model via the
introduction of the following additional assumption. We
assume that for an attack to pose a threat to the targeted
system, at least two basic attacks have to be performed
within a certain time frame determined by talert.

V. MATERIALS AND METHODS
A. DATASETS

Training and testing the IDS is carried out using UTU
dataset [28] which was prepared specifically for this work.
UTU dataset contains over 180 hours of attack-free CAN
bus traffic collected from a Renault Euro VI heavy-duty
truck (Renault T520 6X2) over several driving sessions
(with different drivers) in varying traffic conditions (e.g.
urban, rural). Data was collected from the Fleet Manage-
ment Systems (FMS) Interface [29] of the truck via a
PEAK-System PCAN-USB adapter. Frames in UTU dataset
conform to the J1939 standard. 29-bit identifiers of frames
are directly used as message identifiers.

We make use of two additional datasets in Section
VI-A. These are CAN Dataset for intrusion detection
(OTIDS) [18], [30] and Automotive CAN Bus Intrusion
Dataset v2 [31], which we will refer to as ACID in the rest
of this paper. OTIDS is collected from a Kia Soul SUV,
and ACID includes data collected from both an Opel Astra
and also a Renault Clio. We use only attack-free data from
both datasets. Since remote frames are present in the data,
message identifiers are calculated as in Equation 1. In case
of OTIDS, the 45 distinct CAN identifiers lead to 54 distinct
message identifiers.

All data used in this work is collected from certified
vehicles while they are operated on a road. Details of
collection can be found in metadata associated with each

TABLE 1. Summary information about datasets used in this paper.

Dataset Protocol Number of
messages

Number of distinct
message identifiers

UTU J1939 / CAN 2.0B 530,810,616 70
OTIDS CAN 2.0A 2,369,398 54
ACID (Opel) CAN 2.0A 2,690,069 85
ACID (Renault) CAN 2.0A 386,567 55

dataset. All datasets used in this paper are publicly available.
Table 1 presents summary information about the datasets.

B. CODE
Implementation of the IDS, and other code and data used
for producing the results in this paper (e.g. serialized trained
IDS instances, partitioning of dataset) are available upon
request. Implementation is in Python 3.

C. METHODS
1) Preparation of data for training and testing
For training and testing we used UTU dataset which con-
tains 11191 files each containing 50001 CAN bus mes-
sages.1 For a message which is at the end of one file,
the message following it is guaranteed to be the first
message in the next file. However, for the sake of conve-
nience we treated files as independent units and ignored
all message sequences which are split over multiple files.
While partitioning the dataset into training and test data,
files were treated as the smallest assignable unit, i.e. all
messages in a file ended up in the same partition. Using
non-exhaustive 3-fold cross-validation, we obtained three
(trainingdata, testdata) pairs, one for each iteration. At-
tacks used in the testing phase are generated procedurally.
The same attacks (i.e. same payloads at same attack loca-
tions) are generated for each iteration.

2) Description of attacks used in evaluation
The following attack types were considered in our experi-
ments:

• Type 1 – Delete single message
• Type 2 – Insert single message
• Type 3 – Insert random sequence
• Type 4 – Insert observed sequence
• Type 5 – Overwrite with observed sequence
Type 1 attacks delete a single message. A Type 1 attack

taints the least number of decision variables (See Equa-
tion 2), and hence yields the worst case scenario for IDS
sensitivity. Table 2 compares the number of taints between
deletion and insertion for k = 2 and k = 3. Type 2 attacks
insert a single message such that the message identifier is
randomly selected among known (i.e. observed in training
phase) message identifiers. Type 1 and Type 2 attacks are
basic attacks. Type 3 and Type 4 attacks both insert a single
k-sequence. For a Type 4 attack the k-sequence is randomly

1We observed an anomaly in one of the files. We ignored this file and
its two neighbours in our analysis.
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TABLE 2. Comparison of tainted sequences for deletion and insertion. k is
the sequence length.

delete C
A B C D E →

A B D E

insert C
A B D E →
A B C D E

k = 2 {BD} {BC,CD}
k = 3 {ABD,BDE} {ABC,BCD,CDE}

TABLE 3. Sparsity values associated with data collected from four different
vehicles, for different choices of sequence length k.

Vehicle Dataset k = 2 k = 3 k = 4 k = 5
Renault T520 6X2 UTU 0.8531 0.9946 0.9998 0.9999
Kia Soul SUV OTIDS 0.3700 0.8865 0.9922 0.9996
Opel Astra ACID 0.4768 0.9528 0.9988 0.9999
Renault Clio ACID 0.4863 0.9654 0.9922 0.9999

chosen among all k-sequences observed in training phase,
whereas for a Type 3 attack the k-sequence is built by
randomly choosing k elements (with replacement) among
known message identifiers. For a Type 5 attack the payload
is generated the same way as for a Type 4 attack, but prior to
its insertion, k messages are deleted starting from the attack
location. It is possible to associate these attack types with
the more familiar categories of realistic attacks. A denial-
of-service attack may result from repeated insertions (Type
2) with a low value in CAN identifier. Type 3 and Type 4
attacks correspond to fuzzing and replay, respectively.

