
Words of Minimum Rank in Deterministic Finite
Automata

Jarkko Kari1⋆, Andrew Ryzhikov2, and Anton Varonka3

1 University of Turku, Turku, Finland
2 LIGM, Université Paris-Est, Marne-la-Vallée, France

3 Belarusian State University, Minsk, Belarus

Abstract. The rank of a word in a deterministic finite automaton is the
size of the image of the whole state set under the mapping defined by this
word. We study the length of shortest words of minimum rank in sev-
eral classes of complete deterministic finite automata, namely, strongly
connected and Eulerian automata. A conjecture bounding this length is
known as the Rank Conjecture, a generalization of the well known Černý
Conjecture. We prove upper bounds on the length of shortest words of
minimum rank in automata from the mentioned classes, and provide
several families of automata with long words of minimum rank. Some
results in this direction are also obtained for automata with rank equal
to period (the greatest common divisor of lengths of all cycles) and for
circular automata.
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1 Introduction

A complete deterministic finite automaton (which we simply call an automaton
in this paper) is a triple A = ⟨Q,Σ, δ⟩, where Q is a finite non-empty set of
states, Σ is a finite non-empty alphabet, and δ : Q × Σ → Q is a complete
transition function. We extend δ to Q × Σ∗ and 2Q × Σ∗ in the usual way:
δ(q, w) = δ(δ(q, v), a) if w = va for some word v ∈ Σ∗ and a ∈ Σ, and δ(S,w) =
{δ(q, w) | q ∈ S} for S ⊆ Q. We call the automaton binary or ternary if |Σ| = 2
or |Σ| = 3, respectively.

An automaton A is called synchronizing if there is a word w that resets it,
that is, brings it to a particular state no matter at which state the word has
been applied: δ(q, w) = δ(q′, w) for all q, q′ ∈ Q. Any such word w is said to be
a synchronizing word (or a reset word) for the automaton while the minimum
length of a synchronizing word for A is called the reset threshold of A and is
denoted rt(A).

A natural question arises: how large can the reset threshold of n-state syn-
chronizing automaton be? In 1964 Černý [9] constructed an n-state synchronizing
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automaton Cn with two letters which reset threshold is (n−1)2 for all n > 1. The
state set of Cn is Q = {1, 2, . . . , n} and the letters a and b act on it as follows:

δ(i, a) =

{
i, if i > 1

2, if i = 1;
δ(i, b) =

{
i+ 1, if i < n

1, if i = n.

We refer to automata of this series as the Černý automata.

Some time later (e.g. [8]) it was conjectured that every synchronizing au-
tomaton with n states can be reset by a word of length (n− 1)2. This is known
as the Černý Conjecture which remains open more than 50 years later (for a
survey on this topic see [20]).

Given an automaton A = ⟨Q,Σ, δ⟩, the rank of a word w ∈ Σ∗ with respect
toA is the number of states active after applying it, that is, the number |δ(Q,w)|.
When the automaton is clear from the context, we just call it the rank of w. The
rank of an automaton is the minimum rank among all words with respect to the
automaton. A synchronizing word (automaton) is thus a word (automaton) of
rank 1. We call the length of a shortest word of minimum rank of an automaton
A the minimum rank threshold of A. We denote it mrt(A).

Pin [17] proposed the following generalization of the Černý Conjecture: for
every n-state automaton having a word of rank at most r, there exists such
a word of length at most (n − r)2. A cubic upper bound is proved for this
conjecture [16]. However, Kari [14] found a counterexample to the conjectured
(n − r)2 bound for r = 2, which is a binary automaton K with n = 6 states.
As a consequence, a modification of this generalized conjecture was proposed by
Pribavkina restricting it to r being the rank of the considered automaton (K
is synchronizing but the Pin’s bound is exceeded for a word of rank 2). This
restricted case has not been disproved yet, and is sometimes referred to as the
Rank Conjecture (or the Černý-Pin Conjecture in [1]). The case r = 1 is the
Černý Conjecture.

It was pointed out in [2] that one of the reasons why the Černý Conjecture is
so hard to tackle is the lack of examples of slowly synchronizing automata. The
same is true concerning the Rank Conjecture. Pin [18] provided the following
example. The automaton with two letters consists of r connected components,
one of which is the Černý automaton Cn−r+1 and r−1 others are isolated states
with loops labeled with both letters. The automaton thus constructed has n
states, rank r and its minimum rank threshold is precisely (n−r)2. However, this
automaton is not strongly connected (an automaton is called strongly connected
if any state can be mapped to any other state by some word), so this case in
some sense reduces to the rank 1 case. No series of strongly connected automata
with mrt(A) close to the (n− r)2 bound were introduced so far.

