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MAXIMAL REGULARITY FOR LOCAL MINIMIZERS OF

NON-AUTONOMOUS FUNCTIONALS

PETER HÄSTÖ AND JIHOON OK

Abstract. We establish local C1,α-regularity for some α ∈ (0, 1) and Cα-regularity for
any α ∈ (0, 1) of local minimizers of the functional

v 7→

ˆ

Ω

ϕ(x, |Dv|) dx,

where ϕ satisfies a (p, q)-growth condition. Establishing such a regularity theory with
sharp, general conditions has been an open problem since the 1980s. In contrast to
previous results, we formulate the continuity requirement on ϕ in terms of a single
condition for the map (x, t) 7→ ϕ(x, t), rather than separately in the x- and t-directions.
Thus we can obtain regularity results for functionals without assuming that the gap q

p

between the upper and lower growth bounds is close to 1. Moreover, for ϕ(x, t) with
particular structure, including p-, Orlicz-, p(x)- and double phase-growth, our single
condition implies known, essentially optimal, regularity conditions. Hence, we handle
regularity theory for the above functional in a universal way.

1. Introduction

The calculus of variations is a classical and still active topic in mathematics which is
connected not only to other mathematical fields (partial differential equations, geometry,
. . . ) and but also to applications (physics, engineering, economy, . . . ). Research on
regularity of minimizers of the functional

v 7→ F(v,Ω) :=

ˆ

Ω

F (x,Dv) dx

has been a major topic in calculus of variations and PDEs. If F depends only on the
gradient, i.e. F (x, z) ≡ F (z), F is called an autonomous functional. The simplest non-
linear model case is the p-power function

F (z) = |z|p, 1 < p <∞.

The corresponding Euler-Lagrange equation is the p-Laplace equation div(|Du|p−2Du) =
0, and the maximal regularity of weak solutions of p-Laplace equations is C1,α for some
α ∈ (0, 1) depending only on p and the dimension n. We refer to [1, 32, 40, 59, 63, 78, 79,
80, 82, 83] for classical results on C1,α-regularity for equations and systems of p-Laplacian
type.

On the other hand, if F depends on both the space variable and the gradient, F is
called a non-autonomous functional, and this has been a central topic in contemporary
regularity theory. The main approach to such minimization problems is due to Giaquinta
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and Giusti [47, 48]. It is based on the following p-type growth conditions:




z 7→ F (x, z) is C2,

ν|z|p 6 F (x, z) 6 L(1 + |z|p),

ν(µ2 + |z|)
p−2
2 |λ|2 6 Fzz(x, z)λ · λ 6 L(µ2 + |z|2)

p−2
2 |λ|2,

|F (x, z)− F (y, z)| 6 ω(|x− y|)(1 + |z|p).

This essentially corresponds to the perturbed case a(x)|z|p with the same p-type growth
assumed at all points. Lieberman [61] extended this to the case where |z|p is replaced
by ϕ(|z|). However, such structure conditions fail to accommodate many kinds of energy
functionals since the variability in the x- and z-directions are treated separately.

The need to treat the x- and z-directions separately leads Mingione to conclude in
his influential survey that “regularity results should be chased [in more general cases] by
looking at special classes of functionals and thinking of relevant model examples, thereby
limiting the degree of generality one wants to achieve” [71, p. 405]. In this spirit, the
most significant non-autonomous functionals in the literature have so-called Uhlenbeck
structure, i.e. F depends on t := |z| instead of z,

F (x, z) = ϕ(x, |z|) = ϕ(x, t),

and are the following:

I. Perturbed Orlicz: a(x)ψ(t), where 0 < ν 6 a(·) 6 L and ψ′(t) ≈ tψ′′(t).
II. Variable exponent: tp(x), where 1 < p− 6 p(·) 6 p+ <∞.
III. Double phase: tp + a(x)tq, where 1 < p 6 q and a(·) > 0.

These models were first studied by Zhikov [85, 86] in the 1980’s in relation to Lavrentiev’s
phenomenon and have been considered in hundreds of papers since [71, 75]. In keeping
with Mingione’s thesis, regularity results for these cases have been established in inde-
pendent, idiosyncratic ways (cf. Section 2). Moreover, various variants and borderline
cases have been investigated, such as:

IV. Perturbed variable exponent: tp(x) log(e + t), e.g. [44, 60, 72, 74].
V. Orlicz variable exponent: [ψ(t)]p(x) or ψ(tp(x)), e.g. [21, 45].
VI. Degenerate double phase: tp + a(x)tp log(e + t), e.g. [9, 16].
VII. Orlicz double phase: ψ(t) + a(x)ξ(t), e.g. [17].
VIII. Triple phase: tp + a(x)tq + b(x)tr, e.g. [30, 43].
IX. Double variable exponent: tp(x) + tq(x), e.g. [22, 76, 84].
X. Variable exponent double phase tp(x) + a(x)tq(x), e.g. [62, 77].

In this paper, we establish a general regularity theory for non-autonomous function-
als with Uhlenbeck structure based on a single condition involving both the x- and t-
directions. Specifically, we prove maximal local regularity properties, i.e. C1,α-regularity
for some α ∈ (0, 1) and Cα-regularity for any α ∈ (0, 1). We consider a convex function
ϕ : Ω × [0,∞) → [0,∞) satisfying the following “vanishing A1” variant of (A1) (see
Definitions 3.4 and 4.1, below):

(VA1) There exists a non-decreasing continuous function ω : [0,∞) → [0, 1] with ω(0) =
0 such that for any small ball Br ⋐ Ω,

ϕ+
Br
(t) 6 (1 + ω(r))ϕ−

Br
(t) for all t > 0 satisfying ϕ−

Br
(t) ∈ [ω(r), |Br|

−1],

where ϕ+
Br
(t) and ϕ−

Br
(t) are the supremum and infimum of ϕ(·, t) in Br, respectively. Let

us point out that (VA1) is optimal for Theorem 1.1 in the following sense: For any θ < 1
assume that (VA1) is replaced by

ϕ+
Br
(t) 6 (1 + ω(r))ϕ−

Br
(t) for all t > 0 satisfying ϕ−

Br
(t) ∈ [ω(r), |Br|

−θ].
2



Then the conclusions of the theorem do not hold, as is shown by examples in [71] already
in the double phase case (cf. Corollary 8.6), see also [6, 13]. Furthermore, 1+ω(r) in the
inequality from (VA1) ensures the continuity of the function, which is necessary already
in the perturbed linear case (cf. Corollary 8.1 and Remarks 1.3 and 1.4).

Theorem 1.1. Let ϕ ∈ Φw(Ω), ϕ(x, ·) ∈ C1([0,∞)) for every x ∈ Ω with ∂tϕ satisfying
(A0), (Inc)p−1 and (Dec)q−1 for some 1 < p 6 q and let u ∈ W 1,ϕ

loc (Ω) be a local minimizer
of the ϕ-energy

(1.2)

ˆ

Ω

ϕ(x, |∇u|) dx.

(1) If ϕ satisfies (VA1), then u ∈ Cα
loc(Ω) for any α ∈ (0, 1).

(2) If ϕ satisfies (VA1) and ω(r) 6 crβ for some c, β > 0, then u ∈ C1,α
loc (Ω) for some

α ∈ (0, 1). Here α depends only on n, p, q, L and β, where L > 1 is from (A0).

Remark 1.3. In this paper, we consider ϕ(x, t) continuous in x. It is clear that we cannot
remove the assumption limr→0 ω(r) = 0 from (VA1) and still obtain Cα-regularity for
all α ∈ (0, 1). However, continuity is not strictly speaking necessary, as it is known for
ϕ(x, t) = a(x)ψ(t) with a locally VMO (vanishing mean oscillation), that the correspond-
ing minimizer is in Cα

loc for any α ∈ (0, 1), in fact, in W 1,p
loc for any p > 1. It seems that

for this result the special multiplicative structure is important.

Remark 1.4. If we consider solutions of the general linear elliptic equation div(A(x)Du) =
0, where A(x) is a bounded and uniformly elliptic n × n matrix, then the continuity
of A does not imply that the function is Lipschitz or its derivative is continuous [56,
Propositions 1.5 and 1.6]. Therefore, we cannot expect to remove the assumption ω(r) 6
crβ from (VA1) and still obtain C1,α-regularity.

We shall introduce notation, assumptions and properties of generalized Φ-functions
and related spaces later in Section 3. Recall that local minimizer means that u satisfies

ˆ

Ω′

ϕ(x, |∇u|) dx 6

ˆ

Ω′

ϕ(x, |∇v|) dx

for every v ∈ W 1,ϕ(Ω′) with u− v ∈ W 1,ϕ
0 (Ω′) and Ω′ ⋐ Ω.

In fact, we will generalize (VA1) to a weaker version, (wVA1), which covers not only
(VA1) but its borderline cases (see Remark 4.2) as well as the PDE case (see Remark 4.3),
and under this condition we will prove Cα- and C1,α-regularity, see Theorems 7.2 and 7.4.
As far as we know, these theorems cover all previously known results (and several new
ones) of Cα- or C1,α-regularity for the functionals I–X (see Section 8) with the exception
of VMO coefficients (Remark 1.3).

Even in the case of autonomous functionals (i.e. ϕ(x, t) ≡ ϕ(t)), our results provide
slight extensions to the state-of-the-art. Up to now, maximal regularity for autonomous
functionals has been established assuming ϕ ∈ C1([0,∞)) ∩ C2((0,∞)). However, in
this paper we only assume ϕ ∈ C1([0,∞)), that is, we do not assume that ϕ is twice

differentiable. For instance, ϕ(t) :=
´ t

0
min{s, s2} ds (cf. [5]) is covered by our result but

is not C2.

Let us conclude the introduction by outlining the approach of the paper and pointing
out the main difficulties and innovations.

The first difficulty for a reasonable regularity theory is to find a well-designed condition
for general ϕ. The regularity conditions on ϕ for the types I–III seem unconnected to one
another, since in these cases, the behaviors of ϕ with respect to x and t can be investigated

3



separately. Recently, on the other hand, the Cα-continuity with some small α > 0 for
(quasi-)minimizers of the general non-autonomous functional has been established under
the so-called (A1) condition [13, 54, 55]:

(1.5) ϕ+
Br
(t) 6 Lϕ−

Br
(t) for all t > 0 satisfying ϕ−

Br
(t) ∈ [1, |Br|

−1].

From this, it is natural to require L → 1 as r → 0 for higher regularity. Additionally,
small values t 6 1 were previously lumped into an additive constant using decay at
infinity. A more precise estimate, on the other hand, requires the previous condition to
be extended from [1, |Br|

−1] to [ω(r), |Br|
−1].

The main difficulty is to find a suitably regular auxiliary autonomous function ϕ̃(t) for
the perturbation technique in which one approximates the minimizer with the solution
to a related but simpler minimization problem. In order for the perturbation argument
to work under the assumption (VA1), the autonomous function ϕ̃(t) should satisfy the
following requirements:

(1) ϕ̃ ∈ C1([0,∞)) ∩ C2((0,∞)) and tϕ̃′′(t) ≈ ϕ̃′(t).
(2) For a given Br with small r ∈ (0, 1), ϕ̃(t) is sufficiently close in some sense

to ϕ(x, t) for all (x, t) ∈ Br × [t1, t2], where t1 := (ϕ−
Br
)−1(ω(r)) and t2 :=

(ϕ−
Br
)−1(|Br|

−1).
(3) θ0(x, t) := ϕ(x, ϕ̃−1(t)) satisfies (A0), (aInc)1, (aDec)q/p and (A1).

The construction of such ϕ̃ is quite nontrivial, since the property (3) is not satisfied in
general for either ϕ̃(t) = ϕ(y, t) with any choice of y ∈ Br or ϕ̃(t) = ϕ−

Br
(t) (the expected

choices based on previous research). Note that for type II (variable exponent) or type III
(double phase), one can simply take ϕ̃(t) = tpr or ϕ̃(t) = tp + art

q, where pr := infBr p(·)
and ar := infBr a(·), so this provides no guidance for the general case: in these special
cases t 7→ ϕ(x, ϕ̃−1(t)) satisfies (aInc)1 since a single point captures the slowest growth
for all values of t, whereas in general the slowest growth may occur at different locations
for different t.

The requirements (1)–(3) above are crucially used in our comparison step. Let v
be a minimizer of an autonomous functional with ϕ̃-energy in Br satisfying v = u on
∂Br. Then by (1) and known regularity results for Orlicz growth, we obtain that v is
locally C1,α0 for some α0 ∈ (0, 1) (Lemma 4.12). Moreover, from (3) we can deduce
a global nonlinear Calderón–Zygmund type estimate in the generalized Orlicz space Lθ

with θ = θ1+σ00 for some σ0 > 0 (Lemma 4.15), which implies that Dv ∈ Lϕ(Br) and so,
with this v, we can use the minimizing property of u. Note that this approach is new
even for the double phase problem, type III.

The Calderón–Zygmund type estimates (Lemma 4.15) in generalized Orlicz space Lθ

for the norm will be obtained by an extrapolation argument [29] and in this process
(A1) of θ suffices. However, we need a mean integral version of Calderón–Zygmund type
estimate that is stable under the size of underlying domain and here (A1) of θ is not
enough. We overcome this problem by replacing θ(x, t) with θ(x, t) + tp1 for suitable
p1 > 1 along with delicate analysis. Note that θ(x, t)+ tp1 satisfies a stronger assumption
than (A1). As a consequence, there is “+1” in the mean integral version of estimate
(4.17).

We construct our approximation ϕ̃ and derive the comparison estimate for ϕ and ϕ̃ in
Section 5. In Proposition 5.12 we show that our approximation satisfies the assumptions
in (3), above, and in this step a new framework for generalized Orlicz spaces from [51]
is rather crucial. Then a comparison argument along with (2) and a higher integrability
result for Du yield that Du is sufficiently close to Dv in the mean oscillation sense
(Corollary 6.3).
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We present proofs of some regularity results for autonomous problems in Appendices A
and B. We start this article with an overview of regularity theory in the (p, q)-growth
case (Section 2) and with notation and background (Section 3).

Remark 1.6. Constructing a suitable ϕ̃ is the main problem also in extending this ap-
proach to the case without Uhlenbeck structure, i.e. energy functionals depending on the
derivative Du, not just its norm. Namely, an approximation ϕ̃ : Ω × R

n → R affords us
much less room to operate in than ϕ̃ : Ω× [0,∞) → R. Indeed, it is not even clear how
to state the appropriate assumptions in this case. In addition, the main tools from [51]
concern only the isotropic case ϕ(x, |Du|). Therefore, the regularity of the anisotropic
minimization problem

´

ϕ(x,Du) dx remains a question for future research.

Remark 1.7. The vectorial case, i.e. u : Ω → R
N with N > 1, is also an interesting

issue. The main difficulty in this case is the following: in order that the local minimizer
of the regular autonomous functional with Orlicz function ϕ̃ = ϕ̃(t) have C1,α-regularity
ϕ̃ should apparently satisfy not only tϕ̃′′(t) ≈ ϕ̃′(t) but also a Hölder type vanishing con-
dition on ϕ̃′′, see [35, Assumption 2.2]. It is unclear whether (VA1) or some modification
implies the additional condition of ϕ̃. This is also a future research topic.

2. Overview of regularity for (p, q)-growth and special cases

An alternative extension to the approach of Giaquinta and Giusti is to consider different
upper and lower growth rates, and replace the exponent on the right-hand side by q > p.
This leads to so-called (p, q)-growth functionals, for instance with assumptions





z 7→ F (x, z) is C2,

ν|z|p 6 F (x, z) 6 L(1 + |z|q),

ν(1 + |z|)
p−2
2 |λ|2 6 Fzz(x, z)λ · λ 6 L(1 + |z|2)

q−2
2 |λ|2,

|F (x, z)− F (y, z)| 6 ω(|x− y|)(1 + |z|q).

This case was introduced and systematically studied by Marcellini [64, 65, 66, 67, 68].
Several other researchers also contributed to the theory, cf. [11, 38, 71]. For instance, Mar-
cellini [65] started by showing that that every minimizer in W 1,q

loc (Ω) has locally bounded
gradient provided 2 6 p 6 q and

q

p
6 1 +

2

n− 2
, when n > 2;

(the proof uses PDE techniques and entails several additional assumptions, which are not
presented here; see also a recent improvement in [12]). Note, however, that W 1,q

loc (Ω) is
already higher integrability, so this is not a natural assumption in this context and was
addressed in [65, Section 3]. Later, Esposito, Leonetti and Mingione [39] showed that
every minimizer in W 1,p

loc (Ω) also belongs to W 1,q
loc (Ω), but only when

q

p
6 1 +

β

n
for ω ∈ Cβ.