Each iteration involves 74600 instances of each attack
type. In addition to these, we used 7460 pairs of attacks
of Type 2 for evaluation of the stateful version of the IDS.
These pairs were generated such that the second insertion
does not occur immediately after the first, but the separation
between them is smaller than talert.

VI. RESULTS
A. SPARSITY OF VEHICULAR CAN BUS TRAFFIC
We define sparsity as the ratio of number of k-sequences
which are not in the dataset to the number of all possible
k-sequences:

sparsity = 1− obsk
Nk

, (3)

where obsk is the (distinct) number of observed k-
sequences, N is the number of distinct message identifiers,
and k is the sequence length.

In order to demonstrate that high sparsity property is not
specific to the UTU dataset which is used to train and test the
studied IDS (and to the vehicle which generated its data),
we calculated sparsity values also for data from different
datasets and vehicles. Results are presented in Table 3.

High sparsity property of CAN bus traffic is crucial for
the viability of the evaluated IDS. Any action that affects the
ordering of messages produces a set of tainted k-sequences,
each of which has a higher probability of being a whitelisted
sequence if sparsity is low. Hence, low sparsity adversely
affects the ability of the IDS to detect anomalies, reducing

its sensitivity. Low sparsity also leads to larger memory
footprint.

Abundance of periodic messages, and the arbitration
mechanism based on CAN identifiers might be behind the
emergence of this property. Studied IDS is a domain-specific
solution for vehicular CAN bus networks.

B. LEARNING CURVES
It is informative to look at how the training process pro-
gresses with time, as the high sparsity property does not
guarantee that the training process described by Algorithm 1
will stabilize and yield a usable model. For this purpose we
plot the learning curves for k = 2 and k = 3 in Fig. 2.

FIGURE 2. Learning curves for k = 2 and k = 3. At points where the slope
of the curve is relatively small, the model has matured.

In Fig. 2, the range for the y-axis is determined by
the sparsity of the dataset. The x-axis can be alternatively
interpreted as time. Number of memorized k-sequences is
polled every time a file is completely processed, and the
files are fed to the IDS in the same order that they were
created. Every file contains roughly 1 minute of recorded
traffic, so the imagined time axis extends from 0 to 180
hours. The slope of the curve corresponds to the rate at
which previously unknown k-sequences are encountered.
The higher rate for k = 3 compared to k = 2 suggests
that higher k values may result in lower specificity (i.e.
higher false positive rate) values when both IDS receives
the same amount of training. Our results from Section VI-C
agree with this prediction. Alternatively, it can be stated
that when k = 3 the IDS needs to be trained with more
data compared to when k = 2, for the model to achieve
the same level of maturity. Inspection of learning curves
revealed that the models have matured by the time one third
of the data is used for training. This observation guided our
decision on how to partition the dataset into training and
test data, and the choice of 3 as the number of iterations for
cross-validation.
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TABLE 4. True positive rates for different choices of sequence length k and
different attack types. Values shown are the average of values obtained from
the three iterations.

k = 2 k = 3 k = 4 k = 5
Attack Type 1 0.638 1 1 1
Attack Type 2 0.906 1 1 1
Attack Type 3 0.985 1 1 1
Attack Type 4 0.898 1 1 1
Attack Type 5 0.887 1 1 1

TABLE 5. False positive rates for different choices of sequence length k.
Values shown are the average of values obtained from the three iterations.

k = 2 k = 3 k = 4 k = 5
7.184× 10−7 2.129× 10−6 4.199× 10−6 6.836× 10−6

C. SENSITIVITY AND SPECIFICITY OF IDS

Table 4 and Table 5 present a summary of our results with
respect to sensitivity and specificity, respectively. Table 4
indicates that sequence length k = 3 leads to significantly
better sensitivity compared to k = 2, and increasing k
beyond 3 does not yield additional benefits as maximum
sensitivity of 1 is achieved for k = 3 even for the worst
case scenario, i.e. for Type 1 attacks. Table 5 indicates that
false positive rates increase as k increases, but remain small
for the tested k values.

Fig. 3 depicts true positive rates and false positive rates
for basic attacks.

FIGURE 3. True positive rates and false positive rates for Type 1 and Type 2
attacks.

