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a b s t r a c t

A set R ⊆ V (G) is a resolving set of a graph G if for all distinct vertices v, u ∈ V (G)
there exists an element r ∈ R such that d(r, v) ̸= d(r, u). The metric dimension dim(G)
of the graph G is the cardinality of a smallest resolving set of G. A resolving set with
cardinality dim(G) is called a metric basis of G. We consider vertices that are in all metric
bases, and we call them basis forced vertices. We give several structural properties of
sparse and dense graphs where basis forced vertices are present. In particular, we give
bounds for the maximum number of edges in a graph containing basis forced vertices.
Our bound is optimal whenever the number of basis forced vertices is even. Moreover,
we provide a method of constructing fairly sparse graphs with basis forced vertices.
We also study vertices which are in no metric basis in connection to cut-vertices and
pendants. Furthermore, we show that deciding whether a vertex is in all metric bases
is co-NP-hard, and deciding whether a vertex is in no metric basis is NP-hard.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Metric dimension in graphs is a classical invariant that has been studied from a lot of different points of view,
tarting from pure theoretical aspects and including some applied models mainly arising from computer science, among
thers. Specifically, in the last decade, there has been an increasing number of investigations on the metric dimension of
raphs, and a large number of them are specifically centred on variations of the standard metric dimension concept. The
lassical metric dimension parameter, although it is nowadays very well studied, strong interest still remains. Indeed, a
ignificant number of works specifically dealing with it appear frequently. For some latest remarkable articles we suggest
or instance [6,8,14,17,18,21,23].

For a given connected graph G, the distance dG(u, v) (the subindex can be removed if it is clear from context) between
wo vertices u, v ∈ V (G) is the length of a shortest path between u and v. A set of vertices R ⊆ V (G) is called a resolving
et for G if for every pair of distinct vertices u, v ∈ V (G), there exists a vertex w ∈ R such that dG(w, u) ̸= dG(w, v). In this
ense, it is also said that the set R resolves the graph G, and that w resolves the vertices u, v (or that u, v are resolved by
). The cardinality of the smallest possible resolving set for G is the metric dimension of G, denoted by dim(G). A resolving
et of cardinality dim(G) is a metric basis of G. Such concepts were (independently) introduced in [12,22].
It is natural to ask if a graph contains a unique metric basis, or to ask a broader question, whether a graph has vertices

elonging to every metric basis. Such ideas were already investigated in [1,3]. For instance, it was shown in [3], that for
ll integers k, r with k ≥ 2 and 0 ≤ r ≤ k, there exists a graph G with metric dimension k having r vertices that belong
o every metric basis of G. However, no more contributions in this direction, concerning the classical metric dimension
nvariant, have appeared so far. Such questions are widely studied in other contexts such as dominating sets and stable
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Fig. 1. Void vertices and basis forced vertices are illustrated as white and black vertices, respectively. Grey vertices are in some metric basis but
not all.

sets in [5,11,19], for example. For some other variants of metric dimension, some related studies have continued. Examples
of this are [9,10], where forced vertices were defined as vertices that are in every ℓ-solid-resolving set or {ℓ}-resolving
et — not only the corresponding metric bases. In this sense, it is now our goal to retrieve such ideas, for the classical
etric dimension, and present an exposition of combinatorial results aimed to describe structural properties of graphs
ontaining vertices that either belong to every, or to no metric basis of it. For more formality in our exposition, we shall
ow name such kind of vertices in a graph G.

efinition 1. A vertex v ∈ V (G) is a basis forced vertex of the graph G if it is contained in every metric basis of G.

In connection with the existent models related to metric dimension in graphs, like that of navigation of robots in
etworks, the existence of basis forced vertices means that a metric basis cannot be formed without them. In consequence,
hey need to be included in every possible set of ‘‘landmarks’’ used to uniquely identify the vertices of the graph.

Clearly, all graphs do not have basis forced vertices. For example, the path Pn with n ∈ N(= {1, 2, . . .}) vertices where
≥ 2 has two disjoint metric bases (the endpoints), and thus no basis forced vertices. The graph in Fig. 1(b) has two basis

orced vertices, which are illustrated as black vertices. This graph has a unique metric basis that consists of only these
wo vertices. Consequently, the white vertices are in no metric basis. These are the opposite of basis forced vertices, and
hus we have the following definition.

efinition 2. A vertex v ∈ V (G) is a void vertex of the graph G if it is in no metric basis of G.

In [2], the set of vertices belonging to all maximum stable sets of a graph is called the core of G. In the same spirit, we
ould call the set of basis forced vertices a core for the metric bases of G and the set of void vertices an anticore for the
etric bases of G.
The vertices of any graph can be divided into three categories: basis forced vertices, void vertices and vertices that do

ot fit in either category, that is, vertices that are in some metric bases but not all. The endpoints of a path are in some
etric bases but not all, whereas the rest of the vertices of a path are void vertices. The vertices of a complete graph or
cycle are also all in some bases but not all. If a graph has a unique metric basis (like the graph in Fig. 1(b)), then each
f its vertices is either a basis forced vertex or a void vertex. All three types of vertices can be present simultaneously in
he same graph. This is the case for the graph later shown in Fig. 2(a).

In [9,10], forced vertices of ℓ-solid-resolving sets for all ℓ, and {ℓ}-resolving sets for ℓ ≥ 2 were characterised. These
haracterisations used the local properties of the vertices and their neighbourhoods. In contrast, it seems that achieving
similar local characterisation for basis forced vertices is a very challenging problem (see Section 5 for issues concerning
he algorithmic complexity). For instance, if the graph changes even slightly, the metric bases may look very different
ven in places that are far away from where the change occurred. This allows to realise that basis forced vertices are
ery sensitive to changes in the graph. Consider the graph in Fig. 1(a). The metric dimension of this graph is 2, and the
ertices that appear in some metric basis are illustrated as grey vertices. When we add the edge v1v2 we obtain the graph
llustrated in Fig. 1(b). The metric dimension of this graph is also 2. However, this graph has only one metric basis, the
lements of which are illustrated as black vertices. Consequently, this graph has two basis forced vertices and ten void
ertices. When we add the edge u1u2 to this graph, we obtain the graph in Fig. 1(c). The metric dimension of this graph
s 3, and there is only one void vertex. The rest of the vertices appear in some metric bases but not all.

We next include some terminology and notations that we shall use throughout our exposition. Whenever two distinct
ertices v, u ∈ V (G) are adjacent, we denote v ∼ u (possibly with a subindex ∼G when such distinction is necessary),
nd when v and u are not adjacent, we denote v ̸∼ u. The vertex v is a pendant if there exists exactly one element
∈ V (G) \ {v} such that v ∼ u. Let S ⊆ V (G). The induced subgraph G[S] is the graph with the vertex set S and the edge
et consisting of the edges of G that are between two elements of S. Let v ∈ V (G). The graph G− v is obtained from G by
emoving the vertex v and all edges that have v as an endpoint. The vertex v ∈ V (G) is a cut-vertex of a connected graph
if the graph G − v is disconnected. A connected graph G is unicyclic if it contains only one cycle (i.e., the number of

dges is equal to the number of vertices in G). From now on, all the graphs considered are connected.
The structure of this article is as follows. In Section 2, we consider cut-vertices and pendants. More precisely, in

ection 2.1 we show that cut-vertices are not basis forced vertices, and that in fact most of them are void vertices. In
2
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Section 2.2, we show that pendants are not basis forced vertices in most cases. However, we also give an example of a
graph that has pendants as basis forced vertices. In Section 3, we consider sparse and dense graphs and their basis forced
vertices. We investigate, what are the sparsest and densest graphs that have basis forced vertices. In Section 4, we give
two bounds on the number of basis forced vertices of a graph by using a new colouring method of visualising which pairs
of vertices are resolved by which elements of a metric basis. Finally, we consider the algorithmic complexity of deciding
whether a vertex is a basis forced or void vertex in Section 5.

2. On cut-vertices and pendants

In this section, we consider cut-vertices and pendants, and establish whether they can be void vertices or basis forced
ertices. In the first subsection, we will show that in most cases cut-vertices are void vertices. However, not all cut-vertices
re void vertices. For example, the set {v1, v2} is a metric basis of the graph in Fig. 1(a) and it consists of only cut-vertices.
e will show that the cut-vertices that are not void vertices are not basis forced either. In the latter subsection, we

onsider pendants. We show that pendants are not basis forced vertices in most cases. However, there are some graphs
hat have pendants as basis forced vertices.

.1. Cut-vertices

Let us first prove a lemma that we will use in this section and the section on pendants. By components of a graph
e mean connected components. The following lemma essentially says that if there are elements of a resolving set in
ultiple components of G−v for a cut-vertex v, then every pair of vertices that the cut-vertex v resolves is also resolved
y other elements of the resolving set. However, the set R is not required to be a resolving set for the following lemma
o hold.

emma 3. Let G be a connected graph with a cut-vertex v. Let R ⊆ V (G) be such that there are at least two components in
− v containing elements of R. If d(v, x) ̸= d(v, y) for some x, y ∈ V (G), then there exists an element r ∈ R (r ̸= v) such that

d(r, x) ̸= d(r, y).

Proof. Let us denote the components of G− v by Gi, i ∈ N, and let Ri = R ∩ V (Gi). Assume that x, y ∈ V (G) are such that
d(v, x) ̸= d(v, y). Suppose that for some i we have Ri ̸= ∅ and x, y /∈ V (Gi). Now for all r ∈ Ri we have

d(r, x) = d(r, v)+ d(v, x) ̸= d(r, v)+ d(v, y) = d(r, y).