In this paper, we propose a number of techniques to construct strongly con-
nected automata of rank r with large minimum rank thresholds. The families
of automata we obtain do not reach the conjectured bound (n − r)2, but the

minimum rank threshold is typically of the order (n−r)2

r , or within a constant
multiple of this. We provide families of automata having additional properties
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such as being Eulerian or circular, or having rank equal to the period (see Sec-
tion 2 for definitions of these concepts). We also consider upper bounds: we prove
the Rank Conjecture for Eulerian automata, and obtain an upper bound on the
minimum rank threshold of circular automata.

The paper is organized as follows. In Section 2 we provide the main defini-
tions and preliminary results. In Section 3 we provide constructions for turning
a binary synchronizing automaton into a higher rank ternary (Section 3.1) or
binary (Section 3.2) automaton having its minimum rank threshold close to
the reset threshold of the original automaton. Applying these constructions on
known series of synchronizing automata yield new series of automata of higher
ranks r > 1. In Section 3.3 we show how upper bounds on the reset threshold can
be turned into upper bounds on the minimum rank thresholds on automata with
period equal to rank. In Section 4 we prove the Rank Conjecture for automata
based on Eulerian digraphs, along with exhibiting lower bounds on minimum
rank thresholds. In Section 4.2 we present a way to transform known bounds
from Eulerian automata to circular automata. In particular, quadratic upper
bounds on minimum rank thresholds for circular automata (including the reset
threshold) are proved. In Section 4.3 we contribute to the Road Coloring Prob-
lem, presenting a nearly-linear algorithm of finding a coloring of minimum rank
for an Eulerian digraph.

2 Main definitions and preliminary results

All our digraphs are multigraphs and they are allowed to have loops. The un-
derlying digraph D(A) of an automaton A = ⟨Q,Σ, δ⟩ has vertex set Q, and for
any q, p ∈ Q, there are as many edges from q to p as there are letters a ∈ Σ such
that δ(q, a) = p. An automaton A is called a coloring of its multigraph D(A).
The underlying digraph of every automaton has the same outdegree at all its
vertices. From now on, we consider only digraphs with this property.

A digraph D is called strongly connected if for every pair (v, v′) of vertices
there exists a directed path from v to v′. An automaton is strongly connected if
its underlying digraph is strongly connected.

The period of a digraph D is the greatest common divisor of the lengths
of its cycles, and the period of an automaton is defined as the period of its
underlying digraph. Let us remark explicitly that digraphs with period p > 1 do
not have synchronizing colorings. The following lemma is essential to understand
the period of a digraph.

Lemma 1 ([5], p.29). Let D be a digraph with period p. Then the set V of
vertices of D can be partitioned into p nonempty sets V1, V2, . . . , Vp where each
edge of D goes from a vertex from Vi and enters some vertex in Vi+1 for some
i (the indices are taken modulo p).

We will call this partition a p-partition of a digraph or of its coloring.
Much of the literature on synchronizing automata concentrates on the prim-

itive case. A digraph is called primitive if it is strongly connected and the period
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is p = 1. In this paper we are interested in automata with underlying digraphs
which are strongly connected but not primitive.

A digraph is Eulerian if for each vertex the outdegree is equal to the indegree.
The automaton is Eulerian if it is strongly connected and its underlying digraph
is Eulerian. Equivalently, at every state there must be exactly |Σ| incoming
transitions, where Σ is the alphabet of the automaton. An automaton is circular
if there is a letter which acts on its set of states as a cyclic permutation.

3 Strongly connected automata

3.1 A lower bound for ternary automata

We start with a construction yielding a series of strongly connected ternary
automata. We transform a synchronizing binary automaton A into a ternary
automaton A′ of a given rank r > 1 such that mrt(A′) is related to rt(A).

