
REDESIGNING INTRODUCTORY COMPUTER SCIENCE COURSES
TO USE TUTORIAL-BASED LEARNING

Erno Lokkila1, Erkki Kaila1, Ville Karavirta1, Tapio Salakoski1,
Mikko-Jussi Laakso1

1University of Turku (FINLAND)

Abstract

In the beginning of the studies, it is important to get students motivated and interested in the subject
they are studying. Getting them past the first courses with good basic understanding of the topic
provides them with a fruitful foundation for success in the rest of their education. To reach these
somewhat high goals, we redesigned our two introductory courses to computer science. The courses
Introduction to Computer Science I and II provide student with the basic understanding of algorithms,
programming, and the functioning of the computer when a program is executed in the machine. At the
heart of our redesign is the tutorial-based learning approach we have successfully used on other
courses. The courses are arranged around weekly topics, each of which are covered by a teacher-
lead lecture, student-focused tutorial worked out in pairs, as well as individual exercises. Moreover, we
discuss the technological solutions behind the automated assessment systems used on the courses in
order to make the teacher workload manageable. In this paper, we describe the ViLLE environment
used on the courses, the redesigned courses and their content, as well as the response they got from
the students.

Keywords: Automatic assessment, Tutorial-based learning.

1 INTRODUCTION

Introductory programming courses are often considered difficult and uninteresting by students.
However, as introductory courses, they provide students with their first touch to the world of Computer
Science. Providing students with a positive experience is vital in order to encourage students to keep
studying. The current preferred method of teaching undergraduate programming courses remains to
be lecturing wherein students passively sit in lectures and listen to the orator. This method forces
students to memorize facts and leaves them without an idea of what Computer Science truly is:
problem solving.

Due to a curriculum change, we were presented with a chance to redesign our introductory courses to
computer science. In order to promote a more active learning environment, tutorial-based learning was
employed to the course. The reason why we chose tutorials was two-fold: firstly, tutorial-based
learning provides students a chance to actively solve problems, much like those seen in the industry,
albeit on a much smaller scale. Secondly, our experiences with tutorial-based learning on
programming courses have been very encouraging.

First the ViLLE learning platform is shortly described, as it played a central role in the redesign. Then
the different aspects of the courses and its elements are described; automatically assessed exercises,
tutorials and the electronic examination. Finally, student perceptions of the new courses are analyzed
using the student feedback collected at the end of both courses.

2 RELATED WORKS

Active learning has been defined as any activity in which the student takes part actively in order to
form a solution [1]. This active learning approach has been employed on other CS courses. A meta-
analysis studying the effects of an active learning approach reports decreasing drop rates and
increased test scores [1]. Active learning is an integral part in the constructivist approach to learning,
wherein students actively assimilate new information with what they currently know. In an ideal
constructivist-learning situation, this new information creates a mental conflict with the old knowledge
forcing the student to critically assess the new information and assimilate this with any old information.
Any old information the student has thus creates a scaffold for which the student may construct new
information [2].

Immediate feedback is a necessary part of the tutorial-based learning approach. It has been found to
improve student performance and raise engagement with the task at hand[3][4]. Immediate feedback
is one useful tool in the constructivist approach: feedback can assist in creating both the mental
conflicts and the informational scaffolds for the student [2].

Another useful tool in the constructivist approach to learning is collaboration. Collaboration has been
found to be highly beneficial in supporting the learning process of students when learning
programming. [3][5][6]. This is because collaboration, by its nature, is active learning: students are
working together in order to find answers to a problem. Around 60% of the discussion between
students when solving a problem is about the problem itself [5].

Moving away from lectures and utilizing a more active learning-approach is described to improve
results. Kay et al. managed to improve results somewhat by utilizing a Problem-Based Learning (PBL)
approach to introductory courses. Their approach was to provide students with large, open-ended
problems from the real world. Their full-fledged move to PBL decreased failure rates. [7]

3 VILLE

ViLLE is an exercise-based, collaborative learning environment. It contains a myriad of automatically
assessed exercise types for computer science, language and mathematics learning. In addition, there
are several exercises that can be used to teach any topic. All exercises provide immediate feedback to
support constructivist learning. ViLLE supports both, teacher and student collaboration. Teachers can
share their courses and exercises with other registered teachers, and students can solve assignments
in collaboration with other students.