Thus, there exists an element r ∈ R such that d(r, x) ̸= d(r, y).
Above we considered the case where for at least one i we have Ri ̸= ∅ and x, y /∈ V (Gi). Now we consider the case

where no such i exists, i.e., the case where every component that contains elements of R also contains x or y. As there
are at least two components with elements of R, the vertices x and y must be in different components. Thus, for some
distinct i and j we have Ri, Rj ̸= ∅, x ∈ V (Gi) and y ∈ V (Gj). If for some r ∈ Ri we have d(r, x) ̸= d(r, y), then we are done.
uppose that for all r ∈ Ri we have d(r, x) = d(r, y). Now

d(r, v)+ d(v, y) = d(r, y) = d(r, x) ≤ d(r, v)+ d(v, x).

Since d(v, y) ̸= d(v, x), we have d(v, y) < d(v, x). However, now for all s ∈ Rj, we have

d(s, y) ≤ d(s, v)+ d(v, y) < d(s, v)+ d(v, x) = d(s, x).

Thus, d(s, x) ̸= d(s, y) for all s ∈ Rj. □

Showing that the cut-vertex v is not in a metric basis is most difficult when there is a path dangling from v, i.e. a
path with one end adjacent to v. More precisely, there exists a component Gi of G − v such that G[V (Gi) ∪ {v}] ≃ Pn
or some n ≥ 2. This path-like structure does not necessarily contain any elements of a metric basis, so we need to be
areful when using Lemma 3. To help us differentiate the easy cases from the hard ones, we have the following lemma
hat already appeared in [22]. We include its proof for completeness of our work, and mainly based on the difficulty of
inding Ref. [22].

emma 4 ([22, Proposition 2]). Let v be a cut-vertex of a connected graph G, and let R be a resolving set of G. For each
omponent Gi of G− v, we have

V (Gi) ∩ R = ∅ ⇒ G[V (Gi) ∪ {v}] ≃ Pn
or some n ≥ 2. Moreover, there can be only one component Gi such that V (Gi) ∩ R = ∅.

Proof. Let Gi be a component of G − v such that V (Gi) ∩ R = ∅. Assume to the contrary that G[V (Gi) ∪ {v}] ̸≃ Pn for
all n ≥ 2. Then there exist distinct x, y ∈ V (Gi) such that d(v, x) = d(v, y). Consequently, d(r, x) = d(r, v) + d(v, x) =
d(r, v)+ d(v, y) = d(r, y) for all r ∈ R. Then the set R is not a resolving set, a contradiction.

To prove the latter claim, suppose that V (Gi) ∩ R = ∅ and V (Gj) ∩ R = ∅ for some i ̸= j. Let vi ∈ N(v) ∩ V (Gi) and

vj ∈ N(v) ∩ V (Gj). Now, we have d(r, vi) = d(r, v)+ 1 = d(r, vj) for all r ∈ R, a contradiction. □

3
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The following theorem considers the case where we can use Lemma 3 straight away. In Theorem 6, we consider the
ase not covered by Theorem 5.

heorem 5. Let G be a connected graph. If v ∈ V (G) is a cut-vertex such that

1. G− v has at least three components or
2. G− v has two components Gi such that G[V (Gi) ∪ {v}] ̸≃ Pn, where n ≥ 2,

hen v is a void vertex.

roof. Let R be a resolving set of G such that v ∈ R. Let us denote the components of G − v by Gi, i ∈ N. Due to our
ssumptions on G− v and Lemma 4, there are at least two components in G− v that contain elements of R.
For all x, y ∈ V (G) such that d(v, x) = d(v, y) there exists an element r ∈ R \ {v} such that d(r, x) ̸= d(r, y). Suppose

ow that x, y ∈ V (G) are such that d(v, x) ̸= d(v, y). According to Lemma 3, for every such pair x, y there exists an element
∈ R \ {v} such that d(r, x) ̸= d(r, y). Thus, the set R \ {v} is a resolving set, and v is not in any metric basis. □

In many proofs, where we prove that some vertex is not a basis forced vertex, we use a replacing technique. Let R be
metric basis of G. Consider a fixed r ∈ R. There exist some x, y ∈ V (G) such that d(r, x) ̸= d(r, y) and d(s, x) = d(s, y) for
ll s ∈ R \ {r}. Otherwise, the set R \ {r} would be a resolving set that is smaller than the metric basis R. If there exists
vertex v ∈ V (G) such that d(v, x) ̸= d(v, y) for all x, y ∈ V (G) for which r is the only element of R that resolves them,

hen we can replace r in R with v and obtain a metric basis of G (i.e. the set (R \ {r}) ∪ {v} is a metric basis of G). We
enote R[r ← v] = (R \ {r}) ∪ {v}. Notice that if v ∈ R, then R[r ← v] = R \ {r}.

Theorem 6. Let G be a connected graph. Let v ∈ V (G) be a cut-vertex such that G− v has only two components G1 and G2.
If G[V (Gi) ∪ {v}] ≃ Pn (n ≥ 2) for i = 1 or i = 2, then v is not a basis forced vertex.

Proof. Suppose that G[V (G1) ∪ {v}] ≃ Pn for some n ≥ 2 and that R is a metric basis of G such that v ∈ R. Let u be the
ertex of G1 that is furthest away from v in G.
Let us show that R[v ← u] is a metric basis of G. To that end, let x, y ∈ V (G) be such that d(v, x) ̸= d(v, y) (if

(v, x) = d(v, y), then d(r, x) ̸= d(r, y) for some r ∈ R \ {v}). It is sufficient to show that for every such x and y we also
ave d(u, x) ̸= d(u, y). If x ∈ V (G1) or y ∈ V (G1) (or both), then we clearly have either d(u, x) < d(u, y) or d(u, y) < d(u, x),
ince the shortest paths from u to y go through x or vice versa. Suppose that x, y ∈ V (G2)∪{v}. Now all the shortest paths
rom u to x and y go through v. Thus, we have

d(u, x) = d(u, v)+ d(v, x) ̸= d(u, v)+ d(v, y) = d(u, y). □

According to Theorem 5 and the proof of Theorem 6, a cut-vertex either is not in any metric basis or it can be replaced
ith a pendant. Thus, the following corollary is immediate.

orollary 7. Any finite graph has a metric basis that does not contain any cut-vertices.

The graph has to be finite for Corollary 7 to hold. For example, the bi-infinite path consists of only cut-vertices, and
hus every resolving set contains only cut-vertices.

.2. Pendants

Consider the graph in Fig. 1(b). This graph has a unique metric basis illustrated as black vertices in the figure. The
wo pendants that form the unique metric basis are also basis forced vertices. Thus, there does indeed exist graphs that
ave pendants as basis forced vertices. However, our goal is to prove that in most cases the pendants are not basis forced
ertices.

heorem 8. Let G be a connected graph with a pendant u. Let v be the cut-vertex adjacent to u. If G−{v, u} has at least two
omponents, then u is not a basis forced vertex.

roof. Let R be a metric basis of G such that u ∈ R. Let us denote the components of G − {v, u} by Gi, i ∈ N, and let
i = R∩V (Gi). Since R is a metric basis, there exists at least one pair of vertices x, y ∈ V (G) such that u is the only element
n R that resolves that pair. In other words, d(u, x) ̸= d(u, y) and d(r, x) = d(r, y) for all r ∈ R \ {u}.

Case 1: Suppose that there exist two components Gi such that Ri ̸= ∅. Let us show that the pair x, y is unique. We will
irst prove that either x = u or y = u. Suppose to the contrary that x ̸= u and y ̸= u. Now

d(v, x) = d(u, x)− 1 ̸= d(u, y)− 1 = d(v, y).

ccording to Lemma 3 (when applied to the set R\{u}), the pair x, y is resolved by some r ∈ R\{u}, a contradiction. Thus,

ither x = u or y = u.

4
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Suppose without loss of generality that x = u. Let us show that y is unique. First of all, we have y ̸= v, since every
∈ R\ {u} resolves u and v. Thus, y ∈ V (Gi) for some i. There exists some j ̸= i such that Rj ̸= ∅. Since d(r, y) = d(r, u) for
ll r ∈ Rj, we have y ∈ N(v) ∩ V (Gi). Thus, d(u, y) = 2. Suppose that y is not unique, that is, there exists y′ ∈ N(v) \ {u, y}
uch that d(r, y′) = d(r, u) for all r ∈ R \ {u}. Now we cannot resolve y and y′ with R:

d(u, y) = 2 = d(u, y′) and
d(r, y) = d(r, u) = d(r, y′)

or all r ∈ R \ {u}. Thus, y is unique.
Since all pairs other than u, y are resolved by R \ {u}, the set R[u← y] is a metric basis of G. Therefore, u is not a basis

orced vertex.
Case 2: Suppose then that there is only one component Gi such that Ri ̸= ∅. Due to Lemma 4, there are only two

omponents G1 and G2. Suppose that R2 = ∅. Then G[V (G2) ∪ {v}] ≃ Pn for some n ≥ 2.
Let w ∈ V (G2). We will show that R[u ← w] is a resolving set of G. Let x, y ∈ V (G) be such that d(u, x) ̸= d(u, y).

uppose that d(v, x) ̸= d(v, y). According to Lemma 3 there exists an element r ∈ R[u ← w] such that d(r, x) ̸= d(r, y).
uppose then that d(v, x) = d(v, y). Since we assumed that d(u, x) ̸= d(u, y), we now have either x = u or y = u.
Suppose without loss of generality that x = u. Then y ∈ N(v). If y ∈ V (G2), then d(w, y) < d(w, u), since the shortest

ath from w to u goes through y. Suppose then that y ∈ V (G1). Denote by y′ the unique element in N(v)∩ V (G2). Since R
s a metric basis and d(u, y) = d(u, y′), we have d(r, y) ̸= d(r, y′) for some r ∈ R \ {u}. Since R2 = ∅, we have r ∈ R1. Thus,
(r, u) = d(r, y′) ̸= d(r, y). Therefore, if R2 = ∅, then the set R[u← w] is a metric basis for all w ∈ V (G2). □