Furthermore, they provide an example showing that if the latter condition does not hold,
then a minimizer in W 1,p

loc (Ω) need not belong to W 1,q
loc (Ω) so the Lavrentiev phenomenon

occurs.
It seems that (p, q)-growth is the most general class of non-autonomous functionals in

the calculus of variations. Regularity theory, including Cα- and C1,α-regularity, in this
general class is not easily obtained from classical regularity theory for functionals with
standard p-growth, see for instance [71]. Furthermore, there are no general results in the
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(p, q)-case which cover the special cases I–X, so in that sense the theory is incomplete.
We note that some recent papers [13, 23, 24, 54, 55, 81] deal with calculus of variation
in generalized Orlicz spaces, but these papers do not cover higher regularity.

Indeed, the Cα- and C1,α-regularity theories for type I–III functionals have been proved
in independent ways. For I, ϕ is nothing but an autonomous functional with coefficient,
and so regularity results can be obtained by using a standard perturbation argument.
On the other hand, II and III are quite different from I, since they are potentially non-
uniformly elliptic problems. Formally, we can rewrite the energy functions as

II: |Du|p(x)−p
−

|Du|p
−

and III: (1 + a(x)|Du|q−p)|Du|p.

Here, |Du|p(x)−p
−

and 1 + a(x)|Du|q−p blow up or vanish when |Du| does. Therefore, by

identifying a(x) in I with |Du|p(x)−p
−

or 1+a(x)|Du|q−p, we see that a is neither bounded
nor far away from the zero. Let us briefly introduce regularity results for the above types.
Let u be a minimizer of the ϕ-energy (1.2) with ϕ being one of I–III. Then the following
is known:

For type I, i.e. ϕ(x, t) = a(x)ψ(t), suppose a is continuous with modulus of continuity
ωa. Then

lim
r→0+

ωa(r) = 0 =⇒ u ∈ Cα for any α ∈ (0, 1),

ωa(r) . rβ for some β > 0 =⇒ u ∈ C1,α for some α ∈ (0, 1),
(2.1)

see for instance [71] and references therein.
For type II, i.e. ϕ(x, t) = tp(x), suppose p is continuous with modulus of continuity ωp.

Then

lim
r→0+

ωp(r) ln
1
r
= 0 =⇒ u ∈ Cα for any α ∈ (0, 1),

ωp(r) . rβ for some β > 0 =⇒ u ∈ C1,α for some α ∈ (0, 1).
(2.2)

For these results, we refer to the series of papers of Acerbi, Coscia and Mingione [2, 3, 28],
see also [4, 18, 41, 42].

For type III, i.e. ϕ(x, t) = tp + a(x)tq, suppose a ∈ C0,β for some β ∈ (0, 1]. Then

(2.3)
q

p
6 1 +

β

n
=⇒ u ∈ C1,α for some α ∈ (0, 1).

For this result, we refer to the series of papers of Baroni, Colombo and Mingione [10, 25],
see also [8, 15, 26, 27, 73]. Note that no independent condition implies Cα-regularity. In
other words, we cannot ensure even Cα-regularity for u if q

p
> 1 + β

n
. We also mention

that the C1,α-regularity for type III was first proved under the following condition instead
of (2.3):

(2.4)
q

p
< 1 +

β

n
=⇒ u ∈ C1,α for some α ∈ (0, 1), see [25],

and later it was extended to the borderline case q
p
= 1 + β

n
in [10], see also [31].

As mentioned in the introduction, our general results cover all of these special cases.
Specifically, Theorem 1.1(1) implies (2.1)1 and (2.2)1 and Theorem 1.1(2) implies (2.1)2,
(2.2)2 and (2.4). We notice that Theorem 1.1(2) does not imply (2.3). In fact, (VA1)
holds when ϕ(x, t) = tp + a(x)tq with a(·) ∈ C0,β if and only if the strict inequality
q
p
< 1 + β

n
holds. This gap will be filled by Theorem 7.4; this is one main reason why we

consider the slightly weaker assumption (wVA1).
Furthermore, many other, previously unstudied cases can also be covered, cf., e.g.

Corollary 8.3, and Section 8 more generally. Originally, the double phase model was
6



introduced to model the situation when two phases (the p and the q-growth phases) mix.
Since only the larger exponent affects the nature of the problem, this was simplified in
the form tp + a(x)tq that we have seen. However, we can also consider a variant which is
more closely related to the original motivation:

(2.5) ϕ(x, t) = (1− a(x))tp + a(x)tq, where 1 < p 6 q, a(·) : Ω → [0, 1].

Now a indicates the relative amount of material at a point from the q-phase. Such
functionals have been treated by Eleuteri–Marcellini–Mascolo [36, 37, 38]. More generally,
we can also deal with general double phase problems of the type

ϕ(x, t) = a(x)ψ(t) + b(x)ξ(t),

where a(·), b(·) > 0 satisfy ν 6 a(·) + b(·) 6 L and ψ′, ξ′ satisfy (A0), (Inc)p−1 and
(Dec)q−1, which includes the following examples:

tp + a(x)tq, a(x)tp + tq, a(x)tp + b(x)tq, and ψ(t) + a(x)ψ(t) ln(e+ t).

We present conditions for above functions to satisfy (wVA1) or (VA1) in Corollaries 8.4
and 8.6, so that Cα- and C1,α-regularity results for (2.5) are obtained as special cases.
We note that the second example a(x)tp + tq can be understood as a functional with
standard q-growth and hence q/p has no upper bound to obtain the regularity results.
Here, we explain the regularity results for this functional as a special case of double phase
problems. In addition, in the same spirit, one could consider functionals with infinitely
many phases such that

ϕ(x, t) =
∞∑

i=1

ai(x)t
pi, where 1 < p 6 pi 6 q, ai(·) > 0 and 0 < ν 6

∞∑

i=1

ai(·) 6 L,

which satisfies the fundamental assumption of Theorem 1.1.

3. Generalized Orlicz spaces

Notation and assumptions. For x0 ∈ R
n and r > 0, Br(x0) is the ball in R

n with
radius r and center x0. We writeBr = Br(x0) when the center is clear or unimportant. For
an integrable function f in U ⊂ R

n, we define (f)U by the average of f in U in the integral
sense, that is, (f)U :=

ffl

U
f dx := 1

|U |

´

U
f dx. We say that f : [0,∞) → [0,∞) is almost

increasing or almost decreasing if there exists L > 1 such that for any 0 < t < s < ∞,
f(t) 6 Lf(s) or f(s) 6 Lf(t), respectively. In particular, if L = 1 we say f is non-
decreasing or non-increasing.

We refer to [51] for more details about basics of Φ-functions and generalized Orlicz
spaces. For ϕ : Ω× [0,∞) → [0,∞) and Br ⊂ Ω, we write

ϕ+
Br
(t) := sup

x∈Br

ϕ(x, t) and ϕ−
Br
(t) := inf

x∈Br

ϕ(x, t).

If the map t 7→ ϕ(x, t) is non-decreasing for every x ∈ Ω, then the (left-continuous)
inverse function with respect to t is defined by

ϕ−1(x, t) := inf{τ > 0 : ϕ(x, τ) > t}.

If ϕ is strictly increasing and continuous in t, then this is just the normal inverse function.

Definition 3.1. Let ϕ : Ω × [0,∞) → [0,∞) and γ > 0. We define some conditions
related to regularity with respect to the t-variable.

(aInc)γ The map t 7→ ϕ(x, t)/tγ is almost increasing with constant L > 1 uniformly in
x ∈ Ω.

7



(Inc)γ The map t 7→ ϕ(x, t)/tγ is non-decreasing for every x ∈ Ω.

(aDec)γ The map t 7→ ϕ(x, t)/tγ is almost decreasing with constant L > 1 uniformly in
x ∈ Ω.

(Dec)γ The map t 7→ ϕ(x, t)/tγ is non-increasing for every x ∈ Ω.

(A0) There exists L > 1 such that L−1 6 ϕ(x, 1) 6 L for every x ∈ Ω.

Note that this version of (A0) is slightly stronger than the one used in [51], but they
are equivalent under the doubling assumption (aDec). Let 0 < c 6 1 6 C < ∞. If ϕ
satisfies (aInc)γ with constant L > 1, then

ϕ(x, ct) 6 Lcγϕ(x, t) and L−1Cγϕ(x, t) 6 ϕ(x, Ct) for all (x, t) ∈ Ω× [0,∞).

On the other hand, if ϕ satisfies (aDec)γ with the constant L > 1, then

L−1cγϕ(x, t) 6 ϕ(x, ct) and ϕ(x, Ct) 6 LCγϕ(x, t) for all (x, t) ∈ Ω× [0,∞).

Remark 3.2. If ϕ satisfies (aInc)γ or (aDec)γ for some γ > 0, then so do ϕ−
Br

and ϕ+
Br

for
any Br ⊂ Ω.

Remark 3.3. Suppose that ϕ(x, ·) ∈ C1([0,∞)) for each x ∈ Ω and that γ > 0. Then

• ϕ satisfies (Inc)γ if and only if γϕ(x, t) 6 tϕ′(x, t) for all x ∈ Ω and t ∈ [0,∞);
• ϕ satisfies (Dec)γ if and only if γϕ(x, t) > tϕ′(x, t) for all x ∈ Ω and t ∈ [0,∞).

These conclusions are obtained by differentiating the function t 7→ ϕ(x, t)/tγ.

For functions f, g : U → R with U ⊂ R
n, f . g or f ≈ g (in U) mean that there

exists C > 1 such that f(y) 6 Cg(y) or C−1f(y) 6 g(y) 6 Cf(y), respectively, for
all y ∈ U . In particular, in this paper we shall use these symbols when the relevant
constants C depend only on n and constants from the fundamental conditions (aInc)γ ,
(aDec)γ, (Inc)γ , (Dec)γ and (A0). By following this, for instance, (A0) can be written as
ϕ(·, 1) ≈ 1 in Ω. We use some results from papers with a weaker notion of equivalence:
f ≃ g (in U) which means that there exists C > 1 such that f(C−1y) 6 g(y) 6 f(Cy)
for all y ∈ U . However, if (aDec) holds, then ≃ and ≈ are equivalent and furthermore
constants can be moved inside and outside of ϕ as observed above.

Basic properties of generalized ϕ-functions and related functions spaces. We
next introduce classes of Φ-functions. Let L0(Ω) be the set of the measurable functions
on Ω. In the sequel we omit the words “generalized” and “weak” from the parentheses.

Definition 3.4. Let ϕ : Ω × [0,∞) → [0,∞]. We call ϕ a (generalized) Φ-prefunction
if x 7→ ϕ(x, |f(x)|) is measurable for every f ∈ L0(Ω), and t 7→ ϕ(x, t) is non-decreasing
for every x ∈ Ω and satisfies that ϕ(x, 0) = limt→0+ ϕ(x, t) = 0 and limt→∞ ϕ(x, t) = ∞
for every x ∈ Ω. A prefunction ϕ is a

(1) (generalized weak) Φ-function, denoted ϕ ∈ Φw(Ω), if it satisfies (aInc)1.
(2) (generalized) convex Φ-function, denoted ϕ ∈ Φc(Ω), if t 7→ ϕ(x, t) is left-continuous

and convex for every x ∈ Ω.

If ϕ is independent of x, then we denote ϕ ∈ Φw or ϕ ∈ Φc without “(Ω)”.

We note that convexity implies (Inc)1 so that Φc(Ω) ⊂ Φw(Ω). For ϕ ∈ Φw(Ω), the
generalized Orlicz space (also known as the Musielak–Orlicz space) is defined by

Lϕ(Ω) :=
{
f ∈ L0(Ω) : ‖f‖Lϕ(Ω) <∞

}
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with the (Luxemburg) norm

‖f‖Lϕ(Ω) := inf

{
λ > 0 : ̺ϕ

(f
λ

)
6 1

}
, where ̺ϕ(f) :=

ˆ

Ω

ϕ(x, |f(x)|) dx.

We denote by W 1,ϕ(Ω) the set of f ∈ Lϕ(Ω) satisfying that ∂1f, . . . , ∂nf ∈ Lϕ(Ω),
where ∂if is the weak derivative of f in the xi-direction, with the norm ‖f‖W 1,ϕ(Ω) :=
‖f‖Lϕ(Ω)+

∑
i ‖∂if‖Lϕ(Ω). Note that if ϕ satisfies (aDec)q for some q > 1, then f ∈ Lϕ(Ω)

if and only if ̺ϕ(f) <∞, and if ϕ satisfies (A0), (aInc)p and (aDec)q for some 1 < p 6 q,

then Lϕ(Ω) and W 1,ϕ(Ω) are reflexive Banach spaces. In addition we denote by W 1,ϕ
0 (Ω)

the closure of C∞
0 (Ω) in W 1,ϕ(Ω). For more information about the generalized Orlicz and

Orlicz–Sobolev spaces, we refer to the monographs [51, 58] and also [34, Chapter 2].

For ϕ : [0,∞) → [0,∞), we define the conjugate function by

ϕ∗(x, t) := sup
s>0

(st− ϕ(x, s)).

By definition, we have the following Young inequality:

ts 6 ϕ(x, t) + ϕ∗(x, s) for all s, t > 0.

If ϕ ∈ Φc(Ω), then (ϕ∗)∗ = ϕ [34, Theorem 2.2.6].
We state some properties of Φ-functions, for which we refer to [51, Chapter 2].

Proposition 3.5. Let ϕ be a Φ-prefunction.

(1) If ϕ satisfies (aInc)1, then there exists ψ ∈ Φc(Ω) such that ϕ ≃ ψ.
(2) If ϕ satisfies (aDec)1, then there exists ψ ∈ Φc(Ω) such that ϕ ≈ ψ−1. Note that

ψ−1(x, ·) is concave.
(3) Let p, q ∈ (1,∞). Then ϕ satisfies (aInc)p or (aDec)q if and only if ϕ∗ satisfies

(aDec) p
p−1

or (aInc) q
q−1

, respectively.

(4) Let ϕ ∈ Φw(Ω) and γ > 1. Then ϕ satisfies (aInc)γ or (aDec)γ if and only if ϕ−1

satisfies (aDec)1/γ or (aInc)1/γ , respectively.
(5) If ϕ satisfies (aInc)p and (aDec)q, then for any s, t > 0 and κ ∈ (0, 1),

ts 6 ϕ(x, κ
1
p t) + ϕ∗(x, κ−

1
p s) . κϕ(x, t) + κ−

1
p−1ϕ∗(x, s)

and

ts 6 ϕ(x, κ
− 1

q′ t) + ϕ∗(x, κ
1
q′ s) . κ−(q−1)ϕ(x, t) + κϕ∗(x, s).

If ϕ ∈ Φc(Ω), then there exists ϕ′ = ϕ′(x, t), which is non-decreasing and right-
continuous, satisfying that

ϕ(x, t) =

ˆ t

0

ϕ′(x, s) ds.

Such ϕ′ is called the right-derivative of ϕ. Note that this derivative was denoted by ∂tϕ
in the introduction. We next collect some results about the derivative ϕ′. For (4), we give
a simple direct proof, since earlier proofs of the inequality used additional assumptions.

Proposition 3.6. Let γ > 0 and suppose that ϕ ∈ Φc(Ω) with derivative ϕ′.

(1) If ϕ′ satisfies (aInc)γ, (aDec)γ, (Inc)γ or (Dec)γ, then ϕ satisfies (aInc)γ+1, (aDec)γ+1,
(Inc)γ+1 or (Dec)γ+1, respectively, with the same constant L > 1.

(2) If ϕ′ satisfies (aDec)γ with constant L, then ϕ(x, t) ≈ tϕ′(x, t), more precisely

tϕ′(x, t)

2γ+1L
6 ϕ(x, t) 6 tϕ′(x, t) for (x, t) ∈ Ω× [0,∞).
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(3) If ϕ′ satisfies (A0) and (aDec)γ with constant L > 1, then ϕ also satisfies (A0),
with constant depending on L and γ.

(4) ϕ∗(x, ϕ′(x, t)) 6 tϕ′(x, t).

Proof. We start with (1) and suppose that ϕ′ satisfies (aInc)γ . Fix 0 < t < s < ∞ and
set a := s

t
> 1. Then (aInc)γ of ϕ′ implies that

ϕ(x, t)

tγ+1
=

1

tγ+1

ˆ t

0

ϕ′(x, τ) dτ

6
L

tγ+1

ˆ t

0

ϕ′(x, aτ)

aγ
dτ

τ̃=aτ
=

L

(at)γ+1

ˆ at

0

ϕ′(x, τ̃ ) dτ̃ = L
ϕ(x, s)

sγ+1
,

which means ϕ satisfies (aInc)γ+1. In the same way we can also prove that (aDec)γ of ϕ′

implies (aDec)γ+1 of ϕ. The claims regarding (Inc) and (Dec) follow when L = 1.
We next prove (2). Since ϕ′ is non-decreasing, it follows that

t
2
ϕ′(x, t

2
) 6

ˆ t

0

ϕ′(x, τ) dτ

︸ ︷︷ ︸
=ϕ(x,t)

6 tϕ′(x, t).

