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A B S T R A C T

There are several different approaches to analyze event-related potentials (ERPs) at single-subject level, and the
aim of the current study is to provide information for choosing a method based on its ability to detect ERP effects
and factors influencing the results. We used data from 79 healthy participants with EEG referenced to mastoid
average and investigated the detection rate of auditory N400 effect in single-subject analysis using five methods:
visual inspection of participant-wise averaged ERPs, analysis of variance (ANOVA) for amplitude averages in a
time window, cluster-based non-parametric testing, a novel Bayesian approach and Studentized continuous
wavelet transform (t-CWT). Visual inspection by three independent raters yielded N400 effect detection in 85%
of the participants in at least one paradigm (active responding or passive listening), whereas ANOVA identified
the effect in 68%, the cluster-method in 59%, the Bayesian method in 89%, and different versions of t-CWT in
22–59% of the participants. Thus, the Bayesian method was the most liberal and also showed the greatest
concordance between the experimental paradigms (active/passive). ANOVA detected significant effect only in
cases with converging evidence from other methods. The t-CWT and cluster-based method were the most con-
servative methods. As we show in the current study, different analysis methods provide results that do not
completely overlap. The method of choice for determining the presence of an ERP component at single-subject
level thus remains unresolved. Relying on a single statistical method may not be sufficient for drawing con-
clusions on single-subject ERPs.

1. Introduction

Single-subject analyses of event-related potentials (ERPs) and re-
lated statistical testing have been widely discussed due to contradictory
results reported for different approaches (Gabriel et al., 2016; Groppe
et al., 2011b), incomplete reproducibility (Naccache et al., 2015;
Tzovara et al., 2015) and biased chasing for significance (Luck and
Gaspelin, 2017). Further, in addition to the fact that there is no explicit
observational definition of an ERP component, the methods used in
single-subject analyses are an inconsistent mixture, varying in a priori
information, statistical corrections, and clinical conventions. This
makes the direct comparison of the results produced by the different
analysis methods unfeasible. Yet, analysis at single-subject level is

needed when ERPs are used to elucidate individual characteristics such
as person's state of consciousness or the effect of a neurological dis-
order.

In clinical setting, it is usually sufficient to find out whether the
ERPs produced by two types of stimuli differ in terms of amplitude, or
whether a certain ERP component is present. This has traditionally been
assessed by visual inspection, despite the risk of subjectivity. To in-
crease reliability, many researchers have used multiple methods for
single-subject analyses, but the results have overlapped only partially
(Rohaut et al., 2015; Sculthorpe-Petley et al., 2015; Steppacher et al.,
2013). An ideal statistical method for single-subject analyses would be
sensitive but reliable in terms of false positives, objective, easy to use,
and utilizable with many ERP components. The method should also
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take advantage of all the data, function without broad a priori as-
sumptions, and be able to handle the multiple comparisons problem.

Single-subject analyses are also complicated by differences in ERP
amplitude, latency and scalp distribution between individuals (Lang
et al., 1995; Luck et al., 2011), between healthy subjects and patients
with brain injuries (Duncan et al., 2009; Kotchoubey, 2015), and even
between different recordings from the same person (Lang et al., 1995).
The limited number of trials and the resulting signal-to-noise ratio
(SNR) also hinder the use of single-subject level analyses. Especially
when complex stimuli are necessary, such as with cognitive ERPs, the
duration of an experiment and the laborious preparation of stimuli
often limit the number of trials. This makes the choice of analysis
method especially crucial.

Our general aim with this study is to provide information to both
researchers and clinicians to help them make informed decisions on the
selection of single-subject analysis methods, and to compare and in-
terpret results of ERP studies. Specifically, we used EEG data from a
large experiment and studied N400 ERP component to identify, eluci-
date, and substantiate the effects of five different single-subject analysis
methods on the detection of a complex cognitive ERP. In addition to
visual inspection, we utilized analysis of variance (ANOVA) of ampli-
tude averages in a time window, cluster-based non-parametric method,
a Bayesian approach, and Studentized continuous wavelet transform (t-
CWT). The basic principles and characteristics of these methods are
introduced in the following paragraphs.

1.1. Visual inspection

Visual inspection of averaged ERPs allows taking into account in-
dividual differences in topography, latency and morphology of ERP
components, as well as interactions with other components. This flex-
ibility of the method is especially important when, e.g., patients with
delayed ERP latencies are studied. Visual inspection is also necessary to
ensure the consistency of the results when statistical methods are used
(Gabriel et al., 2016). Visual inspection has been reported to detect
both more (Gabriel et al., 2016; Schoenle and Witzke, 2004) and less
(Gabriel et al., 2016; Steppacher et al., 2013) ERP effects than statistical
methods.