In the proofs of Theorems 5 and 6, our goal was to replace the cut-vertex with something else or remove it entirely
rom the resolving set. However, in the following theorem we do the opposite; we replace a pendant with a cut-vertex
n a metric basis.

heorem 9. Let G be a connected graph such that G ̸≃ Pn for all n ∈ N. If u is a pendant adjacent to a cut-vertex v such that
eg(v) = 2, then u is not a basis forced vertex.

roof. Suppose that R is a metric basis of G such that u ∈ R. We will show that R[u← v] is a resolving set.
Let x, y ∈ V (G) be such that d(u, x) ̸= d(u, y). If x, y ∈ V (G) \ {u}, then d(v, x) = d(u, x) − 1 ̸= d(u, y) − 1 = d(v, y).

uppose that x = u and d(v, x) = d(v, y). Since G ̸≃ Pn for all n ∈ N, there exists an element r ∈ R\{v, u} due to Lemma 4.
ince deg(v) = 2 and y ∈ N(v), the shortest paths from r to u go through y. Thus, d(r, u) ̸= d(r, y). □

Based on the results on the metric bases of trees presented in [4,15,22], we can see that trees do not have any basis
orced vertices. Now we can also prove that trees have no basis forced vertices with the results obtained in Sections 2.1
nd 2.2 . According to Corollary 7 cut-vertices are not basis forced vertices. If the tree in question is not P2, then every
endant is adjacent to a cut-vertex that fulfils the requirements of either Theorem 8 or Theorem 9. Thus, neither the
endants of a tree are basis forced vertices.
Let us then consider a general graph G. Suppose that G has a cut-vertex v. If there is a path- or tree-like structure

ttached to v, then there are no basis forced vertices in this structure. More precisely, let Gi be a component of G−v such
hat Gi is isomorphic to a tree or a path of length at least 2. According to Corollary 7 and Theorems 8 and 9, Gi does not
ontain basis forced vertices.
Suppose that there is a pendant u adjacent to v. If there is a path- or tree-like structure attached to v, then the graph

ulfils the conditions of Theorem 8 or 9 and u is not a basis forced vertex. Thus, if u is a basis forced vertex, then every
dge {v, x} ∈ E(G) where x ∈ V (G) \ {u} is along a cycle. However, all pendants of the graph in Fig. 1(b) satisfy this
ondition, but only two of them are basis forced vertices and the rest are void vertices.

. Sparse and dense graphs

We describe a graph as sparse if it has few edges compared to the number of vertices. Conversely, a graph is dense
f it has many edges compared to the number of vertices. We want to find out what restrictions the existence of basis
orced vertices places on the number of edges.

.1. Sparse graphs

As we saw in Section 2, trees do not have any basis forced vertices. However, the graph in Fig. 1(b) has two basis
orced vertices. Thus, the sparsest graphs that have basis forced vertices are unicyclic graphs.

The basis forced vertices of the graph in Fig. 1(b) are pendants. A unicyclic graph can also have a basis forced vertex
long the cycle; the vertex u of the graph in Fig. 2(a) is such a vertex. All metric bases of this graph are of the form
u, vi, vj}, where i, j ∈ {1, 2, 3} and i ̸= j. Both of these example graphs have only one or two basis forced vertices. Indeed,
ater in Section 3.1.1 we obtain a result which states that a unicyclic graph can have at most two basis forced vertices.

We want to construct connected graphs with, say, k basis forced vertices and as few edges as possible. In this endeavour,

he following construction will be useful. The general idea and the structure of the end-result of this construction is

5
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Fig. 2.

illustrated in Fig. 2(b). The graph W constructed in Theorem 10 is in fact a rooted product graph as defined in [7]. The
metric dimension of rooted product graphs was considered in [16]. In order to explain how the basis forced vertices of a
rooted product graph are related to those of its components, we give in Theorem 10 the metric basis of the rooted product
graph with the aid of metric bases of the components. It also reveals (as illustrated in Example 11) that there can be basis
forced vertices even if the components do not have any basis forced vertices.

Recall that dim(G) = 1 if and only if G = Pn for some n ∈ N [4,15]. Thus, the resolving sets of the components Gi in
the following theorem have at least two elements.

Theorem 10. Let Gi be a connected graph such that Gi ̸≃ Pn where i ∈ {1, . . . , k} and n ∈ N, and let all Gi be vertex disjoint.
Let gi be a fixed element of V (Gi) such that gi is in some metric basis of Gi (i.e. gi is not a void vertex). Let W be the graph with

V (W ) =
k⋃

i=1

V (Gi) and E(W ) = {{gi, gj} | i ̸= j} ∪
k⋃

i=1

E(Gi),

i.e. the graph we obtain by connecting every gi with one another. A set R ⊆ V (W ) is a metric basis of W if and only if

R =
k⋃

i=1

Ri \ {gi}

where Ri is a metric basis of Gi that contains gi for all i ∈ {1, . . . , k}.

Proof. Let R ⊆ V (W ) be a resolving set of W . Since the vertices gi are cut-vertices of W and Gi ̸≃ Pn for all i and n ∈ N,
we have Si = R ∩ V (Gi) ̸= ∅ for all i due to Lemma 4.

Let us show that the set S ′i = Si ∪ {gi} is a resolving set of Gi. Suppose to the contrary that S ′i is not a resolving set of
Gi. Then there exist x, y ∈ V (Gi) such that d(s′, x) = d(s′, y) for all s′ ∈ S ′i . However, now the set R is not a resolving set of
W ; we have d(si, x) = d(si, y) for all si ∈ Si and

d(sj, x) = d(sj, gi)+ d(gi, x) = d(sj, gi)+ d(gi, y) = d(sj, y)

for all sj ∈ Sj where j ̸= i.
Let Ri be a resolving set of Gi that contains gi for all i ∈ {1, . . . , k}. Let

R =
k⋃

i=1

Ri \ {gi}.

Let us show that R is a resolving set of W by showing that we can resolve every pair x, y ∈ V (W ). We divide the proof
into two cases:

1. x, y ∈ V (Gi) for some i ∈ {1, . . . , k}: Since Ri is a resolving set of Gi, there exists some ri ∈ Ri such that
d(ri, x) ̸= d(ri, y). If ri ̸= gi, then ri ∈ R and we are done. Suppose that ri = gi. Now we can resolve the pair
x, y with any rj ∈ Rj where j ̸= i. Indeed, we have d(rj, x) = d(rj, gi) + d(gi, x) ̸= d(rj, gi) + d(gi, y) = d(rj, y) for all
rj ∈ Rj.

2. x ∈ V (Gi) and y ∈ V (Gj) for some i ̸= j: In this case, we use Lemma 3. Each vertex gi is a cut-vertex in W . Suppose
that d(gi, x) = d(gi, y). Now, d(gj, x) = d(gi, x) + 1 ̸= d(gi, y) − 1 = d(gj, y). Similarly, if d(gj, x) = d(gj, y), then
d(gi, x) ̸= d(gi, y). The graph W − gi has two components, neither of which is isomorphic to a path, since Gi ̸≃ Pn
for all i and n ∈ N. Thus, both components of W − gi (and similarly W − gj) contain elements of R according to
Lemma 4. Thus, we can use Lemma 3 for either gi or gj and obtain that for some r ∈ R we have d(r, x) ̸= d(r, y). □

Notice that dim(W ) =
∑k

i=1 dim(Gi) − k follows from Theorem 10. This was also shown in [16]. According to
Theorem 10 the basis forced vertices of the components Gi are also basis forced vertices of the graph W as long as the
vertex g is not a basis forced vertex. (Indeed, the vertex g is a void vertex of W .)
i i

6
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Fig. 3. An example where we construct a graph with 2 basis forced vertices from a graph that has no basis forced vertices.

Fig. 4. An example of the two ways we can use Theorem 10.

Example 11. Consider the graph G in Fig. 3. This graph has only three metric bases: {v2, v5}, {v3, v6} and {v5, v6}. Let us
onstruct a new graph W by using Theorem 10 and two copies of G. Let us choose g1 = v3 and g2 = v2. Since there is
only one metric basis that contains v3 and one metric basis that contains v2, the only metric basis of W is {v1

5, v
2
6}, where

he superscripts indicate in which copy of G the vertex is. Thus, W is a graph with a unique metric basis and metric
dimension 2. Consequently, the graph W contains two basis forced vertices.

In general, there are two ways to use Theorem 10. If we want to use k graphs, we can connect them all in one go or
terate the use of Theorem 10. In the first option, the vertices gi induce a clique in the constructed graph. In the latter
ption, we first use Theorem 10 on two graphs, then choose a new g1 from the resulting graph and connect another graph
o that. We can also use a combination of these two methods. The following example further demonstrates the difference
f these two options.

xample 12. Consider the graph G in Fig. 2(a). Let us combine three of these graphs by using Theorem 10. Let us indicate
ith a superscript from which copy of the graph G the vertices are from. We choose g1 = v1

1 , g2 = v2
1 and g3 = v3

1 . The
onstructed graph W1 is illustrated in Fig. 4(a). There are two metric bases of G that contain v1: {u, v1, v2} and {u, v1, v3}.
hus, the metric bases of W1 are of the form {u1, v1

j , u
2, v2

k , u
3, v3

l } where j, k, l ∈ {2, 3}. Thus, the metric dimension of
1 is 6, and it has three basis forced vertices.
Let us then iterate Theorem 10. Let us first use Theorem 10 on two copies of G. We again choose g1 = v1

1 and g2 = v2
1 .