Table 6 and Table 7 present the sensitivity and specificity
values for both the original and the stateful version of
the IDS. Stateful version achieved higher specificity for all
tested k values, and there was no difference in sensitivity
between the two versions. Parameter talert was set to 25000
messages which correspond to roughly 30 seconds at normal
traffic rates.

TABLE 6. A comparison of true positive rates between original and stateful
versions of the IDS. k represents the sequence length hyperparameter. Values
shown are the average of values obtained from the three iterations.

k = 2 k = 3 k = 4 k = 5
original 0.911 1 1 1
stateful 0.911 1 1 1

TABLE 7. A comparison of false positive rates between original and stateful
versions of the IDS. k represents the sequence length hyperparameter. Values
shown are the average of values obtained from the three iterations.

k = 2 k = 3 k = 4 k = 5
original 7.184× 10−7 2.129× 10−6 4.199× 10−6 6.836× 10−6

stateful 2.278× 10−7 6.630× 10−7 9.042× 10−7 1.129× 10−6

D. MEMORY FOOTPRINT
Memory footprint of an IDS is an important factor to
consider when deciding its feasibility and practical value
due to increased costs associated with high memory re-
quirements. Choice of sequence length k affects the mem-
ory requirements of the IDS both directly, and indirectly
through its influence on the number of k-sequences that
are memorized. Fig. 4 shows the memory footprint of
our prototype implementation for different k values. The
difference in required memory size between the cases k = 2
and k = 3 is approximately 4 kilobytes. The only difference
between the stateful version and the original IDS in terms
of required memory is that the former holds two additional
state variables whose contribution to memory footprint is
negligible.

FIGURE 4. Memory requirement of the IDS for different k values.

E. DECISION TIME
We define decision time as the time required to process
a message, where the required processing is described in
Algorithm 2 for the original IDS, and in Algorithm 3 for
the stateful version.

If the IDS cannot complete the processing of a message
before the arrival of the next message, if becomes necessary

8 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3117038, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 8. Mean and standard deviation (SD) for the decision time
measurements. Unit of measurement is microsecond. k is the sequence
length.

k = 2 k = 3 k = 4 k = 5
Mean 4.3 4.6 6.1 6.8
SD 1.3 1.2 1.5 1.2

to buffer relevant parts of incoming messages. Buffering
increases the complexity and cost of the IDS. Latency is
another reason to seek low decision times, especially for an
on-line IDS.

For the CAN frames in UTU dataset, up to 64 bits of data
follow the identifier. Most frames in UTU dataset carry 64
bits of data, and average size for the data field is 63 bits.
The CAN bus which generated UTU dataset operates at 250
kbit/s. Assuming the worst case scenario where a node starts
sending its message as soon as the sending of the previous
message is completed, the time available to the IDS for
completing the processing of the first message before the
arrival of the second one is equal to the number of bits
in the data field divided by bit rate. With a bitrate of 250
kbit/s, and average data size of 63 bits, average available
time tavailable is 252 microseconds.

We measured decision times for the IDS trained in itera-
tion 1, on a single CPU core running roughly at 1500 MHz.
Table 8 shows the measurement results. Mean decision
times are significantly lower than tavailable. We observed
no meaningful difference between the original and stateful
version in terms of decision times.

VII. DISCUSSION
In this section, we summarize and discuss our results.
Our results from Section VI showed promising sensitivity
and specificity values, as well as very fast decision times
and acceptable memory footprint. Our main results are as
follows:

• Sequence length is a useful hyperparameter for the
considered IDS.

• Increasing sequence length from k = 2 to k = 3
improves IDS sensitivity, while only slightly increasing
false positive rate and memory footprint, and having no
impact on decision time.

• False positive rate for the stateful version for k = 3
was lower than the false positive rate for the original
IDS for k = 2.

• Our results support the main findings of Marchetti
and Stabili [27], and show that whitelisting identifier
sequences is a viable approach for anomaly detection
in vehicular CAN bus.

Marchetti and Stabili [27] report that their experiment did
not generate any false positives. While our experiment did
yield small false positive rates, they were not zero even
for the k = 2 case, and it can be seen in Fig. 2 that
new sequences kept appearing even after several billions
of observed messages. This apparent conflict might be due

to some differences between the datasets; however, because
the dataset used in their study was not available to us, we
were not able to investigate the cause.

VIII. CONCLUSION
We studied an intrusion detection system (IDS) which
detects anomalies in vehicular CAN bus traffic by analyzing
message identifier sequences. We implemented the IDS, and
evaluated its performance using CAN bus data collected
from a heavy-duty truck.

The IDS we studied in this work is a lightweight solution
in terms of its hardware requirements, and as such it may
be suitable for being used together with other anomaly
detection approaches, complementing them. It may also
serve as a baseline for evaluating other approaches which
are more demanding in terms of time and memory.
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