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a b s t r a c t

For every positive integer n greater than 4 there is a set of Latin squares of order n
such that every permutation of the numbers 1, . . . , n appears exactly once as a row,
a column, a reverse row or a reverse column of one of the given Latin squares. If n is
greater than 4 and not of the form p or 2p for some prime number p congruent to 3
modulo 4, then there always exists a Latin square of order n in which the rows, columns,
reverse rows and reverse columns are all distinct permutations of 1, . . . , n, and which
constitute a permutation group of order 4n. If n is prime congruent to 1 modulo 4, then
a set of (n − 1)/4 mutually orthogonal Latin squares of order n can also be constructed
by a classical method of linear algebra in such a way, that the rows, columns, reverse
rows and reverse columns are all distinct and constitute a permutation group of order
n(n − 1).
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A permutation is a bijective map f from a finite, n-element set (the domain of the permutation) to itself. When the
domain is fixed, or it is an arbitrary n-element set, the group of all permutations on that domain is denoted by Sn
(symmetric group). If the elements of the domain are enumerated in some well defined order as z1, . . . , zn, then the
sequence f (z1), . . . , f (zn) is called the sequence representation of the permutation f . This sequence representation then
fully determines the permutation, and the term ‘‘permutation’’ may mean this sequence itself or the bijective map that
it represents.

Without loss of generality we shall throughout this paper assume that matrix entries and the elements of the domain
being permuted belong to some non-trivial ring with a zero and a unit element 1. This will allow in particular the
multiplication of any square matrix of order n with the reversal matrix (also called the exchange matrix) of order n given
by J(i, j) = δi,n+1−j (where δi,j is the Kronecker delta). For every n-by-n square matrix L, the columns of the conjugate JLJ
are the reverse columns of L and the columns of the conjugate transpose JLT J are the reverse rows of L. The at most 4n
sequences of length n occurring in L as rows, columns, reverse rows or reverse columns will be called lines of the matrix.

The four matrix operators mapping L to L, LT , JLJ , and JLT J , respectively, form a group under composition. The matrix
L is symmetric if L = LT , centrosymmetric if L = JLJ and Hankel symmetric if L = JLT J . None of these properties implies the
others, but any two of them imply the third: such matrices have been studied e.g. in [1,2,5,8].

The opposite of this situation is when the 4n lines of the matrix L are all distinct, in this paper we call such a matrix
strongly asymmetric. In this paper we are interested in matrices that are actually Latin squares. For the general theory of
Latin squares see Keedwell and Dénes [7].
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Given a finite, n-element set R, a set S of m Latin squares of order n with entries in R (meaning that each line of each
member of S represents a permutation of R) is called a packing if

(i) all members of S are strongly asymmetric,
(ii) no line of any member of S appears as a line in any other member of S.

Equivalently, S is a packing if the number of distinct sequences appearing as lines in the members of S is 4nm. In that
case the 4nm permutations represented by these 4nm sequences are said to be packed into the set S of Latin squares.

Proposition 1. If some subgroup G of the symmetric group Sn of all permutations is packed into a set S of strongly asymmetric
Latin squares, then every subgroup H of Sn containing G is also packed into some set of strongly asymmetric Latin squares.

Proof. Let Q be a set of |H|/|G| distinct representatives of the (left) cosets of G in H . Apply each representative to each
matrix M in S elementwise, i.e. for each q in Q and each M form the matrix qM given by (qM)(i, j) = q(M(i, j)). □

2. Packing into Latin squares of odd order

Fact 1. Let C and R be subgroups of a group G. For any element g ∈ G the following conditions are equivalent:

(i) the map from the Cartesian product set C × R to the double coset CgR that sends (c, r) to cgr is bijective,
(ii) the conjugate subgroup gRg−1 intersects C trivially.

Fact 2. Let C and R be subgroups of a finite group G. The following conditions are equivalent:

(i) all the double cosets have cardinality equal to Card(C)×Card(R),
(ii) every conjugate of C meets every conjugate of R trivially.

act 3. Let C and R be two subgroups of a finite group G whose orders are relatively prime. Then all the double cosets have
ardinality equal to Card(C)×Card(R).