The metric bases of the resulting graph W2 are of the form {u1, v1
j , u

2, v2
k } where j, k ∈ {2, 3}. Let us then use Theorem 10

again, but this time on the graph W2 and another copy of G. We choose g1 = v2
3 and g2 = v3

1 . The resulting graph W3 is
illustrated in Fig. 4(b). The only metric bases of W2 that contain v2

3 are of the form {u1, v1
j , u

2, v2
3} where j ∈ {2, 3}. Thus,

the metric bases of W3 are of the form {u1, v1
j , u

2, u3, v3
l } where j, l ∈ {2, 3}. Now, we have constructed a graph with

metric dimension 5 and three basis forced vertices.
The graph W3 has one edge less than the graph W1. If we use the construction on more graphs, then this difference

will only grow. Indeed, if we used m copies of the graph G, then the first method would produce m(m− 1) edges to the
resulting graph in addition to the edges already present in G. Thus, the resulting graph would have 12m+m(m−1) edges.
However, if we iterate the construction, then each step adds only one edge in addition to those present in G. If we iterate
the construction on m copies of G, we will use Theorem 10 m− 1 times, and the resulting graph has only 12m+ m− 1
edges.

We have now demonstrated a way to construct a graph that has k basis forced vertices, n = 12k vertices and n+ k−1
edges. So far, we have not found any sparser graph with k basis forced vertices.

3.1.1. An upper bound for the number of basis forced vertices of unicyclic graphs
According to the terminology given in [20], a unicyclic graph of type 1 is a unicyclic graph G of maximum degree 3

and such that every vertex of maximum degree belongs to the unique cycle of G. Any other unicyclic graph is called there
as of type 2. It was proved in [20] that a unicyclic graph of type 1 with unique cycle Cn has metric dimension 2 when
n is odd, and otherwise its metric dimension is between 2 and 3. We notice the following straightforward observation
(see [20]).
7
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Fig. 5. Nonisomorphic pieces of edge deletion patterns with which we can construct all nonisomorphic edge deletion patterns with up to 4 edges.

emark 13. If G is a unicyclic graph of type 1 with unique cycle C = v0v1 · · · vr−1v0, r ≥ 3, then the set S =
{vi, vi+1, vi+⌊r/2⌋} (operations with subindex are done modulo r) is a resolving set for G for all i ∈ {0, . . . , r − 1}.

As a consequence of the remark above, if G is a unicyclic graph of type 1 with metric dimension 3, then G does not
contain basis forced vertices. Thus, a unicyclic graph of type 1 can have at most two basis forced vertices. We next consider
unicyclic graphs of type 2. From [20], lower and upper bounds for the metric dimension of such unicyclic graphs are
known. However, from [21], we can easier proceed with our deduction. For a unicyclic graph G, let b(G) be the number of
vertices on the cycle that have something other than one pendant or path attached to it outside of the cycle. Furthermore,
let

L(G) =
∑

v∈V (G),ℓ(v)>1

(ℓ(v)− 1),

where ℓ(v) is the number of pendants and paths attached to v. The following result was proved in [21].

Theorem 14 ([21]). If G is a unicyclic graph, then dim(G) equals L(G)+max{2− b(G), 0} or L(G)+max{2− b(G), 0} + 1.

The vertices that contribute to the value of L(G) are pendants or vertices of a path attached to some vertex v (but the
paths do not include v) with ℓ(v) > 1. For example, for the vertex w in Fig. 2(a) we have ℓ(w) = 3. The vertices of a path
attached to v are not basis forced vertices according to Theorem 6 and (for the endvertex of a path) Theorem 9. If v is
such that ℓ(v) > 1, then deg(v) ≥ 3, since G is a unicyclic graph. Now, the pendants attached to v are not basis forced
vertices according to Theorem 8. Therefore, the vertices that contribute to the value of L(G) are not basis forced vertices.
Thus, since b(G) ≥ 0, we have 0 ≤ max{2−b(G), 0} ≤ 2, and the two possible values for dim(G), from the theorem above,
leads to observe that G could have between 0 and 3 basis forced vertices. However, if there are 3 basis forced vertices in
G, then it must happen that dim(G) = L(G) +max{2 − b(G), 0} + 1 with b(G) = 0. But then it follows that every vertex
of G has degree at most 3 and every vertex of degree 3 belongs to the unique cycle of G. Consequently, G is a unicyclic
graph of type 1 (according to [20]), and we have seen that such graphs can have at most 2 basis forced vertices. Thus, we
have the following corollary.

Corollary 15. If G is a unicyclic graph, then G has at most 2 basis forced vertices.

Unicyclic graphs with 1 and 2 basis forced vertices are illustrated in Figs. 2(a) and 1(b), respectively.

3.2. Dense graphs

We want to find out, how many edges a graph can have and still contain basis forced vertices. We will show that a
graph with n vertices and some basis forced vertices can have at most n(n−1)

2 − 4 edges. We will also show that the graph
attaining this bound is unique for each n. To obtain these results, we will consider graphs that can be constructed from
Kn by removing up to four edges. The relevant edge deletion patterns (i.e. components of the complement graph) are
illustrated in Fig. 5.

Distinct vertices v, u ∈ V (G) are true twins if N[v] = N[u], and false twins if N(v) = N(u). We simply say that two
ertices are twins if they are true or false twins but it does not matter which. As the graphs we consider are quite dense,
he graphs will most likely contain twins. The following lemma follows directly from Corollary 2.4 of [13], although an
ndependent proof would not be too difficult either.

emma 16. Let G be a connected graph, and let T ⊆ V (G) be such that all its elements are true twins with one another or
ll its elements are false twins with one another. If |T | ≥ 2, then |R ∩ T | ≥ |T | − 1 for all resolving sets R of G.
8
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Fig. 6. Example illustrations of the graphs considered in Lemmas 18 and 19. The graphs may have any (nonempty) structure inside the dashed area.

Notice that if some resolving set contains only |T |− 1 elements of the set T , then it does not matter which twin is left
out of the resolving set. Indeed, for all vertices x, y ∈ T and z ∈ V (G) \ T we have d(x, z) = d(y, z).

Lemma 17. If G is a connected graph with a universal vertex v, then the vertex v is not a basis forced vertex.

Proof. Let R be a metric basis of G such that v ∈ R. Then the set R\{v} is not a resolving set. There exist distinct x, y ∈ V (G)
such that d(v, x) ̸= d(v, y) and d(r, x) = d(r, y) for all r ∈ R \ {v}. Since v is universal, we have either x = v or y = v.
Suppose without loss of generality that x = v. Now, d(r, y) = 1 for all r ∈ R, and the vertex y is unique. Consequently,
the set R[v← y] is a resolving set. Thus, the vertex v is not a basis forced vertex. □

We like to describe the graphs we consider by giving the complement graphs, since the complement graph is often
far simpler in structure. The components of the complement graph also give us a natural way to partition the vertices.
Consider a graph G such that the complement graph G has two components: G1 and G2. All distinct vertices x ∈ V (G1)
and y ∈ V (G2) are adjacent in G. Thus, dG(x, y) = 1. We cannot resolve any pair of vertices in V (G1) with a vertex in V (G2)
in G. In order to find a metric basis of G, we need to make sure that each component of G contains enough elements of a
etric basis to resolve the pairs within that component. In addition to that, we need to be able to resolve pairs of vertices

hat are in different components of G.

Lemma 18. Let G be a connected graph. If Gi is a component of G such that Gi ≃ Kn for some n ≥ 2, then no vertex v ∈ V (Gi)
is a basis forced vertex of G.

Proof. One example of the graph G is illustrated in Fig. 6(a).
For simplicity, let i = 1 and let us denote V (G1) = {v1, . . . , vn}. Since G1 ≃ Kn, we have vi ̸∼G vj for all i ̸= j and

vi ∼G u for all i and u ∈ V (G) \ V (Gi). Thus, NG(vi) = NG(vj) for all i ̸= j and the vertices vi are false twins in G. According
o Lemma 16, every resolving set of G contains at least n− 1 vertices vi.

If there exists a metric basis R such that v1 /∈ R, then none of the vertices vi are basis forced vertices. Indeed, the set
[v1 ← vi] is also a metric basis of G as the vertices vi are twins with each other.
Suppose then that R is a metric basis of G such that vi ∈ R for all i ∈ {1, . . . , k}. We will show that such metric basis

cannot in fact exist by proving that the set R \ {vi} is a resolving set of G for all i ∈ {1, . . . , k}. Let us consider a fixed vi.
In what follows, the distances we consider are distances in G, and we omit the subscript G from the notation of distance.
Since d(vi, u) = 1 if and only if u /∈ V (G1), the vertex vi can only resolve pairs where one or both vertices are some vj,
∈ {1, . . . , n}. However, all of these pairs can be resolved with other elements of R:

• Consider the vertices vj and vk where j ̸= k. Suppose without loss of generality that vj ̸= vi. Now, vj ∈ R \ {vi} and
d(vj, vj) ̸= d(vj, vk).
• Consider the vertex vi and some u /∈ V (G1). Let vj be such that j ̸= i. Now vj ∈ R\{vi} and d(vj, vi) = 2 ̸= 1 = d(vj, u).
• Consider some vertex vj, where j ̸= i, and some u /∈ V (G1). Now, vj ∈ R \ {vi} and d(vj, vj) ̸= d(vj, u).

n conclusion, the set R \ {vi} is a resolving set for all vi. This contradicts the assumption that the set R is a metric basis of
. Consequently, for every vi ∈ V (G1) there exists a metric basis R such that vi /∈ R, and thus the vertex vi is not a basis

forced vertex. □

Lemma 19. Let G be a connected graph. If Gi is a component of G such that Gi ≃ K1,n for some n ≥ 2, then no vertex v ∈ V (Gi)
is a basis forced vertex of G.