We start with a synchronizing binary automaton A = ⟨Q, {a, b}, δ⟩ with t
states q1, . . . , qt. We define a ternary automaton A′ = ⟨Q′, {a, b, c}, δ′⟩ of rank

r with the size n = r · t state set Q′ =
∪r−1

i=0 Qi where each Qi contains t
states qi,1, . . . , qi,t. The action of the transition function δ′ on the set Q0 repeats
the action of δ on set Q for the letters a, b: for x = a and x = b we have
δ′(q0,j , x) = q0,k if and only if δ(qj , x) = qk. On the other sets Q1, . . . , Qr−1 the
transitions by the letters a, b are self-loops: we set δ′(qi,k, x) = qi,k for x = a and
x = b, for all i ̸= 0 and all k. Finally, the letter c shifts states of Qi to the next
set Qi+1: we define δ′(qi,k, c) = qi+1,k where i+ 1 is counted modulo r, that is,
elements of Qr−1 are shifted to the set Q0. Note that the construction preserves
the property of the automaton to be strongly connected or Eulerian.

Since A is synchronizing, we certainly obtain an automaton of rank r as the
result of this construction. No two states from different sets Qi, Qj with i ̸= j
can be merged for the obvious reason. Each of them though can be mapped
using the letter c to Q0 which, in turn, can be mapped to a single state.

If w is a shortest reset word for A, a trivial way to compose a word of rank
r for A′ is as follows. We use w to merge the states of Q0 to one particular
state, then use the letter c to shift the set at play and continue until every set
Qi is merged into one state. The resulting word w′ = wcw . . . cw thus has length
rt(A) · r + r − 1. Moreover, w′ is the shortest word of rank r. Indeed, since all
the transitions in the sets Q1, Q2, . . . , Qr−1 are self-loops for a, b, the only place
where merging of states takes place is inside Q0. While states of some Qi are
treated there, the states of all Qj , j ̸= i, remain invariant. Obviously, c has to
be applied at least r− 1 times. Hence, by the pigeonhole principle, the existence
of a shorter word of minimum rank would imply that an automaton induced by
the action of {a, b} on Q0 can be synchronized faster than in rt(A) steps.

If we apply the construction to the Černý automaton Cn
r
, we get the following.

Proposition 1. For every n and every r > 1 such that r divides n, there exists
a ternary strongly connected automaton with n states and rank r such that the

length of its shortest word of minimum rank is (n−r)2

r + r − 1.
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It is natural to ask for a lower bound on the minimum rank threshold for
binary automata. There are some techniques known to decrease the alphabet size
of an automaton while not changing the length of a shortest synchronizing word
significantly. By carefully applying the construction encoding letters in states

[4, 21] one can get a lower bound of n2

3r − 7
3n + 5r for the binary case. Another

technique decreasing alphabet size, namely by encoding binary representation
of letters in states [4, Lemma 3], does not yield any better bounds. Below we
present some different ideas providing stronger lower bounds on mrt(A) in the
class of binary strongly connected automata.

3.2 Lower bounds for binary automata

In the ternary construction above we may represent the actions of words ac and
bc by two new letters, and afterwards remove the original letters a, b, c. This
yields a binary automaton of rank r. More generally, we can do this on the
analogous construction from an automaton with alphabet size k to size k + 1,
obtaining again an automaton with alphabet size k and having rank r.

The detailed construction goes as follows. Given a strongly connected syn-
chronizing automaton A = ⟨Q,Σ, δ⟩ over any alphabet Σ and with state set
Q = {q1, . . . , qt}, we define the automaton A′ = ⟨Q′, Σ, δ′⟩ over the same al-

phabet as follows. As in the ternary construction, the state set is Q′ =
∪r−1

i=0 Qi

where each Qi contains t states qi,1, . . . , qi,t. The transitions from Q0 to Q1 im-
itate the transitions of A: for every letter a ∈ Σ we set δ′(q0,j , a) = q1,k if and
only if δ(qj , a) = qk. For the states in Qi with i ̸= 0 we define the transitions by
just shifting a state to the state with the same index in the next set: for every
a ∈ Σ we set δ′(qi,j , a) = qi+1,j , with the index i+ 1 taken modulo p.

Observe that the action of the set of words Σr on the set Qi in A′ induces
the automaton A (up to duplicating its letters). Moreover, the words of length
r− 1 only shift the states of the set Q1 to Q0. Thus, any word synchronizing Q1

is of length at least rt(A)·r over the initial alphabet. Clearly, this automaton has
rank r, and its period is also r because A is synchronizing and thus primitive.
We obtain the following result.