The following theorem will be proved by an appropriate application of the ‘‘addition square’’ construction appearing
n Gilbert [6].

heorem 1. If n is a positive odd number at least 5, then the symmetric group Sn can be packed into some set of strongly
symmetric Latin squares.

roof. Fact 3 applies in particular if G is the symmetric group of all permutations of the n-element set {1, . . . , n}, for odd
≥ 5, C is the subgroup generated by the circular shift permutation whose sequence representation is (2, . . . , n, 1), and
is the two-element subgroup containing the reversal permutation whose sequence representation is (n, . . . , 1).
All double cosets CgR have cardinality 2n. The number (n − 1)!/2 of double cosets is even. Arrange the double cosets

n matched pairs. From each matched pair (A, B) of double cosets choose representatives p, q from A, B, respectively.
onstruct the matrix M given by M(i, j) = p(i) + q(j), where addition is modulo n.
The columns and reverse columns of M are precisely the members of the double coset A, and the rows and reverse

ows of M are the members of the double coset B. In the set of (n − 1)!/4 matrices so constructed every permutation
ccurs exactly once as a row, column, reverse row or reverse column. □

emark 1. The above construction does not work for even n, because the circular shift applied n/2 times is then a
onjugate of the reversal (has similar cyclic structure).

. Packing into Latin squares of even order

efinition 1. An m-by-m matrix (possibly Latin square) is called a double occurrence matrix if every sequence appearing as
line (row, column, reverse row, or reverse column) appears exactly twice. A set of double occurrence matrices is called
double occurrence matrix set if no sequence appears as a line in more than one of the matrices. The set of permutations
hose sequence representations appear as lines in a double occurrence matrix or matrix set is called the set covered by
he matrix or matrix set.

roposition 2. For every m > 2 there is a double occurrence matrix set covering all permutations of 1, . . . ,m.

roof. First we observe that for every m > 2, there is an m-by-m double occurrence matrix such that the lines appearing
n the matrix constitute the sequence representations of a permutation group on the numbers 1, . . . ,m. Indeed, such a
atrix can be defined by letting the element of the matrix in row i and column j be the number i + j, with addition
efined modulo m.
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Fig. 1. An example of constructing a composite matrix.

Secondly, let M be any m-by-m double occurrence matrix whose lines constitute a permutation group G. Let R be any
complete system of representatives of the left cosets of G in the symmetric group of all permutations of 1, . . . ,m. Applying
the various permutations r ∈ R (viewed as functions) entrywise to M we obtain the matrix set required. □

Remark 2. The matrix set whose existence is stated in Proposition 2 necessarily consists of m!/2m = (m−1)!/2 matrices.

For k = 1, . . . ,m let the 2-by-2 matrices Bk0 and Bk1 be defined as

Bk0 =

[
2k − 1 2k
2k 2k − 1

]
Bk1 =

[
2k 2k − 1

2k − 1 2k

]
For an m-by-m Latin square L and each m-by-m Boolean matrix A (0 − 1 matrix), let the 2m-by-2m composite matrix

L ∗ A be defined by replacing each entry of L in row i and column j whose value is k by the 2-by-2 block BkA(i,j) (for an
example see Fig. 1).

Remark 3. Both L and A are encoded into the composite L ∗ A without loss of information: A(i, j) is 0 or 1 according to
whether (L ∗ A)(2i − 1, 2j − 1) is smaller or larger than (L ∗ A)(2i − 1, 2j), and L(i, j) is half the larger of these two entries
of L ∗ A.

Proposition 3. For every even number 2m > 4, there is a set S of Latin squares of order 2m, such that every sequence
representing a permutation preserving the partition of the numbers 1, 2, . . . , 2m − 1, 2m into pairs of consecutive numbers
occurs exactly once as a line of some member of S.