Proof. One example of the graph G is illustrated in Fig. 6(b).
Let G1 ≃ K1,n for some n ≥ 2, and denote V (G1) = {v0, . . . , vn}, where degG(v0) = n and degG(vi) = 1 for all i ̸= 0.

ince G is connected, V (G) \ V (G1) ̸= ∅. The vertices vi where i ̸= 0 are true twins in G. According to Lemma 16 each
resolving set of G contains at least n− 1 vertices v , i ̸= 0.
i

9
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Fig. 7. Example illustrations of the graphs considered in Lemmas 20–22. The graphs may have any (nonempty) structure inside the dashed area.

We will first show that no vi, where i ̸= 0, is a basis forced vertex of G. Suppose that R is a resolving set of G such
that vi ∈ R for all i ̸= 0. Consider a fixed vi. Let us show that the set R[vi ← v0] is a resolving set of G. In what follows,
all distances that we consider are distances in G. Consider the pairs of vertices that vi resolves. Let x, y ∈ V (G) be such
that d(vi, x) ̸= d(vi, y). We have d(vi, u) = 1 if and only if u ̸= vi and u ̸= v0. Consequently, x ∈ {vi, v0} or y ∈ {vi, v0}.
Suppose that x = v0. Then v0 resolves x and y no matter what y is. Suppose then that x = vi. If d(v0, y) ̸= d(v0, vi), then
we are done. Suppose that d(v0, y) = d(v0, vi) = 2. Since d(v0, u) = 2 if and only if u = vj for some j ∈ {1, . . . , n}, we
ave y = vj for some j ∈ {1, . . . , n}. However, we also have that y ̸= vi, and thus y ∈ R[vi ← v0] and y itself resolves vi

and y. Thus, R[vi ← v0] is a resolving set of G and vi is not a basis forced vertex of G.
Let us then show that v0 is not a basis forced vertex. Let R be a metric basis of G such that v0 ∈ R. Due to what we

ave already shown above, we may assume that vi /∈ R for some i ∈ {1, . . . , n} and vj ∈ R for all j ̸= i. Let us show that
the set R[v0 ← vi] is a metric basis of G.

Since R is a metric basis, the set R \ {v0} is not a resolving set. Suppose that the pair x, y ∈ V (G) is not resolved by any
element of R \ {v0}. We will show that then either x = vi or y = vi. It is clear that x, y /∈ R \ {v0}. If x, y /∈ V (G1), then
(v0, x) = d(v0, y) = 1 and the pair x, y is not resolved by any element of R, which contradicts the assumption that the
et R is a metric basis of G. For all j ̸= i we have d(vj, v0) = 2 and d(vj, u) = 1 for all u ∈ V (G) \ {v0}. If x = v0 or y = v0,
hen vj (where j ̸= i) resolves x and y, which contradicts the assumption that no element of R \ {v0} resolves x and y,
ince we have vj ∈ R for all j ̸= i. Thus, we have x ̸= v0 and y ̸= v0, and the only option we now have left is that either
= vi or y = vi. Consequently, the set R[v0 ← vi] is a metric basis of G and v0 is not a basis forced vertex of G. □

emma 20. Let G be a connected graph with at least 5 vertices. If Gi is a component of G such that Gi ≃ P4, then the vertices
v ∈ V (Gi) are not basis forced vertices of G.

roof. One example of the graph G is illustrated in Fig. 7(a).
Since the path P4 is self-complementary, we have G[V (Gi)] ≃ P4. Let us denote the elements of V (Gi) by vi so that

1v2v3v4 is a path in G. Since G has at least 5 vertices, V (G) \ V (Gi) ̸= ∅. Consequently, d(v1, v4) = 2.
In order to resolve vi and vj, where i ̸= j, we need at least two elements of V (Gi) in each resolving set. Indeed, we have

d(u, vi) = 1 = d(u, vj) for all u ∈ V (G)\V (Gi), so the only vertices that possibly resolve vi and vj are the elements of V (Gi).
However, for every element v ∈ V (Gi) there are at least two vertices vi at the same distance from it. For example, we
ave d(v1, v3) = 2 = d(v1, v4) and d(v2, v1) = 1 = d(v2, v3). Thus, each resolving set of G contains at least two elements
f V (Gi).
Let us then show that two elements of V (Gi) are enough. The elements of V (Gi) can only resolve pairs of vertices where

ne or both vertices are in V (Gi). Let us show that all such pairs are resolved by v1 and v2. Consider distinct x, y ∈ V (G).
Suppose that x, y ∈ V (Gi). If x = v1 or x = v2, then x and y are resolved by x itself (similarly for y). Let x = v3 and y = v4.
Now, d(v2, v3) = 1 ̸= 2 = d(v2, v4), and thus x and y are resolved. Suppose then that x ∈ V (Gi) and y ∈ V (G)\V (Gi). Now,
(v1, y) = 1 = d(v2, y). However, d(v1, x) ̸= 1 when x ̸= v2 and d(v2, x) ̸= 1 when x = v2. In conclusion, it is enough for

a resolving set to contain two elements of V (Gi); v1 and v2, or v3 and v4 by symmetry. □

emma 21. Let G be a connected graph with at least 5 vertices. If Gi is a component of G such that Gi ≃ C4, then the vertices
v ∈ V (Gi) are not basis forced vertices of G.

roof. Let us denote the vertices of Gi by v1, . . . , v4 so that v1v2v3v4v1 is a cycle in G. Now v1 and v3 are adjacent in G,
and v2 and v4 are adjacent in G (see Fig. 7(b)). The vertices v1 and v3 are true twins, and so are v2 and v4. According to
Lemma 16 each resolving set contains v1 or v3 (and v2 or v4).

Let us show that a metric basis of G contains at most two vertices of V (Gi). No element of V (Gi) can resolve x and y
if both x /∈ V (Gi) and y /∈ V (Gi). Thus, it is sufficient to consider distinct x, y ∈ V (G) such that x ∈ V (Gi). Let us show
hat we can resolve every such pair x, y with v1 and v2. Clearly, if x ∈ {v1, v2} or y ∈ {v1, v2}, then x and y are resolved.
Suppose then that x = v3. Now, d(v2, x) = 2. The only vertices that are at distance 2 from v2 are v1 and v3. Thus, if we had
d(v , x) = d(v , y), then y = v and d(v , y) ̸= d(v , x). Similarly, if x = v and d(v , x) = 2 = d(v , y), then y = v and
2 2 1 1 1 4 1 1 2
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d(v2, y) ̸= d(v2, x). In conclusion, there exists a metric basis R of G such that R∩V (Gi) = {v1, v2}. By symmetry, there also
exists a metric basis R of G such that R∩V (Gi) = {v3, v4}. Thus, none of the elements of V (Gi) are basis forced vertices. □

The following lemma is used in this section for k = 2. We will, however, use the following lemma for other values of
k later in Section 4.

Lemma 22. Let k be an even positive integer. Let G be a connected graph such that G ≃ P5 ∪ · · · ∪ P5 ∪ Km where P5 appears
k
2 times and m ≥ 1. The graph G has k basis forced vertices and dim(G) = k+m− 1.

roof. The graph G for k = 2 and m = 1 is illustrated in Fig. 7(c).
Let us denote the copies of P5 by P i

5 where i ∈ {1, . . . , k
2 }. We denote the vertices of each P i

5 by vi
1, . . . , v

i
5 where the

vertices are numbered in the order natural for paths. We further denote the vertices of Km by uj.
It is clear that in order to resolve all pairs x, y ∈ V (P i

5) in G, we need at least two elements of V (P i
5). The vertices uj are

wins with one another. Thus, according to Lemma 16, there exists at most one uj such that uj /∈ R for each resolving set
. Therefore, dim(G) ≥ 2 · k2 +m− 1 = k+m− 1.
Let us consider how we can resolve the elements of V (P i

5) in G. One can note that the only two element subsets of
V (P i

5) that resolve V (P i
5) are {v

i
1, v

i
3}, {v

i
1, v

i
5}, {v

i
2, v

i
3}, {v

i
2, v

i
4}, {v

i
3, v

i
4} and {v

i
3, v

i
5}.

Let R ⊆ V (G) be such that R ∩ V (P i
5) = {v

i
2, v

i
4} for all i and R ∩ V (Km) = V (Km) \ {uj} for some j. Let us show that R is

resolving set of G. To that end, consider distinct vertices x, y ∈ V (G). If x, y ∈ V (P i
5) for some i, then the set R resolves

x and y by the observation above. Suppose that x ∈ V (P i
5) and y /∈ V (P i

5) for some i. Now, d(vi
2, y) = d(vi

4, y) = 1. One of
he distances d(vi

2, x) and d(vi
4, x) is 0 or 2 for every x ∈ V (P i

5). Thus, we have d(vi
2, x) ̸= d(vi

2, y) or d(vi
4, x) ̸= d(vi

4, y).
uppose finally that x, y /∈ V (P i

5) for all i. In other words, x, y ∈ V (Km). Since uj /∈ R for only one vertex uj ∈ V (Km), the
ertices x and y are resolved by some element of R. Therefore, the set R is a resolving set of G. Since |R| = 2 · k2 +m− 1,
he set R is a metric basis of G and dim(G) = k+m− 1.