By the (aDec)γ condition of ϕ′, we have ϕ′(x, t
2
) > L−12−γϕ′(x, t), which implies ϕ(x, t) ≈

tϕ′(x, t).
Then, we prove (3). By (2) and (A0) of ϕ′ it follows that ϕ(·, 1) ≈ 1 · ϕ′(·, 1) ≈ 1, so

ϕ satisfies (A0).
Finally, we prove (4). Since ϕ is convex, ϕ(x, s) > ϕ(x, t)+k(s− t), where k := ϕ′(x, t)

is the slope. Then from the definition of the conjugate function we have

ϕ∗(x, ϕ′(x, t)) = sup
s>0

(sk−ϕ(x, s)) 6 sup
s>0

(sk−ϕ(x, t)−k(s− t)) = tk−ϕ(x, t) 6 tϕ′(x, t).

�

We end this subsection with some properties for C1-regular Φ-functions. Note that
Proposition 3.8(2) below is proved for C2-functions in [33, Lemma 3] – here we provide a
more elementary proof which is based on a reduction to the same claim for the function
tp, that is

(3.7)
(
|x|p−2x− |y|p−2y

)
· (x− y) ≈ (|x|+ |y|)p−2|x− y|2 for p > 1.

While versions of this claim are commonly known, we have not found this precise for-
mulation in the literature. Rather than providing a proof of (3.7), we just invoke [33,
Lemma 3], since tp is certainly a C2-function.

Proposition 3.8. Let ϕ ∈ Φc ∩ C
1([0,∞)) with ϕ′ satisfying (Inc)p−1 and (Dec)q−1 for

some 1 < p 6 q. Then for κ ∈ (0,∞) and x, y ∈ R
n the following hold:

(1)
ϕ′(|x|+ |y|)

|x|+ |y|
|x− y|2 ≈

(ϕ′(|x|)

|x|
x−

ϕ′(|y|)

|y|
y
)
· (x− y);

(2)
ϕ′(|x|+ |y|)

|x|+ |y|
|x− y|2 . ϕ(|x|)− ϕ(|y|)−

ϕ′(|y|)

|y|
y · (x− y);

(3) ϕ(|x− y|) . κ [ϕ(|x|) + ϕ(|y|)] + κ−1ϕ
′(|x|+ |y|)

|x|+ |y|
|x− y|2.

If additionally ϕ ∈ C2((0,∞)), then tϕ′′(t) ≈ ϕ′(t) and ϕ′(|x|+|y|)
|x|+|y|

can be replaced by

ϕ′′(|x|+ |y|).
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Proof. When ϕ ∈ C2((0,∞)), the inequalities tϕ′′(t) ≈ ϕ′(t) are direct consequences of

Remark 3.3 and Proposition 3.6(1). This also implies ϕ′(|x|+|y|)
|x|+|y|

≈ ϕ′′(|x|+ |y|).

For (1), we may assume without loss of generality that |x| > |y|. By (Inc)p−1 and
(Dec)q−1, ( |y|

|x|

)q−1

ϕ′(|x|) 6 ϕ′(|y|) 6
( |y|
|x|

)p−1

ϕ′(|x|).

Thus there exists γ ∈ [p− 1, q − 1] such that ϕ′(|y|) = ( |y|
|x|
)γϕ′(|x|). Hence

(ϕ′(|x|)

|x|
x−

ϕ′(|y|)

|y|
y
)
· (x− y) =

ϕ′(|x|)

|x|γ
(
|x|γ−1x− |y|γ−1y

)
· (x− y).

We use (3.7) with γ + 1 in place of p. Furthermore, from |x| > |y| it follows that
|x|+ |y| ≈ |x|, and so we have
(ϕ′(|x|)

|x|
x−

ϕ′(|y|)

|y|
y
)
· (x− y) ≈

ϕ′(|x|)

|x|γ
(|x|+ |y|)γ−1|x− y|2 ≈

ϕ′(|x|+ |y|)

|x|+ |y|
|x− y|2.

We next prove (2). Denote η := x−y
|x−y|

and zs := y + ηs. Then

ϕ(|x|)− ϕ(|y|) =

ˆ |x−y|

0

ϕ′(|zs|)
zs
|zs|

· η ds.

Furthermore, since x− y = η|x− y|, we have

ϕ(|x|)− ϕ(|y|)−
ϕ′(|y|)

|y|
y · (x− y) =

 |x−y|

0

(ϕ′(|zs|)

|zs|
zs −

ϕ′(|y|)

|y|
y
)
· (x− y) ds

≈

 |x−y|

0

ϕ′(|zs|+ |y|)

|zs|+ |y|
|x− y| s ds,

where the second step follows from (1) since x − y = |x−y|
s

(zs − y). When s > 3
4
|x − y|,

|zs|+ |x| ≈ |x|+ |y| and (2) follows.
We finally prove (3). By Young’s inequality ab 6 1

2
(a2 + b2), we find that

|x− y| 6 1
2
κ(|x|+ |y|) + 1

2
κ−1(|x|+ |y|)−1|x− y|2

Therefore, since ϕ′ is non-decreasing and |x− y| 6 |x|+ |y|, we find by tϕ′(t) ≈ ϕ(t) that

ϕ(|x− y|) . ϕ′(|x|+ |y|)|x− y|

6 κϕ′(|x|+ |y|)(|x|+ |y|) + κ−1ϕ′(|x|+ |y|)(|x|+ |y|)−1|x− y|2

≈ κ[ϕ(|x|) + ϕ(|y|)] + κ−1ϕ
′(|x|+ |y|)

|x|+ |y|
|x− y|2. �

4. Preliminary regularity results

Assumptions for higher regularity. Here we introduce the new assumptions that are
used to obtain Cα-regularity for any α ∈ (0, 1) or C1,α-regularity for some α ∈ (0, 1) of
local minimizers of (1.2). We also restate the definition of (VA1) from the introduction,
so that it can be more easily compared with its weaker variant, (wVA1).

In the next definition, we have several conditions which are assumed to hold “for any
small ball”; this means that it holds for all r < r0 for some r0 > 0.

Definition 4.1. Let ϕ ∈ Φw(Ω). We define some conditions related to regularity with
respect to the x-variable.
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(A1) There exists L > 1 such that for any Br ⋐ Ω with |Br| < 1,

ϕ+
Br
(t) 6 Lϕ−

Br
(t) for all t > 0 with ϕ−

Br
(t) ∈ [1, |Br|

−1].

(VA1) There exists a non-decreasing continuous function ω : [0,∞) → [0, 1] with ω(0) =
0 such that for any small Br ⋐ Ω,

ϕ+
Br
(t) 6 (1 + ω(r))ϕ−

Br
(t) for all t > 0 with ϕ−

Br
(t) ∈ [ω(r), |Br|

−1].

(wVA1) For any ε > 0, there exists a non-decreasing continuous function ω = ωε : [0,∞) →
[0, 1] with ω(0) = 0 such that for any small ball Br ⋐ Ω,

ϕ+
Br
(t) 6 (1 + ω(r))ϕ−

Br
(t) + ω(r) for all t > 0 with ϕ−

Br
(t) ∈ [ω(r), |Br|

−1+ε].

Intuitively, (A1) is a jump-condition that restricts the amount that ϕ can jump between
nearby points, whereas (VA1) and (wVA1) are continuity conditions that imply continuity
with respect to the x-variable.

Remark 4.2. We see that (VA1) implies (wVA1) which in turn implies (A1). Assump-
tion (VA1) is easier to understand but we emphasize that (wVA1) covers an interesting
borderline case which has arisen in the double phase case, cf. Corollary 8.6.

Remark 4.3. Finally, we would like to explain why we adapt the methodology of calculus
of variations, instead of one of partial differential equations, since indeed u is a minimizer
of (1.2) if and only if it is a weak solution to

div

(
ϕ′(x, |Du|)

|Du|
Du

)
= 0 in Ω,

see [53]. In the comparison step in our approach, we take advantage of the minimizing
property of u. If we would instead use the PDE approach, to the best of our understand-
ing, the main assumption (VA1) would be replaced by the assumption

(ϕ′)+Br
(t) 6 (1 + ω(r))(ϕ′)−Br

(t) for all t > 0 satisfying ϕ−
Br
(t) ∈ [ω(r), |Br|

−1].

Compared with (VA1), ϕ is replaced by ϕ′ in the inequality. Since small values are not
covered in this assumption or (VA1), these two assumptions are not comparable, i.e.
one may hold but not the other, in either direction. However, if ϕ satisfies the basic
assumption in Theorem 1.1 (this is always assumed in our main theorems), we show that
(wVA1) is implied by this assumption: for any ε > 0, any small Br ⋐ Ω, any t > 0
satisfying ϕ−

Br
(t) ∈ [ω(r), |Br|

−1+ε] ⊂ [ω(r), |Br|
−1] and any x, y ∈ Br,

ϕ(x, t) =

ˆ t

0

ϕ′(x, s) ds 6 (1 + ω(r))

ˆ t

(ϕ−

Br
)−1(ω(r))

(ϕ′)−Br
(s) ds+

ˆ (ϕ−

Br
)−1(ω(r))

0

ϕ′(x, s) ds

6 (1 + ω(r))

ˆ t

0

ϕ′(y, s) ds+ ϕ(x, (ϕ−
Br
)−1(ω(r)))

6 (1 + ω(r))ϕ(y, t) + cω(r)
p
q .

Thus (wVA1) holds with function cω(r)p/q. Furthermore, we could also consider a
(wVA1)-type assumption with ϕ′ instead of ϕ, but the same argument shows that this
also implies (wVA1).

We note that such difference between regularity assumptions for the minimizer and the
PDE problem does not appear in types I–III. This also shows that regularity theory for
general ϕ(x, t) cannot be understood easily by just mixing the ones for types I–III.
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Higher integrability and reverse Hölder type inequality. We prove higher inte-
grability of minimizers of (1.2) and, as a corollary, a reverse Hölder type inequality. In
this subsection we assume (A1).

The following higher integrability result appears as [52, Theorem 1.1] in the case δ = 1.
From the proof in that article, one can derive the stated dependence on δ with the help of
the (aDec)q assumption; alternatively, one can use that result and a covering argument.

Lemma 4.4 (Higher integrability). Let ϕ ∈ Φw(Ω) satisfy (A0), (A1), (aInc)p and

(aDec)q with constant L > 1 and 1 < p 6 q. If u ∈ W 1,ϕ
loc (Ω) is a local minimizer of (1.2),

then there exists σ0 = σ0(n, p, q, L) > 0, c1 = c1(n, p, q, L) > 1 and σ1 = σ1(σ0, n, q) such
that

(4.5)

(
 

Br

ϕ(x, |Du|)1+σ0 dx

) 1
1+σ0

6 c1δ
−σ1

(
 

B(1+δ)r

ϕ(x, |Du|) dx+ 1

)

for any B2r ⋐ Ω with ‖Du‖Lϕ(B2r) 6 1 and δ ∈ (0, 1].

Remark 4.6. Fix Ω′ ⋐ Ω. Since
´

Ω′
ϕ(x, |Du|) dx <∞, there exists R > 0 such that

ˆ

Br

ϕ(x, |Du|) dx 6 1
(
or, equivalently, ‖Du‖Lϕ(Br) 6 1

)

for Br ⊂ Ω′ with r 6 R. In view of the previous lemma, this means that ϕ(·, |Du|) ∈
L1+σ0
loc (Ω).

The next lemma contains reverse Hölder type estimates for Du.

Lemma 4.7. Let ϕ ∈ Φw(Ω) satisfy (A0), (A1), (aInc)p and (aDec)q with constant

L > 1 and 1 < p 6 q. Suppose that u ∈ W 1,ϕ
loc (Ω) is a local minimizer of (1.2) and

B2r ⋐ Ω with ‖Du‖Lϕ(B2r) 6 1. There exist σ0 = σ0(n, p, q, L) and, for every t ∈ (0, 1],
ct = c(n, p, q, L, t) > 0 such that

(4.8)

(
 

Br

ϕ(x, |Du|)1+σ0 dx

) 1
1+σ0

6 ct

((
 

B2r

ϕ(x, |Du|)t dx

) 1
t

+ 1

)

and c = c(n, p, q, L) > 1 such that
 

Br

ϕ(x, |Du|) dx 6

(
 

Br

ϕ(x, |Du|)1+σ0 dx

) 1
1+σ0

6 c

(
ϕ−
B2r

(
 

B2r

|Du| dx

)
+ 1

)
.

Proof. We start with the first inequality. In (4.5) we split ϕ = ϕθϕ1−θ with θ ∈ (0, 1)
and use Hölder’s inequality with exponents 1+σ0

θ
and 1+σ0

1+σ0−θ
and Young’s inequality with

exponents 1
θ
and 1

1−θ
:

(
 

Br

ϕ(x, |Du|)1+σ0 dx

) 1
1+σ0

6 c1

[
δ−σ1

(
 

B(1+δ)r

ϕ(x, |Du|)1+σ0 dx

) θ
1+σ0

(
 

B2r

ϕ(x, |Du|)t dx

) 1−θ
t

+ 1

]

6
1

2

(
 

B(1+δ)r

ϕ(x, |Du|)1+σ0 dx

) 1
1+σ0

+ c2δ
−

σ1
1−θ

(
 

B2r

ϕ(x, |Du|)t dx

) 1
t

+ c1

where we denoted t := (1+σ0)(1−θ)
1+σ0−θ

. Now we see from a standard iteration lemma, e.g. [55,

Lemma 4.2], that the first claim holds.
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We move on the the second claim. The first inequality directly follows from Hölder’s
inequality, hence we prove the second inequality. Taking t = 1

q
in (4.8), we see that

(
 

Br

ϕ(x, |Du|)1+σ0 dx

) 1
1+σ0

6 c1/q

[(
 

B2r

ϕ+
B2r

(|Du|)
1
q dx

)q
+ 1

]
.

We notice that the map t 7→ [ϕ+
B2r

(t)]
1
q satisfies (aDec)1, since ϕ

+
B2r

satisfies (aDec)q.
Therefore, by Jensen’s inequality with Proposition 3.5(2), we have

(4.9)

(
 

Br

ϕ(x, |Du|)1+σ0 dx

) 1
1+σ0

6 c

[
ϕ+
B2r

(
 

B2r

|Du| dx

)
+ 1

]

for some c = c(c1, q, L) > 1. In addition, since
ˆ

B2r

ϕ−
B2r

(|Du|) dx 6

ˆ

B2r

ϕ(x, |Du|) dx 6 1
(
⇔ ‖Du‖Lϕ(B2r) 6 1

)
,

it follows by Jensen’s inequality that ϕ−
B2r

(
ffl

B2r
|Du| dx) . |B2r|

−1. If also the inequality

ϕ−
B2r

(
ffl

B2r
|Du| dx) > 1 holds, then (A1) implies that

ϕ+
B2r

(
 

B2r

|Du| dx

)
6 Lϕ−

B2r

(
 

B2r

|Du| dx

)
,

whereas in the case ϕ−
B2r

(
ffl

B2r
|Du| dx) 6 1, (A0) gives an upper bound of c for the

right-hand side of (4.9). �

Regularity results for the autonomous case. In this subsection, we consider ϕ ∈
Φc∩C

1([0,∞))∩C2((0,∞)) with ϕ′ satisfying (Inc)p−1 and (Dec)q−1 for some 1 < p 6 q.

Fix v0 ∈ W 1,ϕ(Br) and let v ∈ v0 +W 1,ϕ
0 (Br) be a solution of the minimization problem

(4.10) min
w∈v0+W

1,ϕ
0 (Br)

ˆ

Br

ϕ(|Dw|) dx,

or equivalently a weak solution to

(4.11)

{
div
(
ϕ′(|Dv|)
|Dv|

Dv
)
= 0 in Br,

v = v0 on ∂Br.

We start with the C1,α-regularity in the autonomous case, with appropriate estimates.

Lemma 4.12. Let ϕ ∈ Φc ∩ C1([0,∞)) ∩ C2((0,∞)) with ϕ′ satisfying (Inc)p−1 and
(Dec)q−1 for some 1 < p 6 q. If v ∈ W 1,ϕ(Br) is a minimizer of (4.10) or a weak solution
to (4.11), then Dv ∈ Cα0

loc(Br,R
n) for some α0 ∈ (0, 1) with the following estimates: for

any Bρ(x0) ⊂ Br,

(4.13) sup
Bρ/2(x0)

|Dv| 6 c

 

Bρ(x0)

|Dv| dx

and, for any τ ∈ (0, 1),

(4.14)

 

Bτρ(x0)

|Dv − (Dv)Bτρ(x0)| dx 6 cτα0

 

Bρ(x0)

|Dv| dx.