Remark 4. The set of permutations packed into the set S of Latin squares according to this proposition constitutes a
subgroup of order m! 2m of the symmetric group S2m.

Proof. Partition into pairs {v, w} in any manner the set of 0− 1 vectors of length m whose first component is 0 (actually
partitioning into pairs of any complement-free set of 2m−1 vectors will do). Order each pair {v, w} arbitrarily into an
ordered pair (v, w). For each such ordered pair define the m-by-m Boolean matrix Avw by Avw(i, j) = v(i) + w(j), with
addition modulo 2.

We obtain thus a set of 2m−2 Boolean matrices with the property that if a vector v appears as the ith row in one of
the matrices, then the ith column of that matrix is neither v nor its Boolean complement.

Let E be a double occurrence matrix set covering all permutations of 1, . . . ,m, which exists according to Proposition 2
and consists of (m − 1)!/2 matrices.

Let S consist of all the composite matrices (L ∗ A)vw , where L can be any member of E and Avw is any of the 2m−2

Boolean matrices defined above. In view of Remark 3, the set S consists of (m − 1)! 2m−3 matrices. The key to verifying
that no vector can appear twice as a line anywhere in S, is to note that because of the double occurrence property of
E the only possible coincidences to worry about concern rows and columns of the same member matrix of S, but such
coincidences are excluded due to the complement-free property of the set of Boolean vectors used to define the matrices
Avw .

The proof is concluded by observing that the number of (distinct) lines appearing in members of S is (m−1)! 2m−3
·8m =

m! 2m, which is the number of the partition-preserving permutations specified in the statement of the proposition. □

Theorem 2. If n is a positive even number at least 6, then the symmetric group Sn can be packed into some set of strongly
asymmetric Latin squares.

Proof. Proposition 3 packs a subgroup of the symmetric group. Combining with Proposition 1 yields the result. □
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4. Packing a permutation group into a single Latin square

In this section we give a construction showing that if n is either a composite odd integer or a prime congruent to 1
mod 4, then the symmetric group Sn has a subgroup — necessarily of order 4n — that can be packed into a single strongly
asymmetric Latin square. The construction will use basic properties of finite rings, where by a ring we always mean a
commutative ring with unit element 1.

In any ring the equation 2x = 1 has at most one solution. It follows that the reflection in the identity mapping every
element x to 1− x has at most one fixed point. This reflection is an involution, as a permutation it is a product of disjoint
transpositions. Note that in a finite, n-element ring the reflection has a fixed point if and only if n is odd.

An enumeration z1, . . . , zn of the elements of a finite n-element ring is called reflectable if z ′

i = zn−i+1 for all i.

Proposition 4. Every finite ring has a reflectable enumeration of its elements.

Proof. If the reflection has no fixed point, n is even and the elements of R can be partitioned into n/2 pairwise disjoint
pairs so that the reflection exchanges the elements of each pair. Choose in any way one element from each pair and
enumerate them in any order as z1, . . . , zn/2. Then let zn−i+1 = z ′

i for i = 1, . . . , n/2.
If the reflection has a fixed point y, then the other elements of R can be partitioned into (n − 1)/2 pairwise disjoint

pairs so that the reflection exchanges the elements of each pair. Again, choose in any way one element from each pair
and enumerate them in any order as z1, . . . , z(n−1)/2. Let z(n+1)/2 = y and let zn−i+1 = z ′

i for i = 1, . . . , (n − 1)/2. □

Definition 2. We shall say that in a finite ring R a 4-element subgroup G of the multiplicative group of units is a quartet
if it consists of two distinct elements and their negatives. (Necessarily 1 and −1 belong then to the quartet G, and R does
not have characteristic 2.)

Proposition 5. Let n be an integer at least 5. The following conditions are equivalent:

(i) there exists an n-element commutative ring R with unit that has a quartet,
(ii) n is not a prime congruent to 3 mod 4, and it is not 2 times such a prime.