Suppose then that R is a resolving set of G. Let us denote S = R ∩ V (P i
5). Suppose that |S| = 2 and S ̸= {vi

2, v
i
4} for

some i. (In other words, the intersection R ∩ V (P i
5) is one of the five listed earlier that are not {vi

2, v
i
4}.) By making a

5 × 5-table of distances, it is easy to see that there exists a vertex x ∈ V (P i
5) such that d(s, x) = 1 for all s ∈ S if and only

if S ̸= {vi
2, v

i
4}. Thus, since S ̸= {vi

2, v
i
4}, we have d(s, x) = d(s, uj) for all s ∈ S and uj ∈ V (Km). Now uj ∈ R for all j, since

is a resolving set of G and d(ul, uj) = 1 = d(ul, x) for all l ̸= j. We have |R| ≥ 2 · k2 + m = k+ m, since |R ∩ V (P j
5)| ≥ 2

or all j ∈ {1, . . . , k
2 } as we pointed out earlier. Consequently, R is not a metric basis of G.

In conclusion, a set R ⊆ V (G) is a metric basis of G if and only if R ∩ V (P i
5) = {v

i
2, v

i
4} for all i ∈ {1, . . . , k

2 } and
R ∩ V (Km) = V (Km) \ {uj} for some j ∈ {1, . . . ,m}. Consequently, each vi

2 and vi
4 is a basis forced vertex of G and G has k

asis forced vertices in total. □

Now we are ready for the main result in this section.

heorem 23. If G is a connected graph with n ≥ 6 vertices and at least one basis forced vertex, then

|E(G)| ≤
n(n− 1)

2
− 4.

f |E(G)| = n(n−1)
2 − 4, then G ≃ P5 ∪ K n−5 and G has two basis forced vertices.

roof. Let us consider G as constructed from Kn by removing edges.
Suppose that G is obtained from Kn by removing up to three edges. Then the graph G can be presented as a union of

some of the following graphs (see Fig. 5(a-e)): K2, K1,2, P4, K1,3, K3 and K n−k for some k. Lemmas 17, 18, 19 and 20 cover
ll possible cases, and in each case the graph G does not have any basis forced vertices.
We have now shown that if |E(G)| ≥ n(n−1)

2 −3, then the graph G does not have any basis forced vertices. Consequently,
f G has basis forced vertices, then |E(G)| ≤ n(n−1)

2 − 4.
Let us then prove the latter claim. Let G be a graph that is obtained from Kn by removing four edges. Suppose that G

an be presented as the union of some of the following graphs (see Fig. 5(a-e,h,i)): K2, K1,2, P4, K1,3, K3, K1,4, C4 and K n−k
for some k. As before, we can use Lemmas 17, 18, 19, 20 and now 21 also, and obtain that in all cases the graph G does
ot have any basis forced vertices. Thus, if G has basis forced vertices, then there are only three possibilities for the edge
eletion pattern: the graphs in Fig. 5(f,g,j). Let us consider each case separately.
Suppose that G is the disjoint union of the graph in Fig. 5(g) and K n−5. Let us denote the elements as in Fig. 8(a),

that is, the isolated vertices are denoted by ui and the five other vertices are denoted by vi. One can note that the sets
V (G)\{v2, v3, v5} and V (G)\{v1, v4, ui} are metric bases for all i. Thus, the graph G does not have any basis forced vertices.

Suppose that G is the disjoint union of the graph in Fig. 5(j) and K n−4. Let us denote the elements of V (Gi) by v1, . . . , v4
as in Fig. 8(b). It is clear that in order to resolve V (Gi) in G, we need at least two elements of V (Gi). One can note that the
ets {v1, v3} and {v2, v4} resolve V (Gi) in G. Both of these options also resolve every pair x ∈ V (Gi) and y ∈ V (G) \ V (Gi).
Indeed, for all x ∈ V (Gi) one of the distances d(x, v1) and d(x, v3) is 2 or 0 (and similarly for v2 and v4). Thus, the graph
G does not have any basis forced vertices.
11
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Fig. 8. Example illustrations of the two special cases of the proof of Theorem 23. The graphs may have any (nonempty) structure inside the dashed
area.

Fig. 9.

Thus, if G has basis forced vertices, then G ≃ P5 ∪ K n−5. The graph G is illustrated in Fig. 9(a). According to Lemma 22,
this graph does indeed have exactly two basis forced vertices. □

It is a bit odd that the densest graphs that have basis forced vertices have two of them. If a graph G has one basis
forced vertex, then |E(G)| ≤ n(n−1)

2 − 5. A graph that attains this bound is illustrated in Fig. 9(b). The black vertex is the
basis forced vertex. The metric dimension of this graph is 2. It has two metric bases; in addition to the black vertex we
must include either of the grey vertices.

If a graph has three or more basis forced vertices, then the densest graph that we have found has n(n−1)
2 − 7 edges.

t seems that in general the bound in Theorem 23 leaves room for improvement. Indeed, in Theorem 27 we will show
more general bound on the number of edges that depends also on the number of basis forced vertices that the graph
ontains.

. The colour graph GR

Let G be a graph and R ⊆ V (G). Let r ∈ R. We denote

UR(r) = {{x, y} ∈ V (G)2 | d(r, x) ̸= d(r, y) and ∀ t ∈ R \ {r} : d(t, x) = d(t, y)}.

he set UR(r) consists of the pairs of vertices for which r is the unique element in R that resolves the pairs.
We denote by GR the graph with the same vertex set as G and the edge set⋃

r∈R

UR(r).

ach r ∈ R is assigned a colour, and we colour the edges in GR given by UR(r) with the colour associated with r .

xample 24. Consider again the familiar graph G illustrated in Fig. 10(a). Let us construct the graph GR with respect to the
esolving set R = {r1, r2}. We have UR(r1) = {{r1, v1}, {r1, v3}, {v1, v3}, {v2, v4}} and UR(r2) = {{r2, v1}, {r2, v2}, {v1, v2},

v3, v4}}. When we assign black to r1 and ‘dashed’ to r2, we can visualise the graph GR as in Fig. 10(b).

Let us explore some basic properties of GR. If there is no edge between x and y in GR, then either R does not resolve x
nd y or there are at least two elements in R that resolve x and y. If R is a resolving set, then only the latter is possible.
Since both r ∈ R and s ∈ R resolve the pair r, s, the edge {r, s} is not present in GR. Consequently, the set R is

ndependent in GR. Moreover, if there does exist an edge incident to r ∈ R in GR, then that edge has the colour associated
ith r , since r resolves all pairs where r itself is included.
If the colour associated with some r ∈ R is not present in GR, then every pair that r resolves is resolved by some other

lement of R. Thus, the set R \ {r} is a resolving set of G. Consequently, if R is a metric basis of G, then the graph GR has

t least one edge of the colour associated with each r ∈ R. In other words, the set UR(r) is nonempty for all r ∈ R.

12
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Fig. 10. The graph G with the resolving set R = {r1, r2} and the colour graph GR .

emma 25. Let G be a graph. The following properties hold.

(i) A colour that appears in a cycle of GR appears at least twice in that cycle.
(ii) Let R be a resolving set of G and x, y, z ∈ V (G). If the edges {x, y} and {x, z} have the same colour in GR, then the edge
{y, z} also has the same colour in GR.

(iii) If b ∈ V (G) is a basis forced vertex of G and R is a metric basis of G, then the graph GR has at least two edges of the
colour associated with b.

(iv) If b ∈ V (G) is a basis forced vertex of G and R is a metric basis of G, then the graph GR has at least one edge {x, y},
x, y ∈ V \ R, of the colour associated with b.

roof. (i) Suppose to the contrary that the edge {v1, vk} is the only edge of its colour (associated with r ∈ R) in the cycle
1v2v3 . . . vkv1, k ≥ 3. Since the colour of the edge {vi, vi+1} where i ∈ {1, . . . , k− 1} is not the colour associated with r ,
e have d(r, vi) = d(r, vi+1) for all i ∈ {1, . . . , k−1}. Consequently, d(r, v1) = d(r, vk) and {v1, vk} /∈ UR(r), a contradiction.
(ii) For all s ∈ R \ {r} we have d(s, y) = d(s, x) = d(s, z). As R is a resolving set of G, we have d(r, y) ̸= d(r, z). Thus,

y, z} ∈ UR(r).
(iii) Suppose UR(b) = {{u, v}}. Since every pair r, s ∈ R is resolved by both r and s, we can assume that v /∈ R. The

ertex v resolves the pair {u, v} and all other pairs are resolved by the elements of R \ {b}. Thus, the set R[b ← v] is a
etric basis of G, a contradiction.
(iv) Suppose to the contrary that no such edge exists. According to (iii) the graph GR has at least two edges of the colour

ssociated with b. Let these edges be {x1, x2} and {y1, y2}. Due to our assumption, both of these edges have at least one
ndpoint in R. If there is an edge incident to r ∈ R in GR, then that edge has the colour associated with r , since r resolves
very pair r, x, where x ∈ V (G). Thus, we may assume that x1 = b = y1. Since every pair r, s ∈ R is resolved by both r
nd s, we have x2 /∈ R and y2 /∈ R. Now, the edge {x2, y2} has the colour associated with b due to (ii), a contradiction. □

Suppose that R is a resolving set of G. Due to Lemma 25 (i) and (ii), all cliques of GR are monochromatic. The subgraph
f GR that consists of only the edges of the colour associated with r ∈ R is a disjoint union of cliques.
Lemma 17 states that universal vertices are not basis forced vertices. We can obtain the same result using Lemma 25 (iv)

f u is a universal vertex of G and R is a metric basis of G that contains u, then d(u, x) = d(u, y) for all x, y ∈ V (G) \ R and
iv) cannot be satisfied for u.

heorem 26. If G is a graph with n vertices and k > 0 basis forced vertices, then k ≤ n − dim(G) − 1. Moreover, we have
≤

n−1
2 .