ViLLE is currently utilized by more than 1,200 teachers and over 15,000 students around the world. A
complete description of the tool can be found in [8].

4 REDESIGNING THE COURSES

The redesigned courses were introductory courses to computer science, aptly named Introduction to
computer science I and II. These courses are intended to be taken as the first real computer science
courses for new students and ICS1 is obligatory for all major and minor students in IT. The number of
participants is, as a result, relatively high especially on the first course.

The old versions of the courses were typical introductory courses to CS, taught completely by
lecturing. The lectures were given twice a week for 3 weeks and a final exam at the end of the course
determined the final grade for students. Main topics covered during the first course were basic
concepts in computing (e.g. variable, program execution, method and so on) and number systems
used in computing. The second course concentrated on deepening the programming skills of the
students by introducing e.g. recursion and non-imperative programming.

The new versions of the courses were designed with active learning in mind. The new version of the
course lasted twice as long, and consisted of 12h of lectures and 12h of tutorials. The lecture
introduced the theory behind the topic for the week, and the tutorial deepened the students’
understanding of the topic discussed on the lecture. The final grade for the students was given based
on a final exam, as in the old course. However, the exam in new course was conducted electronically
using the ViLLE system instead of the more traditional pen-and-paper method utilized on the old
course. See Table 1 for a side-by-side comparison of the structure of the courses.

Table 1: Comparison of the structure of the old and redesigned courses

Component Old CS1 course Old CS2 course New CS1 course New CS2 course

Study points 2 3 3 5

Lectures 12h 20h 12h 16h

Tutorials None None 12h 16h

Final Exam pen-and-paper pen-and-paper electronic, using ViLLE electronic, using ViLLE

Feedback collected None None 2 short weekly surveys
+ final course feedback

2 short weekly surveys +
final course feedback

Overall, more taught content was present in the redesigned courses when compared to the old
courses to justify the increase in study points. The aim of these redesigned courses was to teach
basic understanding of algorithms, programming and the operation of computers in general; how they
work, what they can and can not do. Additional emphasis is given to how programs are translated to
machine language and then executed. Previously, before the redesign, the main focus on these
courses was to teach the basic concepts in computing and to provide an understanding of the
technological foundation for modern computing. Due to the increase in content and study points, more
time was also allotted for the courses. The extent of the changes performed on the courses makes a
scientific comparison between the two versions impossible. Instead, the focus will be on evaluating the
feedback received from students regarding the new methods and the course as a whole.

4.1 Elements of the redesign

Automatic assessment played a major role in the redesign. Automatic assessment of exercises
allowed the teaching staff to include more exercises to the courses with no additional resources spent
on grading them. Furthermore, students also received immediate feedback on each and every
exercise they submitted to the ViLLE system. This feedback consisted of the correctness of the
student’s answer, an example of the correct answer and possibly additional information about what to
do in order to achieve a higher score. ViLLE offers a myriad of exercise types, several of which were
used on the redesigned course. All the exercises were automatically assessed. These automatically
assessed exercises were employed in both the tutorials and the electronic exam. The rest of this
chapter concentrates first on describing the exercises used on the course, followed by how they were
utilized in the tutorials and examination.

4.2 Exercises

ViLLE offers teachers a bountiful selection of exercise types, most of which are automatically
assessed and can be parametrized to provide students an assignment with different values each time.
The exercise types used on the redesigned course mainly consisted of coding exercises, Parson’s
problems and quizzes, although many other types of exercises were included for variety so students’
engagement was maintained. The only manually graded exercise on these courses was a short essay
in the final exam.

Because ICS2 also discusses computers on the hardware level, the logic gate exercise type (Figure 1)
was utilized on the course. The logic gate exercise allows students to construct their own logic circuit
and simulate its operation. The feedback given by the exercise consists of a visual description of the
input sets for which the circuit produced the correct output and conversely, the wrong output.