Proof. If (ii) does not hold but (i) does, then the additive group of R must be cyclic, therefore R is isomorphic to Zn.
Euler’s phi function takes value n − 1 on n, where n is a prime, or the value (n/2) − 1 if n is 2 times a prime, thus the
order of the group of units of Zn is not divisible by 4 and therefore it cannot have any 4-element subgroup, contradicting
(i).

If (ii) holds, we need to examine the following cases.
Case 1: if n is composite odd, let n = mq be a proper factorization. Obviously both m and q are greater then 2. The

direct product ring Zm × Zq has a quartet, namely (1, 1), (−1, −1), (1, −1), (−1, 1).
Case 2: if n is prime congruent to 1 mod 4 then in Zn = GF (n) the element −1 has a square root r and {1, −1, r, −r}

is a quartet.
Case 3: if n is divisible by 4, then in Zn the residues 1, −1, (n − 2)/2 and (n + 2)/2 form a quartet.
Case 4: if n is of the form 2m where m is odd, then by applying Cases 1 and 2 we see that some m-element ring A has

a quartet Q . Then in the direct product ring Z2 ×A the set of elements of the form (1, q), where q is in Q , is a quartet. □

Theorem 3. If the integer n > 4 is not of the form p or 2p with prime p congruent to 3 modulo 4, then there exists a strongly
asymmetric Latin square of order n the 4n distinct lines of which form a permutation group (subgroup of Sn).

Proof. By Proposition 5 there exists an n-element commutative ring R with unit that has a quartet G. Let c, d be distinct
elements of G such that c is not the negative of d, and let z1, . . . , zn be a reflectable enumeration of the elements of R
(with respect to an element u). Let the n-by-n matrix M be given by M(i, j) = czi + dzj. We show that the 4n lines of the
matrix M are all distinct.

A column of M is a sequence of the form

cz1 + b, . . . , czn + b (1)

for some element b of R. The corresponding reverse column is the sequence

cz ′

1 + b, . . . , cz ′

n + b

which is (−c)z1 + (b + cu), . . . , (−c)zn + (b + cu), i.e. it is in the form

(−c)z1 + a, . . . , (−c)zn + a (2)

for some element a of R.
As for distinct columns the corresponding elements b in (1) are distinct, the columns of the matrix M are all distinct,

and by a similar argument the rows of M are distinct from each other too.
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If a column (1) were to coincide with a reverse column (2), then for all i = 1, . . . , n we would have czi+b = (−c)zi+a.
n particular, taking zi = 0, we would have to have a = b, and then zi = −zi for all i by the invertibility of c , implying in
articular 1 = −1, which is impossible. Thus no column is identical with a reverse column.
Suppose that a column (1) were to coincide with a row. The row would be of the form

e + dz1, . . . , e + dzn (3)

or some element e of R. For i = 1, . . . , n we would have czi + b = e+ dzi. Setting zi = 0 would imply e = b. Then setting
i = 1 would imply c = d, which is impossible. Thus no column is identical with a row.
If a column (1) were to coincide with the reverse of a row of the form (3), then the reverse column (2) would coincide

ith (3). Then for all we would have (−c)zi + a = e + dzi, implying a = e and then −c = d, which is impossible by the
hoice of c and d. Thus no column is identical with a reverse row.
Summarizing what we have seen so far: no column is identical with any other line. Similarly we can conclude that no

ow is identical with any other line. □

When n is a prime congruent to 3 modulo 4, then the following proposition shows that no permutation group can be
acked into a single Latin square of order n.

roposition 6. There is no order 4n subgroup in Sn for prime n congruent to 3 modulo 4.