Proof. Let R be a metric basis of G. Denote U = V \ R and m = |U |. Due to Lemma 25 (iv), GR[U] contains at least k
differently coloured edges. Let us consider k differently coloured edges in GR[U]. If m ≤ k, then some (or all) of these
edges form a cycle that contradicts Lemma 25 (i). Thus, m ≥ k + 1 and k ≤ m − 1 = n − dim(G) − 1. Since k ≤ dim(G),
we also have k ≤ n−1

2 . □

We have not found a graph that attains this bound. However, for the graph G described in Lemma 22 we have
= n − dim(G) − 2 when k = 2. Indeed, let G be such that G ≃ P5 ∪ K n−5. According to Lemma 22, the graph G

has two basis forced vertices and dim(G) = n− 4.

Theorem 27. Let G be a connected graph with n ≥ 3 vertices. If G has k > 0 basis forced vertices, then

|E(G)| ≤
n(n− 1)

2
− 2k.

roof. Let us denote the basis forced vertices of G by v1, . . . , vk. Due to Lemma 17, none of the vertices vi are universal
ertices. Thus, for each vi there exists an x ∈ V (G) such that the edge vix is an edge of G.
Let R be a metric basis of G. Due to Lemma 25 (iv), for each vi there exist distinct x, y ∈ V (G) \ R such that

d(vi, x) ̸= d(vi, y) and d(r, x) = d(r, y) for all r ∈ R \ {vi}. Thus, at least one of the edges vix and viy is an edge in G.
herefore, every basis forced vertex v is not adjacent to some vertex u that is not a basis forced vertex.
i

13
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Suppose that viu is the only edge in G from vi to V (G) \ R. Now, d(vi, v) = 1 for all v ∈ V (G) \ R such that v ̸= u.
As we stated earlier, according to Lemma 25 (iv) there exist distinct x, y ∈ V (G) \ R such that d(vi, x) ̸= d(vi, y) and

d(r, x) = d(r, y) for all r ∈ R \ {vi}. Now, either x = u or y = u, since otherwise we have d(vi, x) = 1 = d(vi, y), a
contradiction.

Suppose without loss of generality x = u. Then y is unique due to Lemma 25 (ii) and the fact that d(vi, v) = 1 for all
v ∈ V (G) \ R, v ̸= u. According to Lemma 25 (iii) the graph GR has at least two edges of the colour associated with vi. The
edge uy is one such edge. However, the edge uy is the only edge within V (G) \ R of the colour associated with vi. Since
the set R is independent in GR, there exists a vertex w ∈ V (G) \ R such that the edge viw has the colour associated with
vi in GR.

Suppose that w ∈ {u, y}. Then according to Lemma 25 (ii) both edges viu and viy have the colour associated with vi in
GR. Now, the three edges uy, viu and viy are the only edges of the colour associated with vi in GR. Otherwise, we have a
contradiction due to Lemma 25 (ii) and the fact that d(vi, v) = 1 for all v ∈ V (G) \ R, v ̸= u. Let us show that now vi is
not a basis forced vertex. If the set R[vi ← u] is a metric basis, then we are done. Hence, suppose that the set R[vi ← u]
is not a metric basis of G. The only pairs not resolved by R \ {vi} are {u, y}, {vi, u} and {vi, y}. Since u clearly resolves the
first two pairs, we have d(u, vi) = d(u, y). However, now d(y, u) ̸= d(y, vi) = 1, and the set R[vi ← y] is a metric basis of
G. Thus, R[vi ← u] or R[vi ← y] is a metric basis of G, and vi is not a basis forced vertex.

Suppose then that w /∈ {u, y}. Now the vertex w is unique. Otherwise, we again have a contradiction due to
Lemma 25 (ii) and the fact that d(vi, v) = 1 for all v ∈ V (G) \ R, v ̸= u. Let us show that now vi is not a basis forced
vertex. The set R \ {vi} resolves all but two pairs of vertices: vi, w and u, y. Now, if some vertex z ̸= vi resolves both of
these pairs, then the set R[vi ← z] is a metric basis of G and vi is not a basis forced vertex. Let us show that such a vertex
z exists.

If d(w, u) ̸= d(w, y), then the vertex w resolves the two aforementioned pairs and R[vi ← w] is a metric basis
of G. Suppose that d(w, u) = d(w, y). Since d(vi, w) = 1 = d(vi, y), we have d(w, y) ≤ d(w, vi) + d(vi, y) = 2. If
d(w, u) = d(w, y) = 1, then d(u, vi) ̸= d(u, w) and the set R[vi ← u] is a metric basis of G. If d(w, u) = d(w, y) = 2, then
d(y, vi) ̸= d(y, w) and the set R[vi ← y] is a metric basis of G. In all cases, the set R[vi ← z] is a metric basis of G for
some z ∈ {w, u, y}, and thus the vertex vi is not a basis forced vertex of G.

In conclusion, for each basis forced vertex vi there exist at least two edges from vi to V (G) \ R in G. Since G has k basis
forced vertices, we have |E(G)| ≤ n(n−1)

2 − 2k. □

Let G be a graph such that G ≃ P5 ∪ · · · ∪ P5 ∪ Km, where P5 appears k
2 times in the disjoint graph union. According

o Lemma 22 the graph G has k basis forced vertices, two in each complement of P5. The following corollary is now
mmediate.

orollary 28. For every even positive integer k there exists a graph G with k basis forced vertices and

|E(G)| =
n(n− 1)

2
− 2k

where n is the number of vertices of G.

The bound in Theorem 27 does not seem attainable for odd k. However, we have found a graph family whose members
ave an odd (≥ 3) number of basis forced vertices and n(n−1)

2 − 2k− 1 edges. Let H be the graph we obtain by attaching
a pendant to the middle vertex of the path v1 . . . v7. If G is a graph such that G ≃ H ∪ Km, then the graph G has
n(n−1)

2 − 2 · 3 − 1 edges and three basis forced vertices: v2, v4 and v6 (this can be shown using similar techniques as
n the proof of Lemma 22). Moreover, it is possible to show that the graph G for which G ≃ H ∪ P5 ∪ · · · ∪ P5 ∪ Km where
5 appears k−3

2 times has three basis forced vertices in V (H) and two basis forced vertices in each V (P5). All in all, the
raph G has 3+ 2 · k−32 = k basis forced vertices and n(n−1)

2 − 7− 4 · k−32 =
n(n−1)

2 − 2k− 1 edges.

. Algorithmic complexity

In this section, we consider the algorithmic complexity of determining whether a given vertex is a basis forced or void
ertex of a metric basis. In particular, we show that the first problem is co-NP-hard and the latter problem is NP-hard.
he proofs are based on a polynomial-time reduction from the well-known 3-SAT problem. Previously, in [15], it has been
hown that given an arbitrary graph G = (V , E) and an integer k, it is NP-complete to decide whether dim(G) ≤ k. The
reductions of the proofs of this section are inspired by the one presented in [15]. In what follows, this reduction is briefly
recapped.

For the 3-SAT problem, denote the set of variables by X = {x1, x2, . . . , xn} and the set of literals by U =

{x1, x2, . . . , xn, x1, x2, . . . , xn}, where xi denotes the negation of the variable xi. Let F be an instance of the 3-SAT problem;
more precisely, let F be a formula F = C1 ∧ C2 ∧ · · · ∧ Cm, where each clause Cj contains exactly three literals, i.e., each
lause is of the form Cj = uj,1 ∨ uj,2 ∨ uj,3, where uj,1, uj,2, uj,3 ∈ U . Based on the given formula F , we form a graph
= (V , E) as follows:

• For each variable xi ∈ X , we construct a variable gadget of xi with vertices ai,1, ai,2, bi,1, bi,2, Ti and Fi and edges as

given in Fig. 11(a).

14
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Fig. 11.

• For each clause Cj = uj,1∨uj,2∨uj,3, we construct a clause gadget Cj with vertices cj,1, cj,2, cj,3, cj,4, and cj,5 and edges
as given in Fig. 11(b). Moreover, if uj,k = xi (where k ∈ {1, 2, 3}), then cj,3 is adjacent to Fi, else uj,k = xi and cj,3 is
adjacent to Ti. In addition, cj,3 is adjacent to both Ti and Fi for all variables xi not occurring in Cj and cj,1 is adjacent
to both Ti and Fi for all variables xi occurring in Cj.

It is clear that the graph G can be constructed in polynomial time. In [15], it is shown that the formula F is satisfiable if
and only if dim(G) = n+m. This implies that the problem of deciding whether dim(G) ≤ k is NP-complete.

Inspired by the previous reduction, we show in the following theorem that determining whether a given vertex is a
basis forced one or a void one are algorithmically difficult.

Theorem 29. Let G be a graph and u be a vertex of G.

(i) Deciding whether u is a basis forced vertex of G is a co-NP-hard problem.
(ii) Deciding whether u is a void vertex of G is an NP-hard problem.

Proof. In order to prove the first claim (i), we show that the problem of deciding whether a given 3-SAT formula is not
satisfiable – a co-NP-complete problem – can be reduced in polynomial time to the problem of determining if a given
vertex is basis forced one of a graph. For the second claim (ii), we similarly prove that the problem of deciding whether
a given 3-SAT formula is satisfiable – an NP-complete problem – can be reduced in polynomial time to the problem of
determining if a given vertex is basis void one of a graph.