Figure 1: Logic gate exercise

The coding exercises used on the course allow students to either write their own program code or
simulate the internal state of a computer during a given program. Both these exercise types provide
the student with feedback. In the coding exercise, the given feedback consists of either an authentic

compiler error if the code did not compile, or the output of the written program shown side-by-side with
the output from the teacher’s solution. The program simulation exercise notifies the user whenever the
program state is incorrect after each line of program code. The aim in these exercises is to facilitate
active learning by automatically showing the students where they erred and the possibility to improve
on their answer until a satisfactory solution is found.

Another exercise type that was extensively used on the new courses was Parson’s programming
puzzles [9]. This exercise type was used to teach students both python and microcode. While we also
used ‘normal’ Parson’s problems in our tutorials, we also used a slightly modified version of the
puzzles: students were not only to drag and drop lines of code to create a working program, but also
had to select the variables and some of the operators used in these lines. This modified version of the
puzzle (Figure 2) placed students responsible for not only the logic of the algorithm, but also of the
internal state of the computer during the execution of the algorithm – all while providing a controlled
environment where students learn good coding habits.

Figure 2: Modified Parson's Puzzle

In addition to these three exercise types, a variety of other exercise types were used on the courses.
The types most often used were Matrix selection exercises and quizzes. Calculate-in-a-column
exercises were used to teach binary addition, subtraction and multiplication. All exercise types are
explained in more detail in the Book of ViLLE (see [10]).

4.3 Tutorials

Tutorials on the redesigned courses consisted of a combination of exercises and the related study
material. Students completed the tutorials on their own laptops, or alternatively paired up with
someone who had one. The students formed pairs to complete all tutorials, as collaboration is an
important aspect in active learning. The tutorials were linked to lectures in such a way that the week’s
lecture provided with the theoretical and general background and the tutorial gave assignments and
hands-on training. Tutorials provided all the necessary information to solve the given assignments
without giving direct answers, as shown in Figure 3. Additionally, the lecturer and several mentors (i.e.
older students) were present at the tutorials to provide assistance to those having trouble with the
assignments or the ViLLE system.

Figure 3: Example of a part of a ViLLE Tutorial translated into English

In order to successfully organize these tutorials, several points must be kept in mind. The tutorials
must be kept in a spacious hall. All our tutorials were held in a 250-seat lecture room, which made it
possible to have students sit on every other row so the teaching staff was able to reach every student
– even those sitting in the middle of the row. Additionally, students should be provided with Ethernet
cables. This allowed us to provide everyone with a stable internet connection, as the Wi-Fi routers
present were not able to handle the connections from all devices present (cell phones, tablets,
students’ laptops, etc.). Furthermore, using the local area network of the University made it possible to
block access to all sites but ViLLE. This was not strictly required for normal tutorials, but was an
extremely useful preparation for the exam.

4.4 Examination

The final examination for the course was held as an electronic examination using the ViLLE learning
system. The examination was held online, which meant students were allowed to bring their own
computer and complete the examination on it. For the students who did not own a laptop, access to
the internet was provided from the computer lab. The examination was held in the same lecture hall as
the tutorials, which meant we were able to block all unwanted internet sites. Nevertheless, as students
used their own computers, the possibility of course materials present on the computer was taken into
account by having several examiners, who made sure no one cheated.

The examination itself consisted of the same exercise types students were already familiar with from
the tutorials, only with slightly harder parameters. As all the assignments, apart from one short essay,
were automatically assessed, students received their final course marks in record time.

5 STUDENT FEEDBACK

Student feedback was collected extensively during both courses. For this paper, only the final course
feedback is presented, along with a few hand-picked comments from students. The course feedback
consisted of general questions about the course and students answered them on a Likert-scale of 1 to
4, where 1 is very negative and 4 is very positive. Table 2 presents the results.