The subjectivity of visual inspection can be reduced by using criteria
concerning, e.g., the effect size or hierarchy of components (Fischer
et al., 1999), or by combining the views of 2–3 inspectors (Schoenle and
Witzke, 2004; Steppacher et al., 2013). With several raters, full inter-
rater agreement is usually required, but the agreement rate is often not
reported. This approach resembles the clinical routine used in many
hospitals (Gabriel et al., 2016; Kotchoubey, 2015; Steppacher et al.,
2013). Results of visual inspection may be confirmed using statistical
methods, such as by studying the cross-correlation between different
sets of trials (Fischer et al., 1999).

1.2. Average-in-a-time-window ANOVA

ANOVA of voltage amplitude-averages calculated for a time window
is the standard of group-level ERP analysis, which is also applicable at
single-subject level if inter-trial variation is utilized. ANOVA allows the
inclusion of multiple dimensions of data into the analysis as within-
subject or between-subjects factors, and avoids the multiple compar-
isons problem. The amplitude-averaging yields noise resistance and
makes the method easily comprehensible. However, if components with
opposite deflections are present within suboptimally chosen time
window or region of interest, these may cancel each other out as within-
trial variation is lost in averaging.

It is possible to utilize data from all electrodes for the analysis of
wide-spread effects (Revonsuo et al., 1998), and also interactions be-
tween condition and topography may be studied. However, choosing a
region of interest (ROI) can increase the sensitivity of the method
especially in the case of spatially restricted ERP components. Therefore,

the method heavily relies on a priori information of the spatiotemporal
location of the ERP component. The choice of ROI should be based on
previous information or different dataset and not the data to be ana-
lyzed to avoid circularity and implicit multiple comparison problem
(Kriegeskorte et al., 2009; Luck, 2014). To introduce more flexibility,
and to take into account individual differences in ERP latency, the time
window for averaging may also be chosen case-by-case around the peak
amplitude observed within the time window of interest (Kappenman
and Luck, 2015; Padilla et al., 2006), although this may increase the
rate of false positives.

1.3. Cluster-based non-parametric testing

While ANOVA is a parametric approach that uses averages in a time-
window, t-tests can also be calculated for consecutive time points
(Hinterberger et al., 2005), electrodes (Revonsuo and Laine, 1996), or
their combination (Bekinschtein et al., 2009). This, however, leads to
multiple comparisons problem where p-values have to be corrected or
the significance threshold needs to be adjusted. Setting an appropriate
threshold value is difficult and even the formal approaches have been
criticized (Groppe et al., 2011a; Piai et al., 2015). The problems of
multiple comparison correction or thresholding may be solved using
more universal methods such as permutation tests or cluster-based
permutation tests, controlling false discovery rate or generalized false
discovery rate (Groppe et al., 2011a).

One of the readily available implementations of cluster-based non-
parametric testing is the FieldTrip package for MATLAB (Maris and
Oostenveld, 2007). The cluster-mass procedure of FieldTrip includes
summing significant t-test statistics of adjacent spatiotemporal points to
cluster-level statistics (Bullmore et al., 1999; Maris and Oostenveld,
2007). The p-value of a cluster is derived from comparison to a Monte
Carlo estimate of a permutation distribution, generated by randomly
partitioning the trials to different conditions. This makes the test non-
parametric, i.e., independent of any assumptions on the distribution of
data.

The cluster-based approach leads to weak family-wise error rate
control, i.e., a non-specific null hypothesis is being tested (Maris, 2012).
Therefore, the test is controlled for multiple comparisons but it provides
no information on the significance of individual spatiotemporal points.
This leads to high efficiency even with a small number of trials, and
increases the sensitivity compared to mass univariate approaches with
strong family-wise error rate control (Groppe et al., 2011b; Maris and
Oostenveld, 2007). In single-subject analyses, the presence of an ERP
component is often of greater importance than the precise electrodes
and time points. The methods with weak family-wise error rate control
are especially useful with slow cognitive ERPs having a broad scalp
distribution.

The cluster-based approach is useful when little a priori information
on the topography or latency of an ERP component is available, several
almost overlapping components are present, or the topography or la-
tency themselves are of interest (Groppe et al., 2011a). The cluster-
based permutation methods such as the one implemented in FieldTrip
may be modified by providing additional a priori information con-
cerning the time window, electrodes of interest, or the significance
criteria for individual sample points. Since the approach is independent
of strictly pre-defined spatiotemporal information, it is well suited to
analyses at single-subject level and has been applied in several previous
publications (Cruse et al., 2014; Höller et al., 2011; Sculthorpe-Petley
et al., 2015).