Here α0 ∈ (0, 1) and c > 0 depend only on n, p and q.
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The previous lemma is expected from [61]. In particular, we refer to [7] for the case
p > 2. However, we cannot find any result treating the case p < 2 with the above
estimates in the literature. Hence, we give a proof of the above lemma in Appendix A.
We also note that (Inc)p−1 and (Dec)q−1 of ϕ

′ are equivalent to tϕ′′(t) ≈ ϕ′(t) by Remark
3.3, since we assume ϕ ∈ C2((0,∞)).

We next state Calderón–Zygmund type estimates in Br with non-zero boundary data.

Lemma 4.15 (Calderón–Zygmund estimates). Let ϕ ∈ Φc ∩ C1([0,∞)) ∩ C2((0,∞))
with ϕ′ satisfying (Inc)p−1 and (Dec)q−1 for some 1 < p 6 q, and |Br| 6 1. If v ∈
W 1,ϕ(Br) is the minimizer of (4.10) or the weak solution to (4.11), then there exists
c = c(n, p, q, p1, q1, L) > 0 such that

(4.16) ‖ϕ(|Dv|)‖Lθ(Br) 6 c ‖ϕ(|Dv0|)‖Lθ(Br)

for any θ ∈ Φw(Br) satisfying (A0), (A1), (aInc)p1 and (aDec)q1 with constant L > 1 and
1 < p1 6 q1.

Moreover, fix κ > 0 and assume that
´

Br
θ(x, ϕ(|Dv0|)) dx 6 κ. Then there exists

c = c(n, p, q, p1, q1, L) > 0 such that

(4.17)

 

Br

θ(x, ϕ(|Dv|)) dx 6 c
(
κ

q1
p1

−1
+ 1
)(  

Br

θ(x, ϕ(|Dv0|)) dx+ 1

)
.

Proof. In view of known results about gradient estimates for equations of p-Laplacian
type or (4.11), see for instance [14, 20, 70], it is expected that for any 1 < s < ∞ and
any Muckenhoupt weight w ∈ As,

(4.18)

ˆ

Br

ϕ(|Dv|)sw(x) dx 6 c

ˆ

Br

ϕ(|Dv0|)
sw(x) dx,

where c > 0 depends only on n, p, q, s and [w]As (see Appendix B for the definition of the
Muckenhoupt class As). We outline the proof of (4.18) in Appendix B.

We may assume that ‖ϕ(|Dv0|)‖Lθ(Br) < ∞, since otherwise (4.16) is trivial. Then
‖ϕ(|Dv0|)‖Lp1(Br) < ∞ by (aInc)p1 of θ and so ‖ϕ(|Dv|)‖Lp1(Br) < ∞ by (4.18) with s =
p1. We define θj(x, t) := min{θ(x, t), jtp1}, j > 0, and conclude that ‖ϕ(|Dv|)‖Lθj (Br)

<

∞. Since ϕ(|Dv|) ∈ Lθj (Br), extrapolation for the generalized Orlicz functions, see [51,
Corollary 5.3.4], gives

‖ϕ(|Dv|)‖Lθj (Br)
. ‖ϕ(|Dv0|)‖Lθj (Br)

6 ‖ϕ(|Dv0|)‖Lθ(Br).

We note that in the statement of [51, Corollary 5.3.4], ϕ is also assumed to satisfy the
so-called (A2) condition, which is however not needed if the domain Ω is bounded [51,
Lemma 4.2.3], and in our case, Ω = Br. Finally, (4.16) follows from this by monotone
convergence: ‖ϕ(|Dv|)‖Lθ(Br) = limj→∞ ‖ϕ(|Dv|)‖Lθj (Br)

, cf. [51, Lemma 3.1.4].

We next prove the second claim, inequality (4.17). If
´

Br
θ(x, ϕ(|Dv0|)) dx > 1, then it

follows from (4.16) by [51, Lemma 3.2.10] that

ˆ

Br

θ(x, ϕ(|Dv|)) dx 6 c

(
ˆ

Br

θ(x, ϕ(|Dv0|)) dx

) q1
p1

6 cκ
q1
p1

−1

ˆ

Br

θ(x, ϕ(|Dv0|)) dx,

which implies (4.17).
Now, we suppose that

´

Br
θ(x, ϕ(|Dv0|)) dx < 1. We assume first that the (A1) in-

equality holds also in [0, 1], i.e. that, for some L1 > 1,

(4.19) θ+Bρ
(t) 6 L1θ

−
Bρ
(t) for all t > 0 satisfying θ−Bρ

(t) ∈ [0, |Bρ|
−1],
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whenever Bρ ⊂ Br. Define θ±(t) := θ±Br
(t),

M := (θ−)−1

(
ˆ

Br

θ(x, ϕ(|Dv0|)) dx

)
and θ̄(x, t) :=

θ(x,Mt)

θ−(M)
.

Note that θ−(M) ∈ [0, 1]. Then θ̄ also satisfies (aInc)p1 and (aDec)q1 , with the same
constants as θ. We next prove that θ̄ satisfies (A0). It is clear that θ̄−(1) = 1. On
the other hand, since θ−(M) ∈ [0, 1], we see by (4.19) with Bρ = Br that θ̄+(1) =
θ+(M)/θ−(M) 6 L1. Finally we show that θ̄ satisfies (A1). Let Bρ ⊂ Br and consider
t > 0 such that θ̄−Bρ

(t) ∈ [1, |Bρ|
−1]. Then θ−Bρ

(Mt) = θ̄−Bρ
(t)θ−(M) 6 |Bρ|

−1. Therefore,

in view of (4.19), we have

θ̄+Bρ
(t) =

θ+Bρ
(Mt)

θ−(M)
6
L1θ

−
Bρ
(Mt)

θ−(M)
= L1θ̄

−
Bρ
(t)

so that θ̄ satisfies the (A1) condition with constant L1.
Let m := ϕ−1(M) and set

v̄ :=
v

m
, v̄0 :=

v0
m
, and ϕ̄(t) :=

ϕ(mt)

M
.

Then ϕ̄′(t) = ϕ′(mt)m
M

and v̄ ∈ W 1,ϕ̄(Br) is the weak solution to

div

(
ϕ̄′(|Dv̄|)

|Dv̄|
Dv̄

)
= 0 in Br with v̄ = v̄0 on ∂Br.

Note that ϕ̄′ also satisfies (Inc)p−1 and (Dec)q−1 with the same constant as ϕ′. In addition,
by the definitions of θ̄, ϕ̄ and M ,
ˆ

Br

θ̄(x, ϕ̄(|Dv̄0|)) dx =
1

θ−(M)

ˆ

Br

θ(x, ϕ(|Dv0|)) dx 6 1 ⇒ ‖ϕ̄(|Dv̄0|)‖Lθ̄(Br)
6 1.

Therefore, applying (4.16) to (θ, ϕ, v, v0) = (θ̄, ϕ̄, v̄, v̄0), we have

‖ϕ̄(|Dv̄|))‖Lθ̄(Br)
6 c‖ϕ̄(|Dv̄0|)‖Lθ̄(Br)

6 c

for some c = c(n, p, q, p1, q1, L1) > 1. Finally, this implies that

1

θ−(M)

ˆ

Br

θ(x, ϕ(|Dv|)) dx =

ˆ

Br

θ̄(x, ϕ̄(|Dv̄|)) dx 6 c

for some c = c(n, p, q, p1, q1, L1) > 1. In view of the definition of M , we have

(4.20)

ˆ

Br

θ(x, ϕ(|Dv|)) dx 6 c

ˆ

Br

θ(x, ϕ(|Dv0|)) dx

in the case when (4.19) holds. Note that (4.20) is stronger than (4.17), but requires the
stronger assumption (4.19).

We return to the case that θ satisfies (A1) with normal range and define

θ̃(x, t) := θ(x, t) + tp1.

It is easy to check that θ̃ satisfies (A0), (aInc)p1 , (aDec)q1 and θ(x, t) 6 θ̃(x, t) . θ(x, t)+1.

Let us show that θ̃ satisfies (4.19). Fix Bρ ⊂ Br and t > 0 satisfying θ̃−Bρ
(t) ∈ [0, |Bρ|

−1].
Then

θ−Bρ
(t) = θ̃−Bρ

(t)− tp1 6 |Bρ|
−1

If θ−Bρ
(t) > 1, then (A1) of θ implies that

θ̃+Bρ
(t) = θ+Bρ

(t) + tp1 6 Lθ−Bρ
(t) + tp1 6 L(θ−Bρ

(t) + tp1) = Lθ̃−Bρ
(t).
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On the other hand, if θ−Bρ
(t) 6 1, by (A0), (aInc)p1 and (aDec)q1 of θ, we have t . 1 and

then θ+Bρ
(t) ≈ tp1 6 θ−Bρ

(t). Hence θ̃ satisfies (4.19). Finally, since
´

Br
θ̃(x, ϕ(|Dv0|)) dx 6

c(1 + |Br|) 6 c̃, applying the result (4.20) for function c̃−1θ̃(x, t), we obtain
ˆ

Br

θ(x, ϕ(|Dv|)) dx 6

ˆ

Br

θ̃(x, ϕ(|Dv|)) dx

6 c

ˆ

Br

θ̃(x, ϕ(|Dv0|)) dx

6 c

ˆ

Br

[θ(x, ϕ(|Dv0|)) + 1] dx,

which completes the proof of (4.17). �

5. Comparison results without continuity assumption

Assume that ϕ ∈ Φc(Ω) ∩ C
1([0,∞)) satisfies a stronger version of (A1): there exists

L > 1 and a non-decreasing continuous function ω : [0,∞) → [0, 1] with ω(0) = 0 such
that for any small Br ⋐ Ω,

(5.1) ϕ+
Br
(t) 6 Lϕ−

Br
(t) for all t > 0 with ϕ−

Br
(t) ∈ [ω(r), |Br|

−1].

Note that this condition is implied by (wVA1) with L = 3 and ω = ωε for any fixed
ε. Further, we assume that ϕ′ satisfies (A0) with the same constant L > 1, as well as
(Inc)p−1 and (Dec)q−1 for some 1 < p 6 q.

We fix Ω′ ⋐ Ω and consider B2r = B2r(x0) ⊂ Ω′ with r > 0 satisfying that
(5.2)

r 6
1

2
, ω(2r) 6

1

L
, |B2r| 6 min

{
1

2L
, 2

−
2(1+σ0)

σ0

(
ˆ

Ω′

ϕ(x, |Du|)1+σ0 dx

)−
2+σ0
σ0

}
,

where σ0 ∈ (0, 1) is given in Lemma 4.4. Note that ϕ(·, |Du|) ∈ L1+σ0
loc (Ω), see Remark 4.6.

Hence we have from Hölder’s inequality and (5.2) that

(5.3)

ˆ

B2r

ϕ(x, |Du|)1+
σ0
2 dx 6 |B2r|

(
 

B2r

ϕ(x, |Du|)1+σ0 dx

) 1+σ0/2
1+σ0

6
1

2
,

so that

(5.4)

ˆ

B2r

ϕ(x, |Du|) dx 6

ˆ

B2r

ϕ(x, |Du|)1+
σ0
2 dx+ |B2r| 6

1

2
+

1

2
= 1.

Therefore, we can take advantage of the results in Lemmas 4.4 and 4.7. For convenience,
we write ϕ±(t) := ϕ±

B2r
(t).

Construction of a regularized Orlicz function. We construct a regularized function
ϕ̃ ∈ C1([0,∞)) ∩ C2((0,∞)) with tϕ̃′′(t) ≈ ϕ̃′(t), which is independent of the x variable
and sufficiently close to ϕ(x0, t) in a suitable range of t. This procedure is quite delicate
since we want improved differentiability and, moreover, want to find ϕ̃ satisfying in
particular the assumptions of Proposition 5.12, below. The challenge lies in ensuring
that ϕ(x, ϕ̃−1(t)) satisfies (aInc)1 and (aDec)γ with some γ > 1 for small and large
values of t, as we only have the comparison property when t is in some range [t1, t2].
We approach this problem by requiring p-growth for small and large values of t. This is
counter-intuitive, because it means that the resulting function is neither a lower nor an
upper bound of the original function, in contrast to estimates used in previous articles.
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We first define

(5.5) B := B2r = B2r(x0), t1 := (ϕ−)−1(ω(2r)) and t2 := (ϕ−)−1(|B|−1).

Note that it follows from ω(2r), |B2r| 6 L−1 in (5.2) and (A0) of ϕ that t1 6 1 6 t2. Let

(5.6) ψB(t) :=





a1 (
t
t1
)p−1 if 0 6 t < t1,

ϕ′(x0, t) if t1 6 t 6 t2,

a2 (
t
t2
)p−1 if t2 < t <∞,

where the constants a1 := ϕ′(x0, t1) and a2 := ϕ′(x0, t2) are chosen so that ψB is contin-
uous. We then define

ϕB(t) :=

ˆ t

0

ψB(s) ds.

Note that these functions depend on B via the center point x0 as well as the values t1
and t2.

When t ∈ [t1, t2], the coincidence of derivatives implies that

ϕB(t)− ϕ(x0, t) = ϕB(t1)− ϕ(x0, t1) =
1
p
t1ϕ

′(x0, t1)− ϕ(x0, t1)

and so, using the facts that 1
q
t1ϕ

′(x0, t1) 6 ϕ(x0, t1) 6
1
p
t1ϕ

′(x0, t1) by (Inc)p and (Dec)q
as well as (5.1), we find that

(5.7) 0 6 ϕB(t)− ϕ(x0, t) 6 ( q
p
− 1)ϕ(x0, t1) ≈ ϕ−(t1) = ω(2r) for all t ∈ [t1, t2].

Fix η ∈ C∞
0 (R) with η > 0, supp η ⊂ (0, 1) and ‖η‖1 = 1. We define

(5.8) ϕ̃(t) :=

ˆ ∞

0

ϕB(tσ)ηr(σ− 1) dσ =

ˆ ∞

0

ϕB(s)ηrt(s− t) ds where ηr(t) :=
1
r
η( t

r
);

the second expression is valid for t > 0. From the second formula, we see that ϕ̃ ∈
C∞((0,∞)).

For the next proof, we recall the following elementary inequalities which follow by the
mean value theorem for s 7→ (1 + s)γ on [0, 1]: for γ > 0 and 0 < s 6 1,

(5.9) 1 + min{1, 2γ−1}γs 6 (1 + s)γ 6 1 + max{1, 2γ−1}γs.

For the functions defined above, we have the following properties.

Proposition 5.10. Let ϕ̃ be from (5.8). Then

(1) ϕB(t) 6 ϕ̃(t) 6 (1+ cr)ϕB(t) 6 cϕB(t) for all t > 0 with c > 0 depending only on
q. Furthermore,

0 6 ϕ̃(t)− ϕ(x0, t) 6 c(rϕ−(t) + ω(2r)) 6 cϕ−(t) for all t ∈ [t1, t2].

(2) ϕ̃ ∈ C1([0,∞)) and it satisfies (A0), (Inc)p and (Dec)q while ϕ̃′ satisfies (A0),
(Inc)p−1 and (Dec)q−1. In particular, ϕ̃′(t) ≈ tϕ̃′′(t) for all t > 0.

(3) ϕ̃(t) 6 cϕ(x, t) for all (x, t) ∈ B × [1,∞), and so ϕ̃(t) 6 c (ϕ(x, t) + 1) for all
(x, t) ∈ B × [0,∞).

Here, the constants c > 0 depend only on n, p, q and L.

Proof. It follows from the construction that ψB satisfies (Inc)p−1, (Dec)q−1 and (A0). By
Proposition 3.6, ϕ and ϕB satisfy (Inc)p, (Dec)q and (A0).

(1) We note that ηr(σ−1) is only nonzero when σ−1 ∈ [0, r]. As ϕB is increasing and
η > 0, we obtain that

ϕ̃(t) =

ˆ ∞

0

ϕB(tσ)ηr(σ − 1) dσ 6

ˆ 1+r

1

ϕB((1 + r)t)ηr(σ − 1) dσ = ϕB((1 + r)t)
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since ‖ηr‖1 = 1. Similarly, we obtain that ϕ̃(t) > ϕB(t). In addition, by (Dec)q of ϕB
and (5.9), we have

ϕ̃(t) 6 ϕB((1 + r)t) 6 (1 + r)qϕB(t) 6 (1 + 2q−1qr)ϕB(t) for all t > 0.

By this inequality and (5.7), we estimate

ϕ̃(t)− ϕ(x0, t) 6 (1 + 2q−1qr)ϕB(t)− ϕB(t) + cω(2r) = 2q−1qrϕB(t) + cω(2r)

. rϕ−(t) + ω(2r)

for all t ∈ [t1, t2], where we also used (5.7) and (5.1) to estimate ϕB in the last step.
In addition, we know that ω(2r) = ϕ−(t1) 6 ϕ−(t) for all t ∈ [t1, t2]. The lower bound
follows from ϕ̃(t) > ϕB(t) > ϕ(x0, t).