Proposition 2. For every t-state strongly connected synchronizing automaton
A and for every r there exists a tr-state strongly connected automaton A′ over
the same alphabet, with period and rank equal to r, such that mrt(A′) = rt(A) ·r.

Observe that the construction described preserves the property of the au-
tomaton to be strongly connected, circular or Eulerian. Applied to the Černý
automaton this construction yields the following result.

Corollary 1. For every n and every r such that r divides n, there exists an n-
state circular binary automaton of period and rank r with minimum rank thresh-

old (n−r)2

r .

The Wielandt digraph Wn has n > 1 vertices 0, . . . , n− 1. From each vertex
i > 0 there are two edges to the next vertex i+ 1 modulo n, and from vertex 0
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there are single edges to vertices 1 and 2. Introduced in [22], and studied in
connection to synchronizing automata in [2], these digraphs have the interesting
property that they admit only one coloring, when automata obtained by renam-
ing letters are considered identical. The reset threshold of this n-state Wielandt
automaton was proved in [2] to be n2 − 3n+ 3.

The Hybrid Černý-Road Coloring problem (see [2], [7]) asks for the shortest
length of a synchronizing word among all colorings of a fixed primitive digraph
with n vertices. Since Wn has only one coloring, it provides the lower bound
n2 − 3n + 3 on this quantity. We can apply the binary construction of this
section on the Wielandt automaton. The resulting automaton of rank r also
admits only one coloring. Hence we get the following result in the spirit of the
Hybrid Černý-Road Coloring problem, generalizing it to cases r > 1.

Corollary 2. For every n > 1 and every r such that r divides n, there exists
an n-vertex strongly connected digraph D of constant outdegree 2 such that all
colorings of D are circular, have the same period and rank r, and for every

coloring the length of a word of minimum rank is (n−r)2

r − n+ 2r.

It is interesting to note that the digraphs D in Corollary 2 are the digraphs
with the largest possible index, described in Theorem 4.3 of [13], after duplicating
some edges to make all outdegrees equal to 2. Recall that the index of a strongly
connected digraph with period r is the smallest k such that any pair of vertices
are connected by a directed path of length k if and only if they are connected
by a path of length k+ r. In fact, one can easily show the following relationship
(proof omitted), which also appears in [12] for the primitive case r = 1.

Proposition 3. For a strongly connected n-state automaton A of rank r and
period r the following holds:

mrt(A) ≥ k(A)− n+ r,

where k(A) is the index of the underlying digraph of A.

Since the index of D in Corollary 2 was proved in [13] to be (n−r)2

r + r, we
get from Proposition 3 the same lower bound as in Corollary 2.

We finish this section with a family of strongly connected binary automata
that reach the same minimum rank threshold as the ternary automata in Propo-
sition 1. Recall the n-state Černý automaton from Section 1. Let r be a number
that divides n. Change in the Černý automaton the transition from state 1 by
letter a to go into state r+1 instead of state 2. After this change, for any states
i and j such that i ≡ j modulo r, also δ(i, x) ≡ δ(j, x) modulo r holds for both
x = a and x = b. This means that states in different residue classes modulo r
cannot be merged, so that the rank of this automaton is at least r. Using the
trick from [2], we introduce a new input letter c that acts as the word ab does.
Now letters c and b define exactly the modified Wielandt automaton leading to
Corollary 2 above, so there is a word of rank r with letters c and b. Hence our
automaton has rank r as well.
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Since the action of word aa is the same as the action of a, a shortest minimum
rank word w cannot contain factor aa. The word wb has also minimum rank,
and it can be factored into ab’s and b’s. Viewing this as a word over letters c
and b, we see that the number of c’s and b’s must be at least the minimum rank

threshold (n−r)2

r − n + 2r from Corollary 2. Since b is a permutation and since
c merges at most one pair of states, there must be at least n− r letters c used.
Each c counts as two letters over the alphabet {a, b}, so the length of word wb
is at least

(n− r)2

r
− n+ 2r + (n− r) =

(n− r)2

r
+ r.

Removing the last b from wb we obtain the following lower bound. Observe that
the bound is exactly the same as in the ternary case in Proposition 1.

Proposition 4. For every n and every r > 1 such that r divides n, there exists

a binary n-state circular automaton A of rank r having mrt(A) = (n−r)2

r +r−1.