1.4. Bayesian approach

The voltage-amplitude can also be approximated with regression
techniques. Modeling the voltage-amplitude curve using linear model
enables taking into account the statistics of the background EEG signal
and therefore improves the estimation. It is also possible to model the
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curve in multiple ways by using different design matrices (Karjalainen,
1997). In this study, the Bayesian approach is adopted as it enables
straightforward testing of the presence of ERP.

The idea of Bayesian framework for statistical analyses is based on
the Bayes' theorem where the posterior distribution for the parameters
conditioned on the observed data can be expressed as the product of the
likelihood function that models the observations and the prior dis-
tribution for the parameters containing the a priori information
(Gelman et al., 1995). The posterior distribution contains all the mod-
eled information of the parameters given the observations, and hence
the questions related to the parameters can be answered using basic
probability theory. In addition to somewhat simpler framework than
frequentist inference, the Bayesian approach is especially powerful if
strong a priori information is available. If there is a lack of a priori
information, then the prior distributions are more general.

Compared to other analysis methods presented in the current study,
the Bayesian regression approach takes into account the user-specified
model for the voltage-amplitude curve within the time window of in-
terest. The Bayesian approach is optimal only under the subjective as-
sumptions of the observation models and given the a priori information.

1.5. t-CWT

The continuous wavelet transformation combined with Student's t-
tests (t-CWT) is yet another method for single-subject ERP analysis
(Bostanov, 2004; Bostanov, 2015), variants of which have previously
been shown to be relatively sensitive and noise-resistant (Bostanov and
Kotchoubey, 2006; Daltrozzo et al., 2009; Gabriel et al., 2016; Real
et al., 2014; Steppacher et al., 2013). The t-CWT method is designed to
extract a set of features from ERP signals and preserve the maximum
amount of useful information. The ERP signal is represented in terms of
time, amplitude and scale, i.e., the inverse of frequency. These features
can then be assessed in a multivariate setting. The data represented as
scale-time plots called scalograms can be compared between different
conditions by applying t-tests at each point and ERP components can be
detected from the resulting t-CWT scalograms (Bostanov and
Kotchoubey, 2006). The t-CWT method is best suited for analysis of
whole ERP waveforms in long time windows, however, it can also be
utilized for the study of single ERP components.

The t-CWT method is implemented in a publicly available MATLAB
package (Bostanov, 2015). The algorithm uses linear discriminant
functions (LDF) to model the different conditions, which can then be
used to classify trials into these conditions. Several approaches for
performing the comparison between conditions in single-subject ana-
lyses have been introduced (Bostanov and Kotchoubey, 2006; Bostanov,
2015; Real et al., 2014). The analysis may either utilize training data
from a group of individuals or both the training and testing may be
based on a single individual only. If the training and testing phases
utilize the same data, the resulting values have been termed “individual
biased” as they need to be corrected using randomization tests not
implemented in the published package. In the “individual split-half”
method, a subset of trials from the participant of interest is used as a
training set, and LDFs from the training phase are then used to study the
remaining trials. Another method called “individual hold-out” is com-
putationally more demanding because it is based on excluding one trial
at a time and using the remaining trials to create LDFs for the classi-
fication of the excluded trial. The “group hold-out” approach is ana-
logous with the individual hold-out method but it uses data from sev-
eral individuals: one person is excluded, the LDFs are formed using data
from the remaining persons and the data from the initially excluded
person are classified using the LDFs based on the group-level data.

Despite the promising results obtained with the t-CWT method, the
optimal approach among those described above and in the literature
has not yet been fully established. In addition, not all previous studies
have specified the parameter values used in the analyses (Daltrozzo
et al., 2009; Steppacher et al., 2013). Due to the lack of a standard

approach for t-CWT analysis, we have chosen to include in the present
study several approaches which are available in the published software
package. However, since the focus of this study lies in methods readily
available for use and applying them as implemented in published
packages, we did not apply modifications not available in the published
software package.