(2) The claims for ϕ̃′ will be derived based on the equality

(5.11) ϕ̃′(t) =

ˆ ∞

0

σψB(tσ)ηr(σ − 1) dσ for t > 0

which is obtained by differentiating under the integral sign. The continuity of ψB implies
that ϕ̃′ ∈ C([0,∞)) and so ϕ̃ ∈ C1([0,∞)). As in (1), since the support of ηr is in [0, r],
‖ηr‖1 = 1, and since ψB is increasing and satisfies (Dec)q−1, we see that

ψB(t) 6 ϕ̃′(t) 6 (1 + r)ψB((1 + r)t) 6 (1 + r)qψB(t) 6 2qψB(t) for all t > 0,

that is, ψB ≈ ϕ̃′. Hence we have ϕ̃′(1) ≈ ψB(1) = ϕ′(x0, 1), which implies that ϕ̃′ satisfies
(A0). From the expression for ϕ̃′, we also see, since ψB satisfies (Inc)p−1, that

ϕ̃′(λt) =

ˆ ∞

0

σψB(λtσ)ηr(σ − 1) dσ > λp−1

ˆ ∞

0

σψB(tσ)ηr(σ − 1) dσ = λp−1ϕ̃′(t)

for λ > 1 and t > 0. This yields (Inc)p−1 of ϕ̃′. Similarly we prove that ϕ̃′ satisfies
(Dec)q−1. The properties for ϕ̃ follow by Proposition 3.6.

(3) Fix x ∈ B. When t ∈ [1, t2], we see by part (1) and (5.1) that ϕ̃(t) . ϕ−(t) 6
ϕ(x, t). For t > t2, we observe that

ψB(t) = ϕ′(x0, t2)
( t
t2

)p−1

≈ ϕ′(x, t2)
( t
t2

)p−1

6 ϕ′(x, t),

since ϕ′(x0, t2) ≈ ϕ(x0, t2)/t2 ≈ ϕ(x, t2)/t2 ≈ ϕ′(x, t2) by (5.1) and ϕ′ satisfies (Inc)p−1.
Then

ϕB(t) = ϕB(t2) +

ˆ t

t2

ψB(τ) dτ . ϕ(x, t2) +

ˆ t

t2

ϕ′(x, τ) dτ = ϕ(x, t). �

The next result shows the strength of the approach with (aInc) and (aDec), since it
would be difficult to construct an approximating function to guarantee (Inc) and (Dec).

Proposition 5.12. For ϕ̃ defined in (5.8) and any σ ∈ (0, 1), set

θ(x, t) := [ϕ(x, ϕ̃−1(t))]1+σ.

Then θ ∈ Φw(Br) satisfies (A0), (aInc)1+σ, (aDec)q(1+σ)/p and (A1). Here the constants
depend only on n, p, q and L (from the assumptions on ϕ) and are independent of σ.

Proof. That θ ∈ Φw(Br) is clear once we show (aInc)1. As ϕ and ϕ̃ satisfy (A0), so does θ.
Now we prove that θ satisfies (aInc)1+σ, which holds if t 7→ ϕ(x, ϕ̃−1(t)) satisfies (aInc)1.
Let t > s > 0, ϕ̃(τ) = t and ϕ̃(σ) = s. Then

L
ϕ(x, ϕ̃−1(t))

t
>
ϕ(x, ϕ̃−1(s))

s
⇐⇒ L

ϕ(x, τ)

ϕ̃(τ)
>
ϕ(x, ς)

ϕ̃(ς)
.
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By Proposition 5.10 and Remark 3.3, we have ϕ̃(t) ≈ ϕB(t), ϕ(x, t) ≈ tϕ′(x, t) and

ϕB(t) ≈ tψB(t) for all (x, t) ∈ B × (0,∞). Therefore, it suffices to show that t 7→ ϕ′(x,t)
ψB(t)

is almost increasing. Let t1 and t2 be from in (5.5). Then by the definition of ψB in (5.6)

we see that t 7→ ϕ′(x,t)
ψB(t)

is non-decreasing on (0, t1]∪ [t2,∞), since ϕ′ satisfies (Inc)p−1. By

(5.1) with the fact that tϕ′(x, t) ≈ ϕ(x, t), we have ϕ′(x,t)
ψB(t)

≈ 1 in [t1, t2]. Therefore, we see

that t 7→ ϕ′(x,t)
ψB(t)

is almost increasing. The property (aDec)q(1+σ)/p is proved analogously.

Finally, we show that θ satisfies (A1). Let Bρ ⊂ Br, and assume that θ−Bρ
(t) ∈

[1, |Bρ|
−1]. Then

ϕ−
Bρ
(ϕ̃−1(t)) = θ−Bρ

(t)1/(1+σ) ∈ [1, |Bρ|
−1/(1+σ)] ⊂ [1, |Bρ|

−1].

Therefore, (A1) of ϕ implies that

θ+Bρ
(t) = [ϕ+

Bρ
(ϕ̃−1(t))]1+σ 6 [Lϕ−

Bρ
(ϕ̃−1(t))]1+σ 6 L2θ−Bρ

(t)

and so θ satisfies (A1). �

Comparison estimates. Let ϕ̃ : [0,∞) → [0,∞) be the function constructed in the
previous subsection. We then consider the minimizer v ∈ W 1,ϕ̃(Br) of

(5.13)

ˆ

Br

ϕ̃(|Dv|) dx with v = u on ∂Br,

where u ∈ W 1,ϕ
loc (Ω) is a minimizer of (1.2), and derive a comparison estimate between

the gradients of u and v. We note from Proposition 5.10(3) that u ∈ W 1,ϕ̃(Br), so it is an
appropriate boundary-value function and thus there exists a unique minimizer of (5.13).
The minimizer v is also a weak solution to

(5.14) div

(
ϕ̃′(|Dv|)

|Dv|
Dv

)
= 0 in Br with v = u on ∂Br.

Before stating the main comparison result, we observe the following reverse Hölder type
estimate for Du and Calderón–Zygmund type estimate for the problem (5.13).

Lemma 5.15. Let u ∈ W 1,ϕ
loc (Ω) be a local minimizer of (1.2) and v ∈ W 1,ϕ̃(Br) be the

minimizer of (5.13), where B2r ⋐ Ω with r > 0 satisfying (5.2) and ϕ̃ is defined in (5.8).
Then

(5.16)

(
 

Br

ϕ(x, |Du|)1+σ0 dx

) 1
1+σ0

6 c

[
ϕ̃

(
 

B2r

|Du| dx

)
+ 1

]

and

(5.17)

 

Br

ϕ(x, |Dv|) dx 6

(
 

Br

ϕ(x, |Dv|)1+
σ0
2 dx

) 1
1+σ0/2

6 c

(
 

Br

ϕ(x, |Du|)1+
σ0
2 dx+ 1

) 1
1+σ0/2

Moreover,

(5.18)

 

Br

|Dv| dx 6 c

(
 

B2r

|Du| dx+ 1

)
.

Here constants c > 1 depend on n, p, q and L.
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Proof. We first prove (5.16). We note that u satisfies the reverse Hölder inequality (4.5)
for some c1 = c1(n, p, q, L) > 1. Then by Lemma 4.7, we have

(
 

Br

ϕ(x, |Du|)1+σ0 dx

) 1
1+σ0

. ϕ−

(
 

B2r

|Du| dx

)
+ 1 6 ϕ(x0, t0) + 1,

where t0 :=
ffl

B2r
|Du| dx. This and (A0) imply that (5.16) holds when t0 6 1; we therefore

assume that t0 > 1. By Jensen’s inequality and (5.4),

1 6 t0 . (ϕ−)−1

(
 

B2r

ϕ−(|Du|) dx

)
6 (ϕ−)−1

(
|B2r|

−1
)
= t2,

where t2 is defined in (5.5). Therefore, it follows from Proposition 5.10(1) that

(
 

Br

ϕ(x, |Du|)1+σ0 dx

) 1
1+σ0

. ϕ(x0, t0) . ϕ̃(t0) = ϕ̃

(
 

B2r

|Du| dx

)
.

As for (5.17), we only prove the second inequality, since the first inequality directly
follows from Hölder’s inequality. Let θ ∈ Φw(Br) be from Proposition 5.12 with σ = σ0/2.
By the proposition, we may apply Lemma 4.15 with v0 = u and κ = 1 (see (5.3)) to
conclude that

 

Br

ϕ(x, |Dv|)1+
σ0
2 dx =

 

Br

θ(x, ϕ̃(|Dv|)) dx

.

 

Br

[θ(x, ϕ̃(|Du|)) + 1] dx ≈

 

Br

[ϕ(x, |Du|) + 1]1+
σ0
2 dx.

By Jensen’s inequality, Proposition 5.10(3), (5.17) and (5.16)

ϕ̃

(
 

Br

|Dv| dx

)
6

 

Br

ϕ̃(|Dv|) dx .

 

Br

[ϕ(x, |Dv|) + 1] dx . ϕ̃

(
 

B2r

|Du| dx

)
+ 1.

Then (5.18) follows when we apply ϕ̃−1 to both sides and use (aDec)q to move “+1”
inside ϕ̃. �

6. Comparison results with continuity assumption

Assume that ϕ ∈ Φc(Ω) ∩ C
1([0,∞)) satisfies (wVA1), in addition to the assumptions

in the beginning of the previous section, i.e. (A0) with constant L > 1, as well as (Inc)p−1

and (Dec)q−1 for some 1 < p 6 q. At this stage, we fix

(6.1) ε0 :=
σ0

2(2 + σ0)

where σ0 ∈ (0, 1) is determined in Lemma 4.4. We will use (wVA1) for ε = ε0, which
fixes ω in that condition. We take r so small that (5.2) holds for this ω. Now we derive
a gradient comparison estimate between u and v.

Lemma 6.2. Let u ∈ W 1,ϕ
loc (Ω) be a local minimizer of (1.2) and v ∈ W 1,ϕ̃(Br) be the

minimizer of (5.13), where B2r ⋐ Ω with r > 0 satisfying (5.2) and ϕ̃ is defined in (5.8).
Then there exist γ = γ(n, p, q, L) ∈ (0, 1) and c = c(n, p, q, L) > 1 such that

 

Br

ϕ̃′′(|Du|+ |Dv|)|Du−Dv|2 dx 6 c
(
ω(2r)

p
q + rγ

)(
ϕ̃

(
 

B2r

|Du| dx

)
+ 1

)
.
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Proof. By Proposition 5.10(3) and Lemma 5.15, we see that u ∈ W 1,ϕ̃(Br) and v ∈
W 1,ϕ(Br). By Proposition 3.8(2),

ϕ̃′′(|Du|+ |Dv|)|Du−Dv|2 . ϕ̃(|Du|)− ϕ̃(|Dv|)−
ϕ̃′(|Dv|)

|Dv|
Dv · (Du−Dv).

Since u− v ∈ W 1,ϕ̃
0 (Br) and v is a weak solution to (5.14),

 

Br

ϕ̃′′(|Du|+ |Dv|)|Du−Dv|2 dx

.

 

Br

[ϕ̃(|Du|)− ϕ̃(|Dv|)] dx−

 

Br

ϕ̃′(|Dv|)
Dv

|Dv|
· (Du−Dv) dx

︸ ︷︷ ︸
=0 by (5.14)

=

 

Br

[ϕ̃(|Du|)− ϕ(x, |Du|)] + [ϕ(x, |Du|)− ϕ(x, |Dv|)] + [ϕ(x, |Dv|)− ϕ̃(|Dv|)] dx

6

 

Br

[ϕ̃(|Du|)− ϕ(x, |Du|)] dx

︸ ︷︷ ︸
=:I1

+

 

Br

[ϕ(x, |Dv|)− ϕ̃(|Dv|)] dx

︸ ︷︷ ︸
=:I2

;

in the last step we used that
ffl

Br
[ϕ(x, |Du|)−ϕ(x, |Dv|)] dx 6 0 since u is a minimizer of

(1.2). We shall estimate I2. We split Br into three regions E1, E2 and E3 defined by

E1 := Br ∩ {ϕ−(|Dv|) 6 ω(2r)},

E2 := Br ∩ {ω(2r) < ϕ−(|Dv|) 6 |B2r|
−1+ε0},

E3 := Br ∩ {|B2r|
−1+ε0 < ϕ−(|Dv|)}.

In the set E1, (Dec)q and (A0) of ϕ imply that |Dv| . ω(2r)
1
q . Therefore by (Inc)p and

(A0) of ϕ and ϕ̃,
 

Br

∣∣ϕ(x, |Dv|)− ϕ̃(|Dv|)
∣∣χE1 dx . ω(2r)

p
q

 

Br

χE1 dx 6 ω(2r)
p
q .

In the set E3, Proposition 5.10(3) and the fact that 1 < |B2r|
1−ε0ϕ−(|Dv|) imply that

∣∣ϕ(x, |Dv|)− ϕ̃(|Dv|)
∣∣ . ϕ(x, |Dv|) + 1 . ϕ(x, |Dv|)

6
[
|B2r|

1−ε0ϕ−(|Dv|)
]σ0

2 ϕ(x, |Dv|)

. r
n(1−ε0)σ0

2 ϕ(x, |Dv|)1+
σ0
2 .

Integrating this inequality over E3 and using (6.1), we find that

 

Br

∣∣ϕ(|x,Dv|)− ϕ̃(|Dv|)
∣∣χE3 dx . r

n(4+σ0)σ0
4(2+σ0)

(
 

Br

ϕ(x, |Dv|)1+
σ0
2 dx

) σ0
2+σ0

+ 2
2+σ0

.

On one hand, by (5.17) and (5.16), we have

(
 

Br

ϕ(x, |Dv|)1+
σ0
2 dx

) 2
2+σ0

. ϕ̃

(
 

B2r

|Du| dx

)
+ 1.

On the other hand, by (5.3),
(
 

Br

ϕ(x, |Dv|)1+
σ0
2 dx

) σ0
2+σ0

6 |Br|
−

σ0
2+σ0 . r

−
4nσ0

4(2+σ0) .
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Therefore, combining the previous three inequalities, we have
 

Br

∣∣ϕ(|x,Dv|)− ϕ̃(|Dv|)
∣∣χE3 dx . r

nσ2
0

4(2+σ0)

(
ϕ̃

(
 

B2r

|Du| dx

)
+ 1

)
.

Recall that t1 and t2 are defined in (5.5). In the set E2, we observe that

ω(2r) < ϕ−(|Dv|) 6 |B2r|
−1+ε0 < |B2r|

−1 and so t1 < |Dv| < t2.

Hence it follows from (wVA1) and Proposition 5.10(1) that

|ϕ(x, |Dv|)− ϕ̃(|Dv|)| 6 |ϕ(x, |Dv|)− ϕ(x0, |Dv|)|+ |ϕ(x0, |Dv|)− ϕ̃(|Dv|)|

. (r + ω(r))ϕ−(|Dv|) + ω(2r).

Therefore, applying (5.17) and (5.16), we have
 

Br

∣∣ϕ(|x,Dv|)− ϕ̃(|Dv|)
∣∣χE2 dx . (r + ω(2r))

(
ϕ̃

(
 

B2r

|Du| dx

)
+ 1

)
.

We have shown that

|I2| 6

 

Br

∣∣ϕ(x, |Dv|)− ϕ̃(|Dv|)
∣∣ dx

.

(
ω(2r)

p
q + r

nσ2
0

4(2+σ0) + r

)(
ϕ̃

(
 

B2r

|Du| dx

)
+ 1

)
.

The estimate for I1 is analogous, with sets Ei defined with Du instead of Dv. �

The following corollary is the key to the regularity results in the next section. Indeed,
once we have the estimate from the corollary, the main results follow using standard
methods.

Corollary 6.3. Under the assumptions of Lemma 6.2, we have
 

Br

|Du−Dv| dx 6 c
(
ω(r)

p

2q2 + rγ1
)( 

B2r

|Du| dx+ 1

)

for some γ1 = γ1(n, p, q, L) ∈ (0, 1) and c = c(n, p, q, L) > 1.

Proof. Set ω̃(r) := ω(r)
p
q + rγ with γ from Lemma 6.2 and note that ω̃(·) 6 2. Applying

Proposition 3.8(3) with κ = ω̃(r)
1
2 , Proposition 5.10(3) and Lemmas 6.2 and 5.15, we

find that
 

Br

ϕ̃(|Du−Dv|) dx

. ω̃(r)
1
2

 

Br

[ϕ̃(|Du|) + ϕ̃(|Dv|)] dx+ ω̃(r)−
1
2

 

Br

ϕ̃′′(|Du|+ |Dv|)|Du−Dv|2 dx

. ω̃(r)
1
2

 

Br

[ϕ(x, |Du|) + ϕ(x, |Dv|) + 1] dx+ ω̃(r)
1
2

(
ϕ̃

(
 

B2r

|Du| dx

)
+ 1

)

. ω̃(r)
1
2

(
ϕ̃

(
 

B2r

|Du| dx

)
+ 1

)
.