3.3 Upper bound in the case when the rank equals the period

Obviously, the period of an automaton is a lower bound on its rank. It is inter-
esting to consider the special case of automata where these two values are equal.
For lower bounds, observe that the rank r automata reported in Corollaries 1
and 2 have the same period as the rank. In this section we obtain upper bounds
on the minimum rank threshold from any known upper bounds on the reset
threshold, in the case that the rank equals the period.

For every n, let f(n) denote the maximum of reset thresholds of n-state
synchronizing automata.

Theorem 1. Let A be an automaton of rank r and period r. Then mrt(A) ≤
r2 · f(nr ) + (r − 1).

Proof. Let A = ⟨Q,Σ, δ⟩. By Lemma 1 there exists a partition of the set Q
into the sets Q0, . . . , Qr−1 such that every transition maps a state in Qi to
a state in Qi+1 (with the index i + 1 taken modulo r). Since the rank of A
equals its period, each of the sets Q0, . . . , Qr−1 is synchronizable (a set is called
synchronizable if there is a word mapping this set to a single state). Assume
without loss of generality that Q0 is the smallest set in the partition. Consider
then the automaton Ar = ⟨Q0, Σ

r, δ′⟩ induced by the actions of all the words of
length r on Q0. This automaton is synchronizing, and by our assumption there
is a word synchronizing it of length at most f(|Q0|) ≤ f(nr ) over the alphabet
Σr. Over the alphabet Σ this word has length at most r · f(nr ). Then to find a
word of minimum rank it is enough to subsequently map each set Q1, . . . , Qr−1

to Q0 and apply the described word. In total we get a word of minimum rank of
length at most r2 · f(nr ) + (r − 1). ⊓⊔

For example, using the unconditional upper bound f(n) ≤ n3−n
6 on the reset

threshold [17] we get that for every n-state automaton of rank r and period r
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we have mrt(A) ≤ n(n2−r2)
6r +(r−1), which is roughly r times stronger than the

best known upper bound for the general case [16]. The Černý Conjecture implies
the upper bound of (n− r)2 + (r − 1). Thus, in the case of automata with rank
equal to period the Rank Conjecture is implied by the Černý Conjecture up to
an additive factor of (r − 1). However we conjecture that in this case the upper

bound can be improved to (n−r)2

r +O(n).

4 Eulerian automata

4.1 The Rank Conjecture

We continue our discussion on the Rank Conjecture proving it for a particular
class of automata, namely the Eulerian automata. Eulerian automata have been
widely studied, in particular, Kari [15] showed that rt(A) ≤ (n − 1)(n − 2) +
1 for any synchronizing Eulerian n-state automaton, thus proving the Černý
Conjecture for this class of automata. We extend the mentioned result to the
case of arbitrary minimum rank.

Theorem 2. Let A be an n-state Eulerian automaton of rank r. Then A has a
word of rank r of length at most (n− r − 1)(n− r) + 1.

Proof. Let A = ⟨Q,Σ, δ⟩. Following [15], we consider the set Q, |Q| = n, of
states as an orthonormal basis of Rn with subsets of states corresponding to the
sums of the basis vectors. Thus, a set S ⊆ Q is viewed as a vector

∑
q∈S q.

Every word w ∈ Σ∗ defines a state transition function fw : Q → Q on the
set of states, with fw(q) = δ(q, w). Furthermore, f−1

w (q) = {v | fw(v) = q}.
Since we know the values of f−1

w on all the basis vectors, there is a unique way
to extend it to a linear mapping f−1

w : Rn → Rn. Clearly, for a set S ⊆ Q we
have f−1

w (S) =
∑

q∈S f−1
w (q). Moreover, for a vector x = (x1, . . . , xn) we define

a linear weight function |x| such that |(x1, . . . , xn)| = x1 + . . .+ xn. The weight
of a set S ⊆ Q is just its cardinality.

Let Z1 ⊆ Rn be the set of all non-extendable vectors, i.e. such vectors x that
there exists no word w with |f−1

w (x)| ̸= |x| (all the remaining vectors we call
extendable). Observe that

∑
w∈Σk |f−1

w (S)| = |Σ|k · |S|. Thus, if there exists a
word w of length k such that |f−1

w (S)| ≠ |S| then there is a word of the same
length extending S (a word v is said to extend S if |f−1

v (S)| > |S|). We will refer
to that as the averaging argument.