1.6. N400 effect

We utilized the N400 ERP component as an example to elucidate
how the choice of analysis method influences the detection rate of
complex cognitive ERPs. N400 is typically observed in the time window
of 250–600ms post-stimulus for linguistic stimuli and it peaks around
400ms (Kutas and Hillyard, 1989). The difference between N400
components for congruous and incongruous stimuli is called the N400
effect. N400 effect has been widely used in the clinical setting at single-
subject level to test whether semantic processing is present in patients
with disorders of consciousness (Balconi and Arangio, 2015; Beukema
et al., 2016; Daltrozzo et al., 2009; Erlbeck et al., 2017; Hinterberger
et al., 2005; Kotchoubey et al., 2005; Kotchoubey, 2005; Schoenle and
Witzke, 2004). Further, its occurrence is associated with good neuro-
logical outcome (Rohaut et al., 2015; Steppacher et al., 2013). N400 has
broad topography on the scalp but it is strongest in the centroparietal
region (Duncan et al., 2009). N400 effect is strengthened by attention
(Erlbeck et al., 2014; Holcomb, 1988) and active task (Cruse et al.,
2014; Erlbeck et al., 2014). Ideally, N400 effect should be studied using
stimuli that are unique throughout the experiment, since its amplitude
decreases when the same stimulus is heard repeatedly (Van Petten
et al., 1991). Consequently, the number of available stimuli is limited
and the need for powerful analysis method is highlighted.

1.7. Aims of the study

The incentive for the study is to help both researchers and clinicians
to make informed decisions on the selection of single-subject analysis
methods and to contextualize and interpret results of ERP studies. In the
current study, we investigated the detection rate of visual inspection,
ANOVA of average amplitudes in a time window, cluster-based non-
parametric testing, Bayesian approach, and t-CWT in single-subject
analysis of auditory N400 effect. Each method was used with its con-
ventional and most reasonable parameters, as reported in the previous
literature and available in published software packages. Given that the
magnitude of N400 effect is dependent on, e.g., active responding to
stimuli, the analysis methods were tested using data from both active
responding and passive listening paradigms, to simulate the case of
unresponsive patients and to produce two conditions with different
signal-to-noise ratios. We further examined, quantitatively and quali-
tatively, which characteristics of the individual ERPs (such as ampli-
tude, timing, topography, length, morphology, and noisiness of signal)
were associated with the ability of visual inspection, ANOVA of average
amplitudes in a time window, cluster-based non-parametric testing, and
Bayesian approach to detect N400 effect.

2. Materials and methods

2.1. Methods of data collection

2.1.1. Participants
The study was performed at the Turku University Hospital, Finland,

after approval of the local Ethics Committee (ClinicalTrials.gov
Identifier NCT01889004, Part 1). The participants were 79 healthy
20–30-year-old males (median 23 years). They were right-handed by
self-report and had normal hearing determined using Entomed SA 50
screening audiometer (Entomed MedTech AB, Malmö, Sweden). The
data reported here are from the screening and baseline experiment of a
series of five experiments investigating mechanisms of anesthesia.
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Group-level baseline data of 47 participants have previously been re-
ported (Kallionpää et al., 2018). Only males were included because of
the radiation exposure related to a subsequent positron emission to-
mography study. Written informed consent was acquired according to
the Declaration of Helsinki.

2.1.2. Stimuli
The stimuli were 310 Finnish auditory high cloze probability sen-

tences prepared along the lines of a previous study (Revonsuo et al.,
1998). Specifically, twenty psychology students were asked to fill in the
missing last word of the sentences, using a word that first comes to
mind and fits the context. Different inflected forms of the same word
and clear synonyms were combined to the most common form. Sen-
tences with a resulting cloze probability of at least 50% qualified for the
study, and the mean cloze probability of the 310 sentences included in
the study was 83.3% (sd 16.2). The sentences were randomly assigned
into two equal sized groups. Sentences in the congruous group were
kept unchanged, while the last words of sentences in the incongruous
group were replaced with context-incompatible words which were
matched for lemma frequency, inflection, word class, and number of
syllables (Laine and Virtanen, 1999). The first phoneme of the incon-
gruous last word had to differ from its congruous counterpart whenever
possible. For example, “Someone knocked on a door” was changed to
“Someone knocked on a wife”. The resulting congruous and incon-
gruous sentence groups did not differ in terms of last word lemma
frequency, sentence word count and number of syllables in the last
word (Mann–Whitney U, p > 0.05 for all).