Therefore, by Jensen’s inequality and (Dec)q of ϕ̃, we have

ϕ̃

(
 

Br

|Du−Dv| dx

)
6

 

Br

ϕ̃(|Du−Dv|) dx . ϕ̃

(
ω̃(r)

1
2q

(
 

B2r

|Du| dx+ 1

))
.

The claim follows, since ϕ̃ is strictly increasing. �
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7. Proofs of main results

In this section, we prove the main theorems. Before starting the proof we introduce a
basic iteration lemma. We refer to [46, Lemma 2.1 in Chapter III].

Lemma 7.1. Let f : [0, r0] → [0,∞) be a non-decreasing function. Suppose that for all
0 < ρ 6 r 6 r0,

f(ρ) 6 C
((ρ

r

)n
+ ε
)
f(r) + Crn

with positive constant C. Then for any τ ∈ (0, n), there exist ε1, c > 0 depending only on
n, C and τ such that if ε < ε1, then

f(ρ) 6 c
(ρ
r

)n−τ (
f(r) + rn−τ

)
.

In the next results, we denote by ω the function from (wVA1) for ε = ε0, cf. the
beginning of Section 6. Likewise, by L > 1 we denote the constant from (A0). Now let
us state and prove our main results.

Theorem 7.2. Let ϕ ∈ Φc(Ω)∩C
1([0,∞)) with ϕ′ satisfying (A0), (Inc)p−1 and (Dec)q−1

for some 1 < p 6 q and let u ∈ W 1,ϕ
loc (Ω) be a local minimizer of (1.2). If ϕ satisfies

(wVA1), then u ∈ Cα
loc(Ω) for any α ∈ (0, 1).

Proof. Let r0 ∈ (0, 1) be a sufficiently small positive number which will be determined
later. We fix Ω′ ⋐ Ω and assume that (5.2) holds r = r0 > 0. For any B2r ⊂ Ω′ with
0 < 2r 6 r0, let v ∈ W 1,ϕ̃(Br) be the minimizer of (5.13) with ϕ̃ determined in (5.8).

When ρ ∈ (0, r
2
), applying Corollary 6.3 with ω0(r) := ω(r)

p

2q2 + rγ1 , (4.13) and (5.18),
we have

ˆ

Bρ

|Du| dx 6

ˆ

Br

|Du−Dv| dx+

ˆ

Bρ

|Dv| dx

. ω0(2r)

ˆ

B2r

[|Du|+ 1] dx+ ρn sup
Br/2

|Dv|

6 ω0(r0)

ˆ

B2r

[|Du|+ 1] dx+ ρn
 

Br

|Dv| dx

.
((ρ

r

)n
+ ω0(r0)

)ˆ

B2r

|Du| dx+ rn.

Moreover, if r
2
6 ρ 6 2r, the above estimate is obvious since then 1

2
6 ρ

r
.

Let f(ρ) :=
´

Bρ
|Du| dx, fix τ ∈ (0, n) and choose r0 so small that

ω0(r0) = ω(r0)
1
2q + rγ10 6 ε1,

where ε1 is from Lemma 7.1. Then, applying the lemma and using (5.4) with 2r = r0,
we have the following Morrey type estimate:

(7.3)

ˆ

Bρ

|Du| dx .
( ρ
r0

)n−τ(ˆ

Br0

|Du| dx+ rn−τ0

)
for all Bρ ⊂ Ω′ with ρ ∈ (0, r0]

for implicit constant c = c(n, p, q, L, τ) > 1. We note that in (7.3), ρ ∈ (0, r0] and Bρ ⊂ Ω′

are arbitrary and the implicit constant is universal. Therefore, by taking τ = 1 − α for
each α ∈ (0, 1) in (7.3), we have u ∈ Cα

loc(Ω
′) by a Morrey type embedding, see for

instance [46, Chapter 3, Theorem 1.1]. More precisely, we obtain

[u]Cα(Br0/2
) . r1−α0

 

Br0

|Du| dx+ 1. �
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Next we prove the second main theorem, C1,α-regularity.

Theorem 7.4. Let ϕ ∈ Φc(Ω)∩C
1([0,∞)) with ϕ′ satisfying (A0), (Inc)p−1 and (Dec)q−1

for some 1 < p 6 q and let u ∈ W 1,ϕ
loc (Ω) be a minimizer of (1.2). If ϕ satisfies (wVA1)

with

ω(r) . rβ for all r ∈ (0, 1] and for some β ∈ (0, 1),

then u ∈ C1,α
loc (Ω) for some α ∈ (0, 1). Here α depends only on n, p, q, L and β.

Proof. Fix Ω′ ⋐ Ω. We first notice from (7.3) that for any τ ∈ (0, n),
 

B2r

|Du| dx 6 cτr
−τ for all B2r ⊂ Ω′ with 2r ∈ (0, r0],

where r0 > 0 is from the proof of Theorem 7.2 and cτ > 1 depends on n, p, q, L, r0 and
τ . Consider sufficiently small 2r < r0, which will be determined later. Let v ∈ W 1,ϕ̃(Br)
be the minimizer of (5.13) with ϕ̃ determined in (5.8). Then for 0 < ρ < r

2
, applying

(4.14) with Bρ(x0) = Br/2 and τ = 2ρ
r
, Corollary 6.3 with ω(r) . rβ and (5.18), we have

 

Bρ

|Du− (Du)ρ| dx 6 2

 

Bρ

|Du− (Dv)ρ| dx

6 2

 

Bρ

|Du−Dv| dx+ 2

 

Bρ

|Dv − (Dv)ρ| dx

.
(r
ρ

)n  

Br

|Du−Dv| dx+
(ρ
r

)α0
 

Br/2

|Dv| dx

.

(
rγ0
(r
ρ

)n
+
(ρ
r

)α0
)(

 

B2r

|Du| dx+ 1

)

6 cτr
−τ

(
rγ0
(r
ρ

)n
+
(ρ
r

)α0
)
,

where γ0 := min{ pβ
2q2
, γ1}. Finally, we choose ρ := r1+γ0/(2n) and τ := α0γ0

4n
. Suppose that

2r 6 min{r0, 4
−2n/γ0}. Then ρ < r

2
and for the concentric balls Bρ ⊂ B2r ⊂ Ω′ we have

that
 

Bρ

|Du− (Du)ρ| dx . cτr
γ0
2
−τ + rτ 6 2cτr

τ = 2cτρ
τ

1+γ0/(2n) .

This yields that Du ∈ Cα
loc(Ω

′) with α = α0γ0
4n+2γ0

by a Campanato type embedding, see

for instance [46, Chapter 3]. Since Ω′ ⋐ Ω is arbitrary, we have the conclusion. The
last inequality also yields an estimate for the semi-norm [Du]Cα(Br0/2

), however, once we
unravel the dependence from cτ , it is a somewhat complicated formula. �

Remark 7.5. By following the proofs, one can see that we use the condition (wVA1) only
for fixed ε = ε0 determined in (6.1). Therefore, in Theorems 7.2 and 7.4, the condition
(wVA1) can be replaced with the combination of (A1) and (wVA1) with fixed ε > 0,
where ε is sufficiently small and depends on n, p, q and L.

8. Examples of special structures

In this section, we show that our results include previous regularity results for special
structures presented in the introduction. We provide details only for some of the cases,
as the remaining ones can be handled by similar techniques. By Cω we denote continuous
functions with modulus of continuity ω.
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Corollary 8.1 (Perturbed autonomous case). Let a : Ω → [ν,Λ] for some 0 < ν 6 Λ,
and let ψ ∈ Φc∩C

1([0,∞)) with ψ′ satisfying (Inc)p−1 and (aDec)q−1 for some 1 < p 6 q.
Define ϕ(x, t) := a(x)ψ(t). Then ϕ satisfies (VA1), with ω(r) ≈ ωa(2r), if and only if
a ∈ Cωa.

Proof. For any Br ⊂ Ω,

ϕ+
Br
(t) = a+Br

ψ(t) =
(
1 +

a+Br
−a−Br

a−Br

)
ϕ−
Br
(t).

Since a−Br
∈ [ν,Λ], we obtain that

ϕ+
Br
(t)− ϕ−

Br
(t)

ϕ−
Br
(t)

≈ a+Br
− a−Br

,

and so the claim follows. �

Corollary 8.2 (Variable exponent case). Let p : Ω → [p1, p2] for some 1 < p1 6 p2.
Define ϕ(x, t) := tp(x). Then ϕ satisfies (VA1) if and only if there exists ωp with

lim
r→0

ωp(r) ln
1
r
= 0 and p ∈ Cωp.

Moreover, ϕ satisfies (VA1) with ω(r) . rβ for some β > 0 if and only if

ωp(r) . rβ̃ for some β̃ > 0.

Proof. Fix Br ⊂ Ω with |Br| 6 1 and set p± = p±Br
. Then we have ϕ−

Br
(t) = tp

−

and

ϕ+
Br
(t) = tp

+
for t > 1 as well as ϕ−

Br
(t) = tp

−

and ϕ+
Br
(t) = tp

+
for t < 1.

Let us derive an equivalent form of the inequality in condition (VA1). We may consider
the range [|Br|, |Br|

−1] in the condition, since it turns out that this choice of lower bound
entails no additional restrictions in the variable exponent case. When t > 1, we have

ϕ+
Br
(t)− ϕ−

Br
(t) = (tp

+−p− − 1)tp
−

= (tp
+−p− − 1)ϕ−

Br
(t).

When t 6 1, the exponents p+ and p− are interchanged. Since we consider the range

t ∈
[
(ϕ−)−1

Br
(|Br|), (ϕ

−)−1
Br
(|Br|

−1)
]
=
[
|Br|

1/p+ , |Br|
−1/p−

]
,

we obtain that

sup
t∈[|Br |1/p

+ ,|Br|−1/p− ]

ϕ+
Br
(t)− ϕ−

Br
(t)

ϕ−
Br
(t)

= |Br|
p−−p+

p− − 1.

Suppose that p ∈ Cωp. By the mean value theorem, ex − 1 6 exx. Thus

|Br|
p−−p+

p− − 1 6 |Br|
−ωp(2r) − 1 6 enωp(2r) ln(1/r) − 1 6 nenωp(2r) ln(1/r)ωp(2r) ln

1
r
=: ω(r)

and the inequality from (VA1) holds with this ω. Moreover, if limr→0 ωp(r) ln
1
r
= 0, then

ω tends to zero, hence we obtain (VA1). If ωp(r) . tβ , then ω is of order β − ε for any ε.
Suppose next that ϕ satisfies (VA1) with function ω. Then, for r 6 1

2
,

|Br|
p−−p+

p− − 1 6 ω(r)

hence

p+ − p− 6 −
p− log(1 + ω(r))

log |Br|
.
p2 log(1 + ω(r))

n log 1
r

=: ωp(2r).

Then ωp(2r) log
1
r
≈ log(1 + ω(r)) → 0. If ω(r) 6 rβ̃, then ωp(2r) ≈ log(1 + rβ̃)/ log 1

r
.

rβ. �
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Rădulescu and colleagues [22, 76, 84] have considered a functional with model case
ϕ(x, t) = tp(x) + tq(x), which they call “double phase” (it is different from the double
phase functional of Zhikov, considered below). To the best of our knowledge, this is the
first regularity result this functional.

Corollary 8.3 (Rădulescu’s double phase). Let p, q : Ω → [p1, p2] for some 1 < p1 6 p2
and ϕ(x, t) = tp(x) + tq(x). Then ϕ satisfies (VA1) if there exist ωm and ωM with

lim
r→0

ωm(r) = 0, min{p, q} ∈ Cωm , lim
r→0

ωM(r) ln 1
r
= 0 and max{p, q} ∈ CωM .

In addition, ϕ satisfies (VA1) with ω(r) 6 rβ for some β > 0 if

lim
r→0

ωm(r)r
−β̃ = 0 and lim

r→0
ωM(r)r−β̃ = 0 for some β̃ > 0.

This result can be proved with the same methods as Corollary 8.2; the details are left
to the interested reader. Note that the regularity required of the minimum is lower than
the regularity required of the maximum. This is due to the fact that we only require the
inequality of (VA1) in the range [ω(r), 1] where the minimum determines ϕ, whereas the
maximum is used in the range [1, |Br|].

We now consider double phase problems in the sense of Zhikov and Mingione.

Corollary 8.4 (Double phase case). Let a ∈ Cωa(Ω) and b ∈ Cωb(Ω) be non-negative
with 0 < ν 6 a(·) + b(·) 6 Λ for some 0 < ν 6 Λ, and ψ, ξ ∈ Φc ∩ C

1([0,∞)) with ψ′, ξ′

satisfying (A0), and (Inc)p−1 and (Dec)q−1 for some 1 < p 6 q. Suppose that ξ
ψ
is almost

increasing. Define
ϕ(x, t) := a(x)ψ(t) + b(x)ξ(t)

and, for ε ∈ [0, 1),

ωε(r) := ωa(r) + ωb(r)r
n(1−ε)ξ

(
ψ−1(r−n(1−ε))

)
.

If ωε is bounded with limr→0 ωε(r) = 0 when ε > 0, then ϕ satisfies (wVA1) with ω ≈ ωε.

Proof. Fix Br ⊂ Ω so small that ωa(2r), ωb(2r) 6 ν
2
. Set a± := a±Br

, b± := b±Br
and

ϕ±(t) := ϕ±
Br
(t). For 0 6 ε < 1, suppose t ∈ (0, t2) with t2 := (ϕ−)−1(|Br|

−1+ε).
We consider first t > 1. Assume first that b− > ν

4
. Then ϕ−(t) & ξ(t) & ψ(t) and so

ϕ+(t)− ϕ−(t) 6 (a+ − a−)ψ(t) + (b+ − b−)ξ(t) . (ωa(r) + ωb(r))ϕ
−(t).

We note that the case b− < ν
4
and a− < ν

4
cannot occur, since a+b > ν and ωa(2r), ωb(2r) 6

ν
2
.
Next, we consider t > 1 and a− > ν

4
. Then ϕ−(t) & ψ(t). Note that ϕ(x, t) ≈

max{a(x)ψ(t), b(x)ξ(t)} and that by the continuity of the functions a and b, there exists
xt ∈ Br such that ϕ−(t) = ϕ(xt, t). Using these and that ξ

ψ
is almost increasing, we have

ξ(t)

ϕ−(t)
≈ min

{ ξ(t)

a(xt)ψ(t)
,

1

b(xt)

}
. min

{ ξ(t2)

a(xt)ψ(t2)
,

ξ(t2)

b(xt)ξ(t2)

}
.

ξ(t2)

ϕ−(t2)
.

Since ψ(t)
ϕ−(t)

6 4
ν
and ψ(t2) . a(xt2)ψ(t2) . ϕ−(t2) ≈ r−n(1−ε), we conclude that

ϕ+(t)− ϕ−(t)

ϕ−(t)
6 (a+ − a−)

ψ(t)

ϕ−(t)
+ (b+ − b−)

ξ(t)

ϕ−(t)

. ωa(2r) + ωb(2r)
ξ(t2)

ϕ−(t2)

. ωa(r) + ωb(r)r
n(1−ε)ξ(ψ−1(r−n(1−ε))).
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We note that the factor multiplying ωb(r) in the last expression is greater than c > 0
depending on the parameters, so it can absorb the +ωb(r) from the other cases to give
ωε in the statement of the result.

The necessary inequality has been established for all cases when t > 1. We next
consider t 6 1. By (A0) of ψ and ξ,

ϕ+(t)− ϕ−(t) 6 (a+ − a−)ψ(t) + (b+ − b−)ξ(t) . ωa(r) + ωb(r).

We use this as the additive term “+ω(r)” in the definition of (wVA1) to cover small t.
This concludes the proof of (wVA1). �

Remark 8.5. In the previous proof, we used the additive error “+ω(r)” for (wVA1) to
handle the case t 6 1. If a ≡ 1, then this is not needed, and we have also the following
conclusion: if ω0 is bounded with limr→0 ω0(r) = 0, then ϕ satisfies (VA1).

Suppose that ξ(t) = ψ(t) ln(e + t) and a ≡ 1 in Corollary 8.4. Then we have

ξ
(
ψ−1(r−n(1−ε))

)
= r−n(1−ε) ln

(
e + ψ−1(r−n(1−ε))

)
≈ r−n(1−ε) ln(e+ 1

r
)

since ψ satisfies (Inc)p and (Dec)q. We see that the degenerate double phase functional
satisfies (VA1) if b is vanishing log-Hölder continuous.

From Corollary 8.4, we obtain sharp regularity conditions for ϕ satisfying particular
structures of double phase with power-functions.