Note that Z1 is a linear subspace of Rn of dimension at least r. First we prove
that it is a linear subspace. Indeed, consider a linear combination λ1v1 + . . . +
λkvk of vectors from Z1. Since the weight function is linear, any image of this
combination under f−1

w has the same weight, and thus the combination belongs
to Z1. To bound the dimension of Z1 from below, consider a word w of minimum
rank such that there exists a partition of Q into sets S1, . . . , Sr, such that each
Si is a maximal synchronizable set. Such a word exists by Proposition 1 of [15].
The vectors corresponding to S1, . . . , Sr are then non-extendable,and linearly
independent since they have disjoint non-zero coefficients in the standard basis
decomposition. We apply some linear algebra to obtain the following lemma.
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Lemma 2. For every extendable vector x there exists a word w of length at most
n− r such that |f−1

w (x)| ̸= |x|.

Proof. Suppose the contrary: let x be extendable such that that shortest word
w such that |f−1

w (x)| ̸= |x| has length m > n − r. Note that for any words u, v
we have f−1

uv (x) = f−1
u (f−1

v (x)). Take Z0 to be the orthogonal complement of
Z1. Since the dimension of Z1 is at least r, the dimension of Z0 is at most n− r.
For every i ≤ m we denote xi = f−1

wi
(x) where wi is the suffix of w of length i,

and we write xi = x
(0)
i + x

(1)
i for x

(0)
i ∈ Z0 and x

(1)
i ∈ Z1. Since m is greater

than the dimension of Z0, vectors x
(0)
0 , x

(0)
1 , . . . , x

(0)
m−1 are linearly dependent.

This means that for some k < m the vector x
(0)
k is a linear combination λ0x

(0)
0 +

· · ·+ λk−1x
(0)
k−1 of vectors before it, with coefficients λi ∈ R. The corresponding

linear combination of vectors xi is λ0x0 + · · · + λk−1xk−1 = xk + x′ for some
x′ ∈ Z1. Let w = uv where v is the suffix of w of length k. Then, f−1

u (xk) =
f−1
u (f−1

v (x)) = f−1
w (x). Moreover, for every i < k we have |f−1

u (xi)| = |xi|.
Indeed, f−1

u (xi) = f−1
u (f−1

wi
(x)) = f−1

uwi
(x) has the same weight as x because uwi

is shorter than w, and of course |xi| = |x|. Also, because x′ is non-extendable,
we have |f−1

u (x′)| = |x′|. Putting all together, using linearity of f−1
u and the

weight function, we obtain |f−1
w (x)| = |x|, a contradiction. ⊓⊔

By the averaging argument we obtain from Lemma 2 that for any extendable
set S of states there is a word w of length at most n − r such that |f−1

w (S)| ≥
|S| + 1. Now we apply this extension procedure as follows. Start with a one-
state set. Extend it step by step to a maximal synchronizable set (having size
n
r ). Then add another state to this maximal synchronizable set and extend this
new set to a union of two disjoint maximal synchronizable sets. Repeat this
procedure of adding a new state and extending the set to a union of several
maximal synchronizable sets until the whole set of states of the automaton is
reached. The extension is possible, since at every step the set S that we have
to extend is a disjoint union of several maximal synchronizable subsets and a
non-maximal synchronizable subset S′. Any word extending S′ extends S, since
f−1
w preserves the weights of all the maximal synchronizable subsets for any word
w (since otherwise by the averaging argument such sets are extendable).

For each step of this algorithm, we have a word of length at most n − r
to extend a set by one element. Each maximal synchronizable set has size n

r ,
and we have to reach r such sets, so the total length of the word is at most
(n − r)(nr − 1)r = (n − r)2. We can initially choose a one-state set extendable
by a word of length 1, which improves the bound to (n− r)(n− r − 1) + 1. ⊓⊔

To obtain a lower bound on the minimum rank threshold of Eulerian au-
tomata, recall the construction used to prove the bound of Proposition 1. It
was mentioned previously that applying it to an Eulerian automaton yields an-
other Eulerian automaton. Thus, we repeat the same reasoning starting with a
synchronizing n-state Eulerian automaton over alphabet of size 4 having reset

threshold n2−3
2 , for any n > 1 such that n ≡ 1 (mod 4), see [19].
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Proposition 5. For every n and every r < n such that n = (4p + 1)r, there

exists an n-state Eulerian automaton A of rank r with mrt(A) = n2−r2

2r − 1.