roof. The statement is obvious for n = 3, so we may assume that the prime number n is at least 7. Suppose Sn has a
ubgroup H of order 4n, we shall derive a contradiction.
As n is prime, by Cauchy’s Theorem (a precursor of Sylow’s) H has a subgroup C of order n. The subgroup C must be

ormal in H because any two distinct conjugates of C in H would generate together a subgroup of order at least n2 > 4n,
hich is impossible, again because n is at least 7. By Sylow’s Theorem, H also has a subgroup D of order 4. This 4-element
roup D acts on C by conjugation. (As also apparent from the applicability of the Schur–Zassenhaus Theorem to H based
n the prime power decomposition of its order 4n.)
We claim that the conjugations by the elements of D are all distinct, thus constituting a 4-element subgroup of the

utomorphism group Aut(C). For this it suffices to see, because D and C only have the identity element in common, that
he centralizer of C in Sn is C itself. This follows from the fact that there are exactly (n − 1)! permutations in Sn that are
n-cycles and they are all conjugate in Sn. The intended contradiction is now obtained observing that C being a cyclic group
of prime order n congruent to 3 mod 4, its automorphism group Aut(C) has order n− 1 congruent to 2 mod 4, thus n− 1
is not divisible by 4, and therefore Aut(C) cannot have a 4-element subgroup. □

Finally, if n is of the form 2p with p prime congruent to 3 modulo 4, then subgroups of order 4n do exist in Sn according
to the following proposition, but we do not know if any such subgroup can be packed into a Latin square.

Proposition 7. For even integers n = 2m ≥ 6 the symmetric group Sn always has a subgroup of order 4n.

Proof. For any integer m ≥ 4 let us consider the subgroup consisting of permutations f defined on the set {1, . . . ,m,m+

1, . . . , 2m} for which

(i) each of the sets {1, . . . ,m}, {m + 1,m + 2} and {m + 3,m + 4} is invariant under the permutation f ,
(ii) every i ∈ {m + 5, . . . , 2m} is a fixed point of f ,
(iii) there exist an i and a k ∈ {−1, 1} such that for every j ∈ {1, . . . ,m}, f (j) is congruent to i + kj modulo m.

The number of permutations in this subgroup — isomorphic to the direct product Dm × Z2
2 of a dihedral group and the

Klein group — is indeed 23m = 4n.
For the case m = 3 let us consider the subgroup of order 4n = 24 consisting of permutations f defined on the set

{1, . . . , 6} for which 5 and 6 are fixed points under f . □

5. Mutually orthogonal Latin squares

A pair of Latin squares L and L′ of order n are orthogonal if for all i, j ∈ {1, . . . , n}, the ordered pairs (L(i, j), L′(i, j)) are
distinct. A set of Latin squares is called mutually orthogonal (MOLS) if each Latin square in the set is orthogonal to every
other Latin square of the set.

Theorem 4. For every prime number p congruent to 1 modulo 4, there is a permutation group G of order (p − 1)p and a set
of (p−1)/4 mutually orthogonal Latin squares of order p such that every permutation in G occurs exactly once as a line of one
of these Latin squares.

Proof (Method based on Bose [3]). Let p be a prime number congruent to 1 mod 4, with the arithmetic of GF (p) on the set

{1, . . . , p}. Using the subset V = {1, . . . , (p − 1)/2} let us form (p − 1)/4 ordered couples (r, s) so that every member of
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V occurs exactly once as a (first or second) component of such a couple (r, s). It is easy to see that the couples can be
ormed in a way that for any two distinct couples (r, s) and (r ′, s′) the determinant of the matrix[

r s
r ′ s′

]
s non-zero (for example take the couples (r, r+ (p−1)/4) for r = 1, . . . , (p−1)/4). For each of these couples (r, s) define
he p-by-p matrix Mrs by

Mrs(i, j) = ri + sj

he (p−1)/4 matrices so defined are mutually orthogonal. As the set V does not contain the negative of any of its members,
very permutation of the elements of GF (p) given by the linear permutation polynomial f (x) = rx + c , with r ∈ V and

c ∈ GF (p), will occur exactly once as a row or column of one of the (p − 1)/4 matrices given, and every permutation of
the elements of GF (p) given by f (x) = rx + c , with r ∈ GF (p) − {0} and c ∈ GF (p) will occur exactly once as a line of one
of these matrices. Moreover, the (p − 1)p permutations having this linear (affine) form constitute a group. □