Corollary 8.6. Let 1 < p 6 q, β ∈ (0, 1], and a ∈ Cωa and b ∈ C0,β be non-negative.

Define γε := β − n(q−p)(1−ε)
p

, ε > 0.

(1) Let ϕ(x, t) = tp + b(x)tq.
If q

p
< 1 + β

n
, then ϕ satisfies (VA1) with ω(r) ≈ rγ0.

If q
p
6 1 + β

n
, then ϕ satisfies (wVA1) with ω(r) ≈ rγε.

(2) Let ϕ(x, t) = a(x)tp + tq. Then ϕ satisfies (wVA1) with ω(r) ≈ ωa(r).
(3) Let a(x)tp+ b(x)tq with ν 6 a+ b 6 Λ. If q

p
6 1+ β

n
, then ϕ satisfies (wVA1) with

ω(r) ≈ rγε + ωa(r).

Appendix A. C1,α Regularity for autonomous problems

In this section, we prove Lemma 4.12. We follow the ideas in [35, 59]. In fact, it is
almost enough to replace the map t 7→ tp by the map t 7→ ϕ(t) in the proof in [59].
However, for completeness, we present the proof. Suppose ϕ ∈ C1([0,∞)) ∩ C2((0,∞))
and ϕ′ satisfies (Inc)p−1 and (Dec)q−1 for some 1 < p 6 q. We first consider the following
non-degenerate problem for ε > 0:

(A.1) div

(
ϕε(|Duε|)

|Duε|
Duε

)
= 0 in Ω, where ϕε(t) :=

ˆ t

0

ϕ′(ε+ s)s

ε+ s
ds,

which is the Euler-Lagrange equation of the minimization problem

(A.2) min
w

ˆ

Ω

ϕε(|Dw|) dx.

(In Lemma 4.12, Ω = Br.) By the definition of ϕε we have

ϕ′
ε(t)

t
=
ϕ′(ε+ t)

ε+ t
, so that lim

t→0+

ϕ′
ε(t)

t
=
ϕ′(ε)

ε
> 0.

28



Hence (A.1) is non-degenerate. We emphasize that all hidden constants in ≈ and . in
this appendix depend only on n, p and q, but are independent of ε. We observe by the
first equality above and (Inc)p−1 and (Dec)q−1 of ϕ′ that

(A.3)

ϕ′′
ε(t) =

ϕ′(ε+ t)

ε+ t

(
1 +

(
ϕ′′(ε+ t)

(ε+ t)ϕ′(ε+ t)
− 1

)
t

ε+ t

)

>
ϕ′
ε(t)

t

(
1 + (p− 2)

t

ε+ t

)
> min{1, p− 1}

ϕ′
ε(t)

t

and

(A.4) ϕ′′
ε(t) 6

ϕ′
ε(t)

t

(
1 + (q − 2)

t

ε+ t

)
6 max{1, q − 1}

ϕ′
ε(t)

t
.

Therefore, ϕ′
ε satisfies (Inc)min{1,p−1} and (Dec)max{1,q−1}, which implies that

(A.5) tϕ′′
ε(t) ≈ ϕ′

ε(t), tϕ′
ε(t) ≈ ϕε(t),

ϕε(t)

t2
≈
ϕ′
ε(t)

t
=
ϕ′(ε+ t)

ε+ t
.

In view of [35], in particular Lemmas 5.7 and 5.8, we have that uε ∈ W 2,2
loc (Ω) and

ϕε(|Duε|) ∈ W 1,2
loc (Ω) if ε > 0 and that for any B2ρ ⋐ Ω and ε > 0,

(A.6) sup
Bρ

ϕε(|Duε|) .

 

B2ρ

ϕε(|Duε|) dx.

Here u0 = u and ϕ0 = ϕ.
Fix ε > 0 and B2ρ ⋐ Ω. From now on, for convenience, we shall simply write

(A.7) u = uε and v = ϕε(|Du|) = ϕε(|Duε|).

We first notice from (A.1) and u ∈ W 2,2
loc (Ω) that

div

(
ϕ′
ε(|Du|)

|Du|
Du

)
= div

(
ϕ′(ε+ |Du|)

ε+ |Du|
Du

)
=

n∑

i,j=1

aijuxixj = 0 a.e. in Ω,

where aij = aij(Du), bij = bij(Du),

aij(z) :=
ϕ′(ε+ |z|)

ε+ |z|
bij(z) =

ϕ′
ε(|z|)

|z|
bij(z)

and

bij(z) :=

(
ϕ′′(ε+ |z|)(ε+ |z|)

ϕ′(ε+ |z|)
− 1

)
zizj

(ε+ |z|)|z|
+ δij

for z ∈ R
n (δij is the kronecker delta, i.e. δij = 0 if i 6= j and δij = 1 if i = j). As in

(A.3) and (A.4) along with the fact that
∑

i,j zizjηiηj = (z · η)2, we conclude that

(A.8) min{1, p− 1}|η|2 6
n∑

i,j=1

bij(z)ηiηj 6 max{1, q − 1}|η|2 for all z, η ∈ R
n.

Consider the weak form of (A.1) and a unit vector ν ∈ Sn−1. We see that

0 = −

ˆ

Ω

ϕ′
ε(|Du|)

|Du|
Du ·D(ζν) dx =

ˆ

Ω

∞∑

i=1

(
ϕ′
ε(|Du|)

|Du|
uxi

)

ν

ζxi dx =

ˆ

Ω

∞∑

i,j=1

aijuxjνζxi dx
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for any ζ ∈ C∞
0 (Ω), where the subscript ν indicates directional derivatives. Thus we have

shown that

(A.9)
n∑

i,j=1

(aijuνxj)xi = 0

in the weak sense. In addition, by the definition of v, cf. (A.7), we have

vxj =
ϕ′
ε(|Du|)

|Du|

n∑

k=1

uxkuxkxj ,

so that bijvxj =
∑n

k=1 aijuxkxjuxk . We conclude, with (A.9) for the second equality, that

−

ˆ

Bρ

n∑

i,j=1

bijvxjζxi dx = −
n∑

k=1

ˆ

Bρ

n∑

i,j=1

aijuxkxj(uxkζ)xi dx+

ˆ

Bρ

n∑

i,j,k=1

aijuxkxjuxkxiζ dx

=

ˆ

Bρ

n∑

i,j,k=1

aijuxkxjuxkxiζ dx

for all ζ ∈ C∞
0 (Bρ) with Bρ ⋐ Ω. Therefore, we have

(A.10) Lv :=

n∑

i,j=1

(bijvxi)xj =

n∑

i,j,k=1

aijuxkxjuxkxi =: g

in the weak sense. Moreover, by (A.8) with η = D(uxk) and (A.5), we have

(A.11) g ≈
ϕε(|Du|)

|Du|2
|D2u|2,

where |D2u|2 :=
∑

i,j(uxixj)
2. In the same way as in [59, Lemma 1] with v = ϕε(|Du|),

and v−1/p replaced by [ϕ−1
ε (v)]−1 = |Du|−1, we obtain for any B4ρ ⋐ Ωr, that

(A.12)

 

Bρ

g1+δ dx .

(
 

B4ρ

g dx

)1+δ

.

Next, set

v0 := v = ϕε(|Du|) and vk :=
v

ϕ−1
ε (v)

uxk =
ϕε(|Du|)

|Du|
uxk , k = 1, . . . , n.

Then

(A.13) v0,xj = vxj =
ϕ′
ε(|Du|)Duxj ·Du

|Du|
,

and, for k = 1, . . . n,

vk,xj =
v

ϕ−1
ε (v)

uxkxj +

(
1−

v

ϕ−1
ε (v)ϕ′

ε(ϕ
−1
ε (v))

)
vxj

ϕ−1
ε (v)

uxk

=
ϕε(|Du|)

|Du|
uxkxj +

(
1−

ϕε(|Du|)

|Du|ϕ′
ε(|Du|)

)
ϕ′
ε(|Du|)Duxj ·Du

|Du|2
uxk .

Here we note from (Inc)min{2,p} and (Dec)max{2,q} of ϕε that

0 < 1−
1

min{2, p}
6 1−

ϕε(|Du|)

|Du|ϕ′
ε(|Du|)︸ ︷︷ ︸

=:A(|Du|)

6 1−
1

max{2, q}
< 1.
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Then the previous expression for the partial derivatives implies that vk ∈ W 1,2
loc (Ω) since

u ∈ W 2,2
loc (Ω), v = ϕε(|Du|) ∈ W 1,2

loc (Ω) and Du ∈ L∞
loc(Ω). Moreover,

n∑

k=1

|Dvk|
2 =

n∑

k,j=1

v2k,xj =
ϕε(|Du|)

2

|Du|2
|D2u|2 + A(|Du|)2

ϕ′
ε(|Du|)

2

|Du|4

n∑

k,j=1

(Duxj ·Du)
2u2xk

+ 2A(|Du|)
ϕε(|Du|)ϕ

′
ε(|Du|)

|Du|3

n∑

j=1

[
Duxj ·Du

n∑

k=1

uxkxjuxk

]
.

Since A(|Du|) ≈ 1,
∑

k,j(Duxj · Du)
2u2xk 6 |Du|4|D2u|2 and Duxj · Du

∑
k uxkxjuxk =

(Duxj ·Du)
2 > 0, we obtain

(A.14) gv ≈
ϕε(|Du|)

2

|Du|2
|D2u|2 6

n∑

k=1

|Dvk|
2 .

ϕε(|Du|)
2

|Du|2
|D2u|2 ≈ gv.

Using the expression for the partial derivative vk,xj and (A.9), we see that for k =
1, 2, . . . , n,

(A.15)

Lvk =

n∑

i,j=1

(bijvk,xj)xi

=
n∑

i,j,l=1

(
aijuxlxj

[
|Du|vδlk

ϕ′
ε(|Du|)|Du|

+
uxkuxl
|Du|

−
|Du|vuxkuxl
ϕ′
ε(|Du|)|Du|

3

])

xi

=
ϕ′
ε(|Du|)

|Du|

n∑

i,j,l=1

bijuxlxj

(
uxkuxl
|Du|

+
vδlk

ϕ′
ε(|Du|)

−
vuxkuxl

ϕ′
ε(|Du|)|Du|

2

)

xi

=: gk

in the weak sense for test functions in C∞
0 (Bρ). Note that gk is formulated in terms of first

and second partial derivatives of u. We use the estimates |uxj | 6 |Du| and |uxixj | 6 |D2u|
to conclude that∣∣∣∣∣

(
uxkuxl
|Du|

)

xi

∣∣∣∣∣ =
∣∣∣∣
uxkxiuxl + uxkuxlxi

|Du|
−
uxkuxl

∑n
m=1 uxmxi

|Du|2

∣∣∣∣ . |D2u|.

Similarly, using also tϕ′
ε(t) ≈ ϕε(t) from (A.5), we estimate the other multipliers of

bijuxlxj by |D2u|, as well. Since bij ≈ 1 by (A.8), we conclude by (A.11) that

(A.16) |gk| .

∣∣∣∣∣
ϕ′
ε(|Du|)

|Du|

n∑

i,j,l=1

bijuxlxj |D
2u|

∣∣∣∣∣ .
ϕ′
ε(|Du|)

|Du|
|D2u|2 ≈ g.

From now on, fix B32s ⋐ Ω. For k = 0, 1, . . . , n, let hk ∈ W 1,2(Bs) be a weak solution
to

Lhk = (bijhk,xj)xi = 0 in Bs, hk = vk on ∂Bs,

and let

wk = hk − vk ∈ W 1,2
0 (Bs).

Then, by De Giorgi’s theory for linear equation, see for instance [49, Theorem 7.7], we
have that, for any concentric balls Bρ ⊂ Bs with 0 < ρ 6 s,

(A.17)

 

Bρ

|Dhk|
2 dx .

(ρ
s

)β−2
 

Bs

|Dhk|
2 dx .

(ρ
s

)β−2
 

Bs

|Dvk|
2 dx
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for some β = β(n, p, q) ∈ (0, 2). In addition, by (A.8), Lhk = 0, (A.10), (A.15) and
(A.16),

ˆ

Bs

|Dwk|
2 dx .

ˆ

Bs

n∑

i,j=1

bij(hk − vk)xjwk,xi dx

= −

ˆ

Bs

n∑

i,j=1

bijvk,xjwk,xi dx =

ˆ

Bs

gkwk dx .

ˆ

Bs

g|wk| dx.

Here we interpret g0 := g. (Note that wk 6∈ C∞
0 (Bρ), but we can use wk as a test function

by an approximation argument.)
Hence applying Hölder’s inequality and (A.12) we have that

 

Bs

|Dwk|
2 dx .

(
 

B4s

g dx

)(
 

Bs

|wk|
1+1/δ dx

) 1
1+1/δ

.

Furthermore, the same arguments used to prove [59, (3.8) and (3.13)] (here we need
(A.13) and (A.14)) yield that

 

B4s

g dx .
1

M(4s)

n∑

k=0

 

B8s

|Dvk|
2 dx, where M(ρ) := sup

Bρ

v,

and

1

M(4s)

(
 

Bs

|wk|
1+1/δ

) 1
1+δ

6 c

(
1−

M(ρ)

M(8s)

) 1
1+δ

for all ρ ∈ (0, s].

Therefore, combining the last three estimates and (A.17) we have, for ρ ∈ (0, s], that

n∑

k=0

ˆ

Bρ

|Dvk|
2 dx .

((ρ
s

)n−2+β

+

(
1−

M(ρ)

M(8s)

) 1
1+δ

)
n∑

k=0

ˆ

B8s

|Dvk|
2 dx.

Finally by a standard iteration argument as in [59, p. 857] and Poincaré’s inequality, we
can find β1 ∈ (0, β) such that

n∑

k=0

 

Bρ

|vk − (vk)Bρ |
2 dx . ρ2

n∑

k=0

 

Bρ

|Dvk|
2 dx .

(ρ
s

)β1
M(4s)2

for any ρ ∈ (0, s]. With the definition of vk, this implies that, for any x, y ∈ Bs,

∣∣∣
ϕε(|Du(x)|)

|Du(x)|
uxk(x)−

ϕε(|Du(y)|)

|Du(y)|
uxk(y)

∣∣∣ = |vk(x)− vk(y)| .

(
|x− y|

s

) β1
2

M(8s).

We use Proposition 3.8(1) with ϕε in place of ϕ′ to conclude that

∣∣∣
ϕε(|z1|)

|z1|
z1 −

ϕε(|z2|)

|z2|
z2

∣∣∣ &
ϕε(|z1|+ |z2|)

|z1|+ |z2|
|z1 − z2| > ϕε(|z1 − z2|)

where we used |z1| + |z2| > |z1 − z2| and (Inc)1 of ϕε in the last step. Applying this in
the previous estimate with z1 = Du(x) and z2 = Du(y), we find that

ϕε(|Du(x)−Du(y)|) .

(
|x− y|

s

) β1
2

M(8s).
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We now undo the convention of omitting ε from (A.7) for the final part. Inserting
(A.6) with the definition of M(ρ) into the above estimate, we have that

ϕε
(
|Duε(x)−Duε(y)|

)
.

(
|x− y|

s

)β1
2
 

B16s

ϕε(|Duε|) dx.

At this point, we restrict our attention to the case Ω = B32s and consider minimizers uε
of (A.2) with the boundary value restriction w ∈ u+W 1,ϕε

0 (B32s). We apply ϕ−1
ε to both

sides and use (Dec)max{2,q} of ϕε, to get that

|Duε(x)−Duε(y)| .

(
|x− y|

s

)α0

ϕ−1
ε

(
 

B16s

ϕε(|Du|) dx

)

for some α0 ∈ (0, 1). Letting ε→ 0, we can remove ε in the above estimate as in the proof
of [35, Lemma 4.9]. Finally, by the same argument as in the proof of Lemma 4.7 with (A.6)
and Jensen’s inequality for the concave function equivalent to ϕ1/q (see Proposition 3.5(2))
we also see that

(A.18)

 

B16s

ϕ(|Du|) dx .

(
 

B32s

ϕ(|Du|)
1
q dx

)q
. ϕ

(
 

B32s

|Du| dx

)
.

These imply, for any x, y ∈ Bs and B32s ⋐ Ω, that

|Du(x)−Du(y)| 6 c

(
|x− y|

s

)α0
 

B32s

|Du| dx,

which shows (4.14). In addition, from (A.6) and (A.18), we also have (4.13).