The standard binarization methods cannot be applied to provide the lower
bounds for binary Eulerian automata. However, we can apply the argument of
Proposition 2 to the n-state binary Eulerian automaton whose reset threshold

is at least n2−3n+4
2 for odd n ≥ 3 [12]. (This was proved for all odd n ≥ 5 in [12]

but the same construction also covers the case n = 3.) The automaton we obtain
is also Eulerian.

Proposition 6. For every n and every r such that r divides n and n/r ≥ 3
is odd, there exists an n-state binary Eulerian automaton A of rank r having

mrt(A) ≥ (n−2r)2+nr
2r .

The multiplicative gap between the lower and the upper bounds consists
intuitively of two parts. The factor of two comes from the gap between the
known bounds on the reset threshold of Eulerian automata, while the factor r
comes from the gap on the minimum rank threshold in general strongly connected
automata that we see in the results in Section 3.

4.2 A corollary for circular automata

In this section we provide a simple trick, similar to the idea of [6], which allows
to transfer the results on Eulerian automata to the class of circular automata.
Recall that an automaton is called circular if there is a letter which acts on its
set of states as a cyclic permutation. The Černý Conjecture for this automata
class was proved by Dubuc [11]. Note that the Černý automata are circular and
possess the largest known reset thresholds.

Let us consider an n-state circular automaton A = ⟨Q,Σ, δ⟩ such that some
letter b ∈ Σ acts as a cyclic permutation on Q. Let us replace each a ∈ Σ by n
letters a0, . . . , an−1, where ai acts on Q the same way as the word abi does in
the original automaton. Let Σ′ be the obtained new alphabet of size n · |Σ|. It is
not hard to prove that the obtained automaton is Eulerian (we omit the proof
because of the space constraints).

Observe that this transformation preserves the synchronization properties of
the initial automaton in the following sense. A word of rank r over Σ is clearly a
word of rank r over Σ′ because Σ ⊂ Σ′. The opposite holds as well since every
word over Σ′ can be rewritten as a word over Σ. It follows that the rank of the
resulting automaton is equal to the rank of the initial one.

Theorem 3. Every n-state circular automaton of rank r < n has a minimum
rank word of length at most (2n− r − 1)(n− r − 1) + 1.

Proof. Let A = ⟨Q,Σ, δ⟩ be an n-state circular automaton with a cyclic per-
mutation letter b. An Eulerian automaton A′ = ⟨Q,Σ′, δ′⟩ with n states is con-
structed as above. Now we show how to use the procedure described in Theorem
2 to get the upper bound.
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According to the proof of Theorem 2, for every s ∈ Rn there exists a unique
representation s = s0 + s1 where s0 ∈ Z0 and s1 ∈ Z1. Furthermore, |f−1

w (s)| ̸=
|s| is equivalent to |f−1

w (s0)| ̸= |s0|.
Observe that any word in Σ′ can be written as a concatenation of words over

Σ. Thus we can apply Lemma 3 of [15] on the linear transformations f−1
a , for

a ∈ Σ, in the automaton A′, and get that the shortest word w ∈ Σ∗ such that
|f−1

w (s0)| ̸= |s0| has length at most n− r. Consequently, w is the shortest word
over Σ such that |f−1

w (s)| ̸= |s|.
Let w = cv where c ∈ Σ and v ∈ Σ∗. Now consider all the words of the form

σv with σ ∈ Σ′. Clearly, w is one of them. Because A′ is Eulerian, we have∑
σ∈Σ′

|f−1
σv (x)| =

∑
σ∈Σ′

|f−1
σ (f−1

v (x))| = |Σ′| · |f−1
v (x)| = |Σ′| · |x|.

Since there exists a word w = cv such that |f−1
w (x)| ̸= |x|, the above equality

implies that there is u = σv such that |f−1
u (x)| > |x|. Notice that v is a word of

length at most n−r−1 over Σ, and hence u is of length |σ|+|v| ≤ n+(n−r−1) =
2n− r − 1 over Σ.

Thus we showed that every extendable set of states in A′ can be extended
by a word of length at most 2n− r − 1 (over the alphabet Σ). We can now use
the extension procedure described in Theorem 2 (starting from a one-state set
extendable by a word of length 1) and get the upper bound of (2n− r − 1)(n−
r − 1) + 1 on the length of a shortest word of minimum rank in A. ⊓⊔

4.3 A road coloring algorithm

As proved by Kari [15], every primitive strongly connected Eulerian digraph such
that all its vertices have equal outdegrees has a synchronizing coloring. If the
primitiveness condition is omitted, the period of a digraph is the lower bound
on the rank of any coloring. A coloring of rank equal to period always exists and
can be found in quadratic time [3]. We show that for Eulerian digraphs it can be
found in almost linear time. We use the approach described in Section 3 of [15]
and show how to generalize it and turn into an algorithm.