Table 1: Student feedback on the new courses

Question ICS1 (n=100) ICS2 (n=75)

1. Rate the lectures as a whole
3,15 2,71

2. Rate the tutorials as a whole
3,14 2,92

3. Rate the course homework as a whole
3,17 2,68

4. Rate the course as a whole
3,32 2,8

5. The course was too easy
2,27 1,65

6. The learning method (lectures+tutorials) suited me
3,28 3,09

7. Tutorial-based learning should be used in the future
3,47 3,47

8. There were too many exercises
1,98 2,03

9. The tutorial exercises had too much variety
1,72 2,04

10. I achieved the learning goals I set for myself
3,36 2,53

The results clearly show that the first course was easier than the second. This was an expected result,
as the ICS1 is obligatory to both minor and major students, while ICS2 only to majors. ICS1 gives a
shallow, but broad view of computer science in general, whereas ICS2 deepens understanding of the
topics learned in the previous course while introducing additional topics. The hardness of ICS2 is
reflected in the overall grades: all but one question received lower scores. Interestingly, this question
is number 7, regarding the continued use of tutorial-based learning. Students thus enjoy tutorials and
regard them as an effective learning method regardless of the difficulty of the course.

Students not only preferred the tutorial-based learning methods used, but also felt lectures worked
well when complementing the tutorials. Tutorials coupled with lectures as a learning method was
generally accepted as a welcome teaching method. This is shown by the well-above average answers
to question 6, which was rated over 3 on both courses.

A variety of exercise types is a welcome addition to courses, as shown by student answers to
questions 8 and 9. Both courses utilized the same types of exercises. However, the students’ rating for
question 9 - regarding exercise variety - rises. This indicates that students became familiar with the
exercise types used and their engagement with the exercises dropped as a result.

6 CONCLUSIONS

While this course redesign well received by the students, the reasons for the noticeable lower scores
for the second course are rather unclear. The most likely reason for the decrease in the scores is the
difficulty of the course; more advanced, and thus more difficult, topics were discussed. Due to this
added difficulty, more work was required by the students and this would naturally cause students to
like the course less. Another reason for the lower scores could be due to the courses having different
teaching staff.

Students enjoyed the tutorials and the variety of exercises. As some skills are best learning by drilling
[9], having different types of exercises train the same skill, students are less likely to get bored and
give up, thus learning the skill being taught better.

In the future, we plan to keep gathering data from future instances for a more thorough scientific
analysis of the benefits of moving to active-learning based teaching. The data gathered will include not
only students’ feedback on the course, but also exam results and other course statistics, such as
points gathered. This data should allow us to analyze the effectiveness of an active learning based
approach to student performance.

REFERENCES

[1] S. Freeman, et al. "Active learning increases student performance in science, engineering, and
mathematics." Proceedings of the National Academy of Sciences 111.23 (2014): 8410-8415.

[2] J. Wertsch, V. Vygotsky and the social formation of mind. Harvard University Press, 1985.M.L.

[3] M.J Laakso, (2010). Promoting Programming Learning. Engagement, Automatic Assessment
with Immediate Feedback in Visualizations. TUCS Dissertations no 131.

[4] Epstein, B.B. Epstein and G.M. Brosvic, Immediate feedback during academic testing.
Psychological Reports 88, No. 3, pp. 889-894, 2001.

[5] T. Rajala, E. Kaila, M.J. Laakso, and T. Salakoski, Effects of Collaboration in Program
Visualization. Technology Enhanced Learning Conference 2009, TELearn 2009, Academia
Sinica, Taipei, Taiwan, 2009.

[6] Q. Wang, Design and evaluation of a collaborative learning environment. Computers &
Education Vol. 53, No.4, pp. 1138-1146, 2009.

[7] J. Kay et al. "Problem-based learning for foundation computer science courses." Computer
Science Education Vol. 10 No. 2, pp. 109-128, 2000.

[8] M.J. Laakso, E. Kaila, and T. Rajala, ViLLE - Designing and utilizing a collaborative learning
environment. Submitted to Computers & Education, 2015

[9] P. Dale, and P. Haden. "Parson's programming puzzles: a fun and effective learning tool for first
programming courses." Proceedings of the 8th Australasian Conference on Computing
Education-Volume 52. Australian Computer Society, Inc., 2006.

[10] E. Kaila et al, ViLLE: Teacher’s handbook, pp. 68-116, 2014
https://ville.cs.utu.fi/doc/TheBookOfViLLE.pdf, Last accessed 26 March 2015