Appendix B. Weighted estimate for autonomous problems

In this appendix, we discuss the global weighted estimate (4.18). For global regularity
estimates, the regularity of the boundary of the domain is a delicate issue. In particular,
the Reifenberg flat condition is considered sharp for Calderón–Zygmund type estimates
for problems in divergence form. Hence we shall give a result for domains satisfying the
this condition. We say that a bounded domain Ω is (δ, R)-Reifenberg flat for some small
δ ∈ (0, 1) and R > 0 if for any y ∈ ∂Ω and r ∈ (0, R] there exists an isometric coordinate
system with the origin at y, say (x1, . . . , xn), such that in this coordinate system,

Br(0) ∩ {xn > δr} ⊂ Ω ∩Br(0) ⊂ Br(0) ∩ {xn > −δr}.

Note that a domain with Lipschitz boundary with Lipschitz semi-norm δ ∈ (0, 1) is (δ, R)-
Reifenberg flat for some R > 0 and that the ball Br is (δ, 2δr)-Reifenberg flat for any
δ ∈ (0, 1

2
).

For 1 6 s 6 ∞, let As be the Muckenhoupt class. In particular, for 1 < s < ∞, a
weight w (i.e., w ∈ L1

loc(R
n) and w > 0) is an As-weight, w ∈ As, if

[w]As := sup
B⊂Rn

(
 

B

w dx

)(
 

B

w− 1
s−1 dx

)s−1

<∞.

For the properties of the As class, we refer to [50].

Theorem B.1. Let ϕ ∈ Φc ∩ C1([0,∞)) ∩ C2((0,∞)) with ϕ′ satisfying (Inc)p−1 and
(Dec)q−1 for some 1 < p 6 q < ∞, and let w ∈ As for some s ∈ (1,∞). There exists
a small δ = δ(n, p, q, s, [w]As) ∈ (0, 1) such that if Ω is (δ, R)-Reifenberg flat for some
R > 0, v0 ∈ W 1,ϕ(Ω) satisfies ϕ(|Dv0|) ∈ Lsw(Ω) and v ∈ W 1,ϕ(Ω) is the weak solution to

(B.2) div

(
ϕ′(|Dv|)

|Dv|
Dv

)
= 0 in Ω with v = v0 on ∂Ω,
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then
ˆ

Ω

ϕ(|Dv|)sw dx 6 c

ˆ

Ω

ϕ(|Dv0|)
sw dx

for some c = c(n, p, q, s, [w]As,
diam(Ω)

R
) > 0. In particular, letting Ω = Br we have (4.18),

since Br is (δ, 2δr)-Reifenberg flat.

Remark B.3. In Theorem B.1, δ is decreasing as a function of [w]As, see [70, Remark 2.2].
Moreover, we can also see by analyzing the proof that the constant c is increasing in

[w]As and diam(Ω)
R

when the other is constant. Therefore, when Ω = Br, the constant c is

increasing in [w]As, since
diam(Ω)

R
= 1

2δ
.

Sketch of the proof of Theorem B.1. For the p-Laplacian case, that is, ϕ(t) = tp, the
weighted estimate has been proved in [70], see also [20], for the following equation:

div
(
|Dv|p−2Dv

)
= div

(
|F |p−2F

)
in Ω with v = 0 on ∂Ω.

Specifically, in [70], it has been shown that for the above equation,
ˆ

Ω

|Dv|psw dx 6 c

ˆ

Ω

|F |psw dx

for any w ∈ As and any F ∈ Lpsw (Ω,R
n). Moreover, it turns out that this result without a

weight (i.e., w ≡ 1) is naturally extended [14] to the equation involving a general function
ϕ

(B.4) div

(
ϕ′(|Dv|)

|Dv|
Dv

)
= div

(
ϕ′(|F |)

|F |
F

)
in Ω with v = 0 on ∂Ω.

Therefore, proceeding as in [70] with minor modification, one can prove that for the
equation (B.4),

ˆ

Ω

ϕ(|Dv|)sw dx 6 c

ˆ

Ω

ϕ(|F |)sw dx

for any w ∈ As and any F ∈ Lϕ(Ω,Rn) satisfying ϕ(|F |) ∈ Lsw(Ω).
In this theorem, we consider non-zero boundary data v0. However, the gradient of v0

can be handled in a similar way as for F in the results mentioned above. Hence, by
the same argument as in [70], replacing tp by ϕ(t) and changing boundary comparison
estimates from [70, Lemma 4.6] to Lemmas B.5 and B.11 below, we have the desired
estimate. �

For the rest of the paper, we suppose the assumptions of Theorem B.1. We consider
our problem (B.2) on a local region near the boundary of Ω. Define Ωr(x) := Ω ∩Br(x),
Br := Br(0), Ωr = Ωr(0), B

+
r := Br ∩ {xn > 0} and B−

r := Br ∩ {xn < 0}. Then we
consider our equation in the region Ω5r satisfying that 5r < R and

B+
5r ⊂ Ω5r ⊂ B5r ∩ {xn > −10δr},

Here, δ ∈ (0, 1) and R > 0 come from the (δ, R)-Reifenberg flat condition of Ω and so δ
has to be determined later and R is given. Note that in view of the scaling invariance
property of (B.2), see for instance the proof of Lemma 4.15, we may let r = 1 and consider
assumption (B.7) below.

We first compare our equation (B.2) with an equation having zero boundary values on
∂Ω in a local region near the boundary.
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Lemma B.5. For v0 ∈ W 1,ϕ(Ω) let v ∈ W 1,ϕ
0 (Ω) be a weak solution to (B.2). For

any ε > 0 there exists small δ ∈ (0, 1) depending on n, p, q and ε such that if Ω is
(δ, 5)-Reifenberg flat and

(B.6) B+
5 ⊂ Ω5 ⊂ B5 ∩ {xn > −10δ},

(B.7)

 

Ω5

ϕ(|Dv|) dx 6 1 and

 

Ω5

ϕ(|Dv0|) dx 6 δ,

then for the weak solution w ∈ W 1,ϕ(Ω5) to

(B.8) div

(
ϕ′(|Dw|)

|Dw|
Dw

)
= 0 in Ω5 and w = v − v0 on ∂Ω5,

we have

(B.9)

 

Ω5

ϕ(|Dw|) dx 6 c and

 

Ω5

ϕ(|Dv −Dw|) dx 6 ε.

Here, c > 0 depends on p and q, but is independent of ε.

Proof. Since w − v + v0 ∈ W 1,ϕ
0 (Ω5), we have by (B.8) and (B.2) that

(B.10)

ˆ

Ω5

ϕ′(|Dw|)

|Dw|
Dw ·D(w − v + v0) dx = 0 =

ˆ

Ω5

ϕ′(|Dv|)

|Dv|
Dv ·D(w − v + v0) dx.

In view of ϕ(t) 6 tϕ′(t) and Propositions 3.5(5) and 3.6(4), the first equality above
implies that
 

Ω5

ϕ(|Dw|) dx 6

 

Ω5

ϕ′(|Dw|)|Dv −Dv0| dx 6

 

Ω5

[1
2
ϕ(|Dw|) dx+ cϕ(|Dv −Dv0|)] dx

for some c = c(p, q) > 0. By (B.7), we have the first estimate in (B.9).
We next prove the second estimate in (B.9). By Proposition 3.8(1), (B.10) and Propo-

sitions 3.5(5) and 3.6(4) we have that for κ1 ∈ (0, 1),
 

Ω5

ϕ′(|Dw|+ |Dv|)

|Dw|+ |Dv|
|Dw −Dv|2 dx .

 

Ω5

(
ϕ′(|Dw|)

|Dw|
Dw −

ϕ′(|Dv|)

|Dv|
Dv

)
·D(w − v) dx

.

 

Ω5

(ϕ′(|Dw|) + ϕ′(|Dv|))|Dv0| dx

. κ1

 

Ω5

[ϕ(|Dw|) + ϕ(|Dv|)] dx+
1

κq−1
1

 

Ω5

ϕ(|Dv0|) dx.

Moreover, by Proposition 3.8(3), for any κ2 ∈ (0, 1),

ϕ(|Dw −Dv|) 6 κ2(ϕ(Dw) + ϕ(Dv)) + κ−1
2

ϕ′(|Dw|+ |Dv|)

|Dw|+ |Dv|
|Dw −Dv|2.

Combining the above two estimates we have
 

Ω5

ϕ(|Dw −Dv|) dx . κ2

 

Ω5

[ϕ(Dw) + ϕ(Dv)] dx+
κ1
κ2

 

Ω5

ϕ(|Dw|) + ϕ(|Dv|) dx

+
1

κ2κ
q−1
1

 

Ω5

ϕ(|Dv0|) dx.

Finally applying (B.7) and the first estimate in (B.9) and choosing sufficiently small
numbers κ1, κ2 and δ depending n, p, q on ε, we have the second estimate in (B.9). �
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We also notice that the weak solution w to (B.8) has value zero on ∂Ω5 ∩ B5. We
next compare (B.8), which assumes zero boundary values on ∂Ω5 ∩B5, with an equation
defined in B+

2 with zero boundary values on B2∩{xn = 0}. A similar result can be found
in [14, Lemma 3.6]. The proof of that lemma employs a compactness argument. Here we
give a more direct approach which clearly shows the dependence on δ.

Lemma B.11. Let η = η(xn) ∈ C∞(R) with η = 0 if xn 6 0, η = 1 if xn > δ and
|η′| 6 2

δ
. For any ε > 0 there exists a small δ > 0 depending on n, p, q and ε, such that,

under the assumptions of the above lemma, if w0 is the weak solution to

div

(
ϕ′(|Dw0|)

|Dw0|
Dw0

)
= 0 in B+

2 and w0 = ηw on ∂B+
2 ,

then

(B.12)

 

B+
2

ϕ(|Dw0|) dx 6 c and

 

B+
2

ϕ(|Dw −Dw0|) dx 6 ε.

Moreover,

(B.13) ‖ϕ(|Dw0|)‖L∞(Ω1) = ‖ϕ(|Dw0|)‖L∞(B+
1 ) 6 c

 

B+
2

ϕ(|Dw0|) dx 6 c,

where we extend w0 by zero to B−
2 . Here constants c depend on n, p and q, but are

independent of ε.

Proof. We follow the technique in [57, Lemma 2.5], see also [19, Lemma 2.5]. Clearly,
(δ, R)-Reifenberg flat domains with δ ∈ (0, 1

2
) satisfy the measure density condition

|Br|4
−n 6 |Ωr(x)| 6 |Br| and 4−n|Br| 6 |Br(x)\Ωr(x)| for all x ∈ ∂Ω and r ∈ (0, R]. One

can show as in [72, Theorem 3.9] that, for equation (B.8), there exists σ = σ(n, p, q) ∈
(0, 1) such that ϕ(|Dw|) ∈ L1+σ

loc (B5) (we extend w by 0 in B5 \ Ω5) and

(
 

Ω3

ϕ(|Dw|)1+σ dx

) 1
1+σ

.

 

Ω4

ϕ(|Dw|) dx.

Then by Hölder’s inequality with (B.6), we observe that

(B.14)

ˆ

Ω3∩{xn6δ}

ϕ(|Dw|) dx . δ
σ

1+σ

(
ˆ

Ω3

ϕ(|Dw|)1+σ dx

) 1
1+σ

. δ
σ

1+σ

ˆ

Ω4

ϕ(|Dw|) dx.

In addition, using the fact that w ≡ 0 in B4\Ω4 and w is absolutely continuous on almost
all lines parallel to the co-ordinate axes, as well as Jensen’s inequality, we find that

(B.15)

ˆ

Ω2∩{xn6δ}

ϕ(|Dη||w|) dx .

ˆ

Ω2∩{xn6δ}

ϕ

(
1

δ

∣∣∣∣
ˆ xn

−8δ

Dnw(x
′, y) dy

∣∣∣∣
)
dx

.

ˆ

Ω2∩{xn6δ}

ϕ

(
 δ

−8δ

|Dnw(x
′, y)| dy

)
dx

.

ˆ

{|x′|62}×{−10δ<xn6δ}

 δ

−8δ

ϕ (|Dnw(x
′, y)|) dy dx′dxn

.

ˆ

Ω3∩{(x′,y):y6δ}

ϕ (|Dw(x′, y)|) dx′dy.

In the last inequality above, we used the facts that {|x′| 6 2} ∩ {|xn| 6 2} ⊂ B3 and
Dw ≡ 0 in B3 \ Ω3.
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Since w0 − ηw ∈ W 1,ϕ
0 (B+

2 ) and w0 is a minimizer, using also (B.15), we have that

(B.16)

ˆ

B+
2

ϕ(|Dw0|) dx 6

ˆ

B+
2

ϕ(|D(ηw)|) dx

.

ˆ

B+
2

ϕ(|Dw|) dx+

ˆ

B+
2 ∩{xn6δ}

ϕ(|Dη||w|) dx

.

ˆ

Ω3

ϕ(|Dw|) dx,

which together with (B.6) and (B.9) yields the first estimate in (B.12).
We next derive the second estimate in (B.12). Since w0 − ηw ∈ W 1,ϕ

0 (B+
2 ) ∩W

1,ϕ
0 (Ω2)

we have
ˆ

B+
2

(
ϕ′(|Dw0|)

|Dw0|
Dw0 −

ϕ′(|Dw|)

|Dw|
Dw

)
·D(w0 − ηw) dx = 0

which together with Propositions 3.5(5) and 3.6(4) implies that for any κ1 ∈ (0, 1)
ˆ

B+
2

(
ϕ′(|Dw0|)

|Dw0|
Dw0 −

ϕ′(|Dw|)

|Dw|
Dw

)
·D(w0 − w) dx

=

ˆ

B+
2 ∩{xn6δ}

(
ϕ′(|Dw0|)

|Dw0|
Dw0 −

ϕ′(|Dw|)

|Dw|
Dw

)
·D(ηw − w) dx

6

ˆ

B+
2 ∩{xn6δ}

(ϕ′(|Dw0|) + ϕ′(|Dw|)) (|Dη||w|+ |Dw|) dx

. κ1

ˆ

B+
2 ∩{xn6δ}

ϕ(|Dw0|) + ϕ(|Dw|) dx+
1

κq−1
1

ˆ

B+
2 ∩{xn6δ}

ϕ(|Dη||w|) + ϕ(|Dw|) dx.

Applying Proposition 3.8(3) and (B.14)–(B.16), we see that for any κ2 ∈ (0, 1),
ˆ

B+
2

ϕ(|Dw0 −Dw|) dx .

(
κ2 +

κ1
κ2

)
ˆ

Ω3

ϕ(|Dw|) dx+
δ

σ
1+σ

κ2κ
q−1
1

ˆ

Ω4

ϕ(|Dw|) dx.

Therefore, using the first estimate in (B.9) and taking sufficiently small κ1, κ2 and δ
depending on n, p, q and ε, we have the second estimate in (B.12).

Let w̃0 ∈ W 1,ϕ(B2) be an even extension of w0 so that w̃0(x) = w0(x) if x ∈ B+
2 and

w̃0(x1, . . . , xn−1, xn) = w0(x1, . . . , xn−1,−xn) if (x1, . . . , xn) ∈ B−
2 . Note that w̃0 is well

defined since w0 = 0 on Br ∩ {xn = 0}. Moreover w̃0 is a weak solution to

div

(
ϕ′(|Dw̃0|)

|Dw̃0|
Dw̃0

)
= 0 in B2,

see for instance [69, Theorem 3.4]. Therefore, (B.13) follows from Lemma 4.12. �
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13. A. Benyaiche, P. Harjulehto, P. Hästö and A. Karppinen: The weak Harnack inequality for unbounded

supersolutions of equations with generalized Orlicz growth, Preprint (2020), arXiv:2006.06276.
14. S. Byun and Y. Cho: Nonlinear gradient estimates for generalized elliptic equations with nonstandard

growth in nonsmooth domains, Nonlinear Anal. 140 (2016), 145–165.
15. S. Byun and J. Oh: Global gradient estimates for non-uniformly elliptic equations, Calc. Var. Partial

Differential Equations 56 (2017), no. 2, Art. 46, 36 pp.
16. S. Byun and J. Oh: Global gradient estimates for the borderline case of double phase problems with

BMO coefficients in nonsmooth domains, J. Differential Equations 263 (2017), no. 2, 1643–1693.
17. S. Byun and J. Oh: Regularity results for generalized double phase functionals, Analysis PDE, to

appear.
18. S. Byun and J. Ok: On W 1,q(·)-estimates for elliptic equations of p(x)-Laplacian type, J. Math. Pures

Appl. (9) 106 (2016), no. 3, 512–545.
19. S. Byun, J. Ok and Y. Youn: Global gradient estimates for spherical quasi-minimizers of integral

functionals with p(x)-growth, Nonlinear Anal. 177 (2018), 186–208.
20. S. Byun and S. Ryu: Global weighted estimates for the gradient of solutions to nonlinear elliptic
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54. P. Harjulehto, P. Hästö and M. Lee: Hölder continuity of quasiminimizers and ω-minimizers with

generalized Orlicz growth, Ann. Sc. Norm. Super. Pisa Cl. Sci., to appear. DOI: 10.2422/2036-
2145.201908 015
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