First observe that a permutation coloring (a coloring of rank n) of an Eulerian
digraph with n vertices and constant outdegree k corresponds to a partition of
a regular bipartite graph with n vertices and kn edges into k perfect matchings
(Lemma 1 of [15]), and thus can be computed in O(kn log k) time [10].

The construction of a permutation coloring is used as a subroutine in order
to construct a coloring with a stable pair of states. A pair of states p, q of an
automaton is called stable if application of any word to this pair results in a
synchronizable pair. For a permutation coloring A = ⟨Q,Σ, δ⟩ of a digraph take
a state x ∈ Q such that y = δ(x, a) ̸= δ(x, b) = z for some letters a, b ∈ Σ. Note
that in a strongly connected digraph such state always exists, otherwise the
digraph consists of one cycle and we have nothing to prove. We swap the letters
coloring the edges x → y and x → z. As proved in Theorem 1 of [15], the pair
y, z is then stable in the resulting automaton A′ and thus defines a congruence
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relation (that is, an equivalence relation invariant under application of any word)
≡ on its state set. The quotient automaton A′/ ≡ is then obtained by merging
all the states of each congruence class. If A′ is Eulerian, so is A′/ ≡ [15].

Lemma 3. Let A′ be the Eulerian automaton, and y, z be the stable pair with
corresponding congruence relation ≡ obtained as described above. Then the quo-
tient automaton A′/ ≡ has at most half as many states as A′.

Proof. We compute A′/ ≡ following the Merge procedure described in [3]. We
start by merging the congruent pair y, z and then propagate this equivalence to
the images of y, z under all the letters in Σ until we get a deterministic automa-
ton. Observe that since we start with a permutation coloring, each state that has
not yet been merged with some other state has all incoming edges of different
colors. Thus, if there is such a state in the pair to be merged, the second state in
this pair is different from it, and thus further calls of merging their successor will
be performed. Moreover, assume that some state is not merged with any state
during this procedure. Then there is such a state p having a transition going
to it from some already merged state q, otherwise the digraph is not strongly
connected. This means that during the first merging for q, merging for p has to
be called, which is a contradiction. Hence, each state is in a congruence class
of cardinality at least 2, and after taking the quotient, the number of states of
A′/ ≡ is at most half of the number of states A′. ⊓⊔

Theorem 4. Given a strongly connected Eulerian digraph of period r with n
vertices and outdegree k, a coloring of rank r of this digraph can be found in
O((k log k + α(n)) · n) time, where α(·) is the inverse Ackermann function.

Proof. The algorithm is recursive. At each iteration we start by finding a color-
ing with a stable pair as described above. Then we proceed by computing the
quotient automaton as in Lemma 3. The automaton we obtain is Eulerian [15],
moreover, it has the same period since no pair of states from different sets in a
p-partition can be stable (since no such pair can be synchronized). If the automa-
ton has rank r, we stop, otherwise we call the same algorithm for coloring it and
then recover the final coloring by taking for every vertex the same permutation
of the colors of outgoing edges as used for the equivalence class of this vertex
(see Theorem 1 of [15]).

To analyze the time complexity, we estimate the complexity of one recursion
step. Let ℓ be the size of the automaton at some iteration. As it was mentioned
before, it takes O(kℓ log k) time to find a permutation coloring. The Merge pro-
cedure requires O(kℓ) time for traversing and O(ℓα(ℓ)) time for merging the
sets. Moreover, recovering the coloring from the smaller automaton can be done
in O(kℓ) time by storing the quotient automaton (together with the correspon-
dence between the states and their equivalence classes) at each iteration. Hence,
the time complexity of one iteration is O(ℓ(k log k + α(ℓ))).

Now we can sum up the time complexity of all recursion steps. Lemma 3
implies that the number of states of each next automaton in the recursion call is
decreased at least twice. Thus, the total time complexity is O(n(k log k+α(n))),
where n is the number of vertices of the initial digraph. ⊓⊔
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