Using the notation introduced above, let F be an instance of the 3-SAT problem. Based on the given formula F , we
form a graph G′ = (V ′, E ′) as follows:

• Let G1 = (V1, E1) and G2 = (V2, E2) be two disjoint copies of the graph G constructed in the reduction of [15] (with
respect to F ). Denote the vertices of the graphs by aki,1, a

k
i,2, b

k
i,1, b

k
i,2, T

k
i , F

k
i , c

k
j,1, c

k
j,2, c

k
j,3, c

k
j,4 and ckj,5, where k ∈ {1, 2}.

• Furthermore, an edge is added from each c1j,1 and c1j,3 to T 2
i and F 2

i for all i ∈ {1, . . . , n}. Analogously, an edge is
added from each c2j,1 and c2j,3 to T 1

i and F 1
i for all i ∈ {1, . . . , n}.

• Finally, add a vertex w such that it is adjacent to ckj,3 for all k ∈ {1, 2} and j ∈ {1, . . . ,m}.

It is immediate that the graph G′ = (V ′, E ′) = (V1 ∪ V2 ∪ {w}, E ′) can be constructed in polynomial time. Before diving
into the proofs of (i) and (ii), we need to discuss some preliminary results.

Let R be a resolving set of G′. We first present the following simple observations, which mimic the ones given in
Lemmas A.2 and A.3 of [15]:

(a) Observe that for k ∈ {1, 2} and i ∈ {1, . . . , n}, at least one of the vertices aki,1, a
k
i,2, b

k
i,1 and bki,2 belongs to the resolving

set R. Indeed, suppose to the contrary that R∩ {aki,1, a
k
i,2, b

k
i,1, b

k
i,2} = ∅. This implies that aki,1 and aki,2 are not resolved

(a contradiction) since the corresponding variable gadget is connected to the rest of the graph only through the
vertices T k

i and F k
i .

(b) Observe that for k ∈ {1, 2} and j ∈ {1, . . . ,m}, at least one of the vertices ckj,4 and ckj,5 belongs to the resolving set R.
Indeed, if R ∩ {ckj,4, c

k
j,5} = ∅, then ckj,4 and ckj,5 are clearly not resolved (a contradiction).

By the observations, we immediately obtain that the metric dimension of G′ is at least 2n+2m. In what follows, we show
that dim(G′) = 2n+ 2m if and only if the formula F is satisfiable.

Let us first show that if the formula F is satisfiable, then the metric dimension dim(G′) = 2n + 2m. Let A be a
satisfiable truth assignment of F . Construct then a set C as follows: C consists of all the vertices ckj,4, where k ∈ {1, 2} and
j ∈ {1, . . . ,m}, and if the assignment of xi is true in A, then a1i,1 and a2i,1 belong to C , and otherwise b1i,1 and b2i,1 are in C .
We immediately notice that C contains exactly 2n+ 2m vertices. In what follows, we show that C is a resolving set of G′.
For this purpose, we first observe that all the pairs x, y ∈ V ′ of distinct vertices except ckj,1 and ckj,3 are resolved by some
element of C:

• Suppose first that x = ckj,l with l ∈ {1, . . . , 5} and y is any other vertex not in the same clause gadget as x. Then
d(ckj,4, x) ≤ 2 and d(ckj,4, y) > 2, and we are immediately done. Furthermore, if y belongs to the same clause gadget

k k
as x, then some element of C clearly resolves x and y unless the vertices are cj,1 and cj,3.

15
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• Suppose then that x = w. Now the distance of x to each vertex of C is exactly three. Clearly, this is not the case for
any other vertex y and we are done.
• Finally, suppose that x belongs to some variable gadget. Without loss of generality, we may assume that x belongs

to the copy of the gadget of x1 in G1 and that a11,1 ∈ C . Now it is immediate that if y is in the same variable gadget
as x, then either a11,1 or every c2j,4 resolves x and y. By the previous cases, we are also immediately done if y does not
belong to any variable gadget. Hence, we may assume that y belongs to some variable gadget other than the one of
x1. Now, if x ̸= b11,2, then d(a11,1, x) ≤ 2 and d(a11,1, y) > 2. Furthermore, if x = b11,2 and d(a11,1, x) = d(a11,1, y), then
d(a11,1, x) = d(a11,1, y) = 3 and y is equal to T k

i or F k
i for some k and i. This further implies that there exists a vertex

c ∈ C in the same variable gadget as y such that d(c, y) ≤ 2 and d(c, x) > 2. Hence, we are done.

Thus, it is enough to consider the pairs of vertices x = ckj,1 and y = ckj,3. It is immediate that the distance of ckj,1 to
ach vertex of C in the variable gadgets corresponding to uj,1, uj,2 and uj,3 is equal to 2. However, by the fact that A is a

satisfiable truth assignment of F and the construction of C , the distance of ckj,3 to some vertex of C in the variable gadgets
corresponding to uj,1, uj,2 and uj,3 is equal to 3. Thus, in conclusion, C is a resolving set of G′ and dim(G′) = 2n+ 2m.

Let us then show that if the metric dimension of G′ is 2n+2m, then the formula F is satisfiable. Let C be a resolving set
of G′ with 2n+2m vertices. Due to the observations (a) and (b), we know that for each k ∈ {1, 2} and i ∈ {1, . . . , n} exactly
ne of the vertices aki,1, a

k
i,2, b

k
i,1 and bki,2 belongs to C and for each k ∈ {1, 2} and j ∈ {1, . . . ,m} exactly one of the vertices

ckj,4 and ckj,5 belongs to C . Form then a truth assignment A of F as follows: if a1i,1 or a1i,2 belongs to C , then set the variable
xi to be true, else (b1i,1 or b1i,2 belongs to C and) set xi to be false. In what follows, we show that the truth assignment
A satisfies the formula F . Suppose to the contrary that a clause Cj is not satisfied by A. This implies that the distance of
c1j,1 and c1j,3 to each vertex of C in the variable gadgets corresponding to uj,1, uj,2 and uj,3 is equal to 2. Furthermore, it is
straightforward to verify that the distance of c1j,1 and c1j,3 to each vertex of C in other variable gadgets is also equal to 2
and that their distances are equal to 4 to any other vertices of C (in the clause gadgets). Thus, they are not resolved by
any element of C and a contradiction follows. Thus, the truth assignment A satisfies the formula F .

Let us next show that dim(G′) ≤ 2n + 2m + 1 regardless of the existence of a satisfiable truth assignment for the
formula F . For this purpose, let C be a set consisting of w and all the vertices aki,1 and ckj,4, where k ∈ {1, 2}, i ∈ {1, . . . , n}
and j ∈ {1, . . . ,m}. Clearly, the cardinality of C is equal to 2n + 2m + 1. As above, it can be shown that a pair of
distinct vertices is resolved even without taking into account the vertex w unless the pair is ckj,1 and ckj,3. However, it
is immediate that they are resolved since d(w, ckj,1) = 3 ̸= 1 = d(w, ckj,3). Therefore, the set C is a resolving set of G′ and
dim(G′) ≤ 2n+ 2m+ 1.

(i) Now we are ready to prove that w is a basis forced vertex of G′ if and only if the formula F is not satisfiable. Observe
first that if w is a basis forced vertex of G′, then by the observations (a) and (b), we obtain that dim(G′) ≥ 2n+ 2m+ 1.
Therefore, we have dim(G′) = 2n+2m+1 and F is not satisfiable. For the other direction, assume that F is not satisfiable.
Hence, we have dim(G′) ̸= 2n+ 2m implying dim(G′) = 2n+ 2m+ 1. Suppose to the contrary that w is not a basis forced
vertex of G′ and there exists a metric basis C of G′ with 2n + 2m + 1 vertices such that w /∈ C . By the observations (a)
and (b), we obtain that either G1 or G2 contains exactly n + m vertices of C; without loss of generality, we may assume
that G1 is such a graph. Notice that c1j,1 and c1j,3 are resolved for all j ∈ {1, . . . ,m} since C is a metric basis of G′. As above,
it can now be shown that F is satisfiable (a contradiction). Therefore, w is a basis forced vertex of G′. Thus, there exists a
polynomial-time reduction of the complement of the 3-SAT problem to the problem of deciding whether a given vertex
is a basis forced vertex. Hence, the studied problem is co-NP-hard.

(ii) Let us then show that w is a void vertex of G′ if and only if the formula F is satisfiable. Observe first that if F is
satisfiable, then dim(G′) = 2n + 2m. Hence, if C is any metric basis of G′ (with cardinality 2n + 2m), then w does not
belong to C by the observations (a) and (b). Therefore, w is a void vertex of G′. For the other direction, assume that w

is a void vertex of G′. Recall that F is satisfiable if and only if dim(G′) = 2n + 2m. Suppose to the contrary that F is
not satisfiable, i.e., dim(G′) ̸= 2n + 2m. This implies that dim(G′) = 2n + 2m + 1. Let C be a metric basis of G′ (with
cardinality 2n+2m+1 and w /∈ C). As above, we obtain that G1 or G2 contains exactly n+m vertices of C; without loss of
generality, we may assume that G1 is such a graph. Analogously, as in the case (i), we can show that F is satisfiable since
w /∈ C (a contradiction). Hence, if w is a void vertex, then F is satisfiable. Thus, there exists a polynomial-time reduction
of the 3-SAT problem to the problem of deciding whether a given vertex is a void vertex. Hence, the studied problem is
NP-hard. □

6. Future works

Here are some open problems related to the questions in this paper.

• Find graphs with k basis forced vertices but fewer edges than in our construction in Section 3.1.
• Find a characterisation of graphs with k basis forced vertices and metric dimension k.
• We have not found any graph that attains the bound k ≤ n−dim(G)−1 established in Theorem 26. Further research

is needed to see whether there indeed exists a graph that attains this bound or if we can improve this bound. (Note

that we have k = n− dim(G)− 2 when k = 2 for the graph described in Lemma 22.)
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