6. Minimum number of lines and symmetries of Latin squares

The question that is opposite to the one asking for as many distinct lines as possible in Latin squares is that of how
many of the 4n lines of a Latin square of order n must be distinct. More precisely, let min(n) be the first positive integer
m such that every Latin square of order n has at least m distinct lines, and let min(L) denote the number of distinct lines
in a given Latin square L. By the very definition of Latin squares, min(n) is obviously at least n. In this section we shall see
that the value of min(n) depends on the parity of n, and for a given Latin square L of order n, it depends on the symmetry
roperties of L whether min(L) ≥ min(n).

heorem 5. If n > 1 is odd, then every Latin square of order n has at least 2n distinct lines, and a Latin square of order n
aving 2n distinct lines exists. For even n, every Latin square of order n has at least n distinct lines, and a Latin square of order
having n distinct lines exists.

roof. If a Latin square of odd order n > 1 had less than 2n distinct lines, then some line would have to appear at
least three times in L. It would then have to appear either both as a row and a reverse row, or both as a column and a
reverse column. In the first case the middle elements of two rows would have to be the same, which is impossible in
a Latin square, and the second case is ruled out similarly. On the other hand, given any n > 1 odd number, the matrix
M(i, j) = i + j − 1 (with addition mod n) is a Latin square with exactly 2n lines (see Proposition 2).

For the even case, we only need to show that for any even n = 2m a Latin square of order n having only n distinct lines
exists. Indeed, let A be a symmetric Latin square of order m. Let another m-by-m matrix B be defined by B(i, j) = A(i, j)+m.
hen, with J denoting the 0 − 1 matrix with 1’s only on the Hankel diagonal (reversal matrix), the following matrix is a
atin square of order n having only n distinct lines:[

A BJ
JB JAJ

]
Note that this n × n matrix is symmetric and also centrosymmetric. The construction is similar to a construction for

centrosymmetric Latin squares given in [4]. □

Theorem 6. A Latin square L of odd order n > 1 has exactly 2n distinct lines if and only if L is symmetric or Hankel symmetric.
A Latin square L of even order n > 0 has exactly n distinct lines if and only if L is both symmetric and Hankel symmetric.

Proof. For odd n = 2m − 1: if L is symmetric, then each of the n rows also appears as a column. Therefore this same
line cannot additionally also appear as a reverse row or a reverse column, because this would result in a coincidence
of middle elements, which is impossible in a Latin square. It follows that reverse rows, also appearing by symmetry as
reverse columns, make up an other set of n disjoint lines. Similarly, if L is Hankel symmetric, then each of the n rows
appears as a reverse column and each of the n reverse rows appears as a column resulting in a total of 2n distinct lines.

To verify the converse, suppose that L has exactly 2n distinct lines. No column can appear as a reverse column. Thus the
set of columns and reverse columns must contain 2n distinct lines. Each row must therefore appear in this set, i.e. each row
must also appear either as a column or as a reverse column. Assume that the middle row appears as a column (necessarily
as the middle column), but the ith row, for some i ̸=

n+1
2 , appears as a reverse column, necessarily as the (n − i + 1)th

reverse column. In this case, the ith element of the middle column is the same as the (n− i+ 1)th element of the middle
row, which is impossible. Consequently, for every i = 1, . . . , n, the ith row appears as a column, and necessarily as the
ith column, i.e. L is symmetric. If the middle row appears as a reverse column, then similarly we obtain that L is Hankel
symmetric.
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For even n: if L is both symmetric and Hankel symmetric, then it is also centrosymmetric, and every row must appear
also as a column, as a reverse row and as a reverse column as well. There can be thus no more lines appearing in L than
the n rows.

To see the converse, suppose that L has only n distinct lines. Each line must therefore appear 4 times: it must appear as
a row, as a column, as a reverse row and as a reverse column as well. But the ith row can only appear as the ith column,
and thus L must be symmetric. For a similar reason, the jth reverse row must appear as the reverse column that is the
(n − j + 1)th from the left, and thus L is also Hankel symmetric. □
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