The sentences were digitally recorded by a female native Finnish
speaker, and their amplitudes were normalized. A 1 s pause was re-
corded before the last word of each sentence to avoid the phonetic cues
of the last word mixing with the second last word, and the duration of
the silence was digitally adjusted to 1000ms (Ford et al., 1996). The
stimuli were divided into a practice block of 10 sentences and two
blocks of 150 experimental sentences, each block including 75 con-
gruous and 75 incongruous randomly chosen sentences. There were no
significant differences between the two blocks of stimuli in terms of last
word lemma frequency, sentence word count and number of syllables in
the last word (Mann–Whitney U, p > 0.05 to all). The stimuli were
presented in the same sequence to all participants.

2.1.3. Equipment and procedure
Data were collected with NeurOne 1.3.1.26 software and Tesla

#MRI 2013011 and #MRI 2013012 amplifiers (Mega Electronics Ltd.,
Finland). The EEG tracing was recorded using a 64-channel EasyCap
Active electrode cap that had sintered Ag/AgCl active electrodes placed
according to the 10–10 electrode system. EEG was referenced online to
FCz and the ground electrode was placed at AFz. Horizontal and ver-
tical eye movements were recorded using four additional electrodes.
EEG was recorded with a sampling rate of 1000 Hz with amplifier low-
pass filter having half-amplitude threshold of 360 Hz (transition band
250–498 Hz) and high-pass filter of 0.16 Hz (6 dB/octave). The sen-
tence stimuli were presented with Presentation 17.0 stimulus delivery
and experimental control software system (Neurobehavioral Systems
Inc., CA, USA). All the stimuli and instructions were delivered via
headphones.

The subject rested eyes closed on a bed, holding response handles.
Stimulus-free baseline was recorded for 2min. After this, participants
were instructed to carefully listen to the stimuli and were told that their
memory regarding the sentences would be tested at the end of the ex-
periment. The N400 experiment began with ten practice sentences,
after which the actual stimuli were presented in two blocks. Each
sentence was followed by a response cue, which was a 100ms long sine
sound played 1 s after the end of the sentence. The response cue was
followed by 2.3 s silence before the next sentence started. In the first
block, the participants were asked to indicate whether the sentence was
congruous or incongruous by squeezing either the right or the left

response handle after each stimulus (active paradigm), and in the
second block, the task was to carefully listen to the stimuli without
responding (passive paradigm). The fixed paradigm order was used in
order to obtain baseline measurements for the subsequent anesthesia
study reported elsewhere (Kallionpää et al., 2018). The duration of
stimulus blocks was 18min 20 s, and 17min 53 s, respectively. Hand-
edness for responses was balanced across participants. Another sti-
mulus-free baseline of 2min was recorded after the stimulus paradigm.

2.2. Data analysis methods

2.2.1. Preprocessing
The preprocessing of the EEG signal was conducted with MATLAB

R2013b (MathWorks Inc., USA) and EEGLAB 13_4_4b-toolbox. The
signal was downsampled to 250 Hz and re-referenced to the average of
the channels TP9 and TP10 (mastoid average). High-pass filtering was
performed with non-causal Blackman-windowed sinc-FIR-filter (tran-
sition band width 0.2 Hz, passband ripple 0.02% and stopband at-
tenuation −74 dB) using the half-amplitude threshold of 0.1 Hz. The
low-pass filtering was performed with a corresponding filter of half-
amplitude threshold of 20 Hz and transition bandwidth of 4 Hz.

The trials were segmented −1000–1500ms relative to the last
words of sentences, and epochs containing artifacts were identified by
visual inspection with help of independent component analysis (ICA). A
median of 6 (range 0–20) trials per participant were removed in the
active paradigm, and 4 (range 0–22) trials in the passive paradigm. ICA
was run again for the pruned dataset and the components related to eye
movements were removed. The noisy channels were interpolated (mean
0.67, median 0, range 0–7 channels per participant). Baseline was
corrected using −200–0ms prestimulus period. In addition to event-
related epochs, 75+ 75 epochs of length 2.5 s were randomly seg-
mented from the 2min stimulus-free baseline period recorded before
and after the stimulus blocks and were preprocessed similarly to the
event-related epochs. These epochs were used to model the background
noise of EEG in the Bayesian regression method. After these pre-
processing steps, the data analysis was conducted with five different
methods: visual inspection, ANOVA of time-windowed averages,
cluster-based nonparametric testing, Bayesian approach, and t-CWT.

2.2.2. Visual inspection
Single-subject averaged ERPs were visually inspected for both active

and passive paradigms. Each participant's data were averaged over
trials for both paradigms and plotted with Brain Vision Analyzer 2.0
(Brain Products GmbH, Germany) to obtain the average ERP plot for
each individual and paradigm. The plots showed the time window
−200–1000ms in 27 channels evenly distributed over the scalp.
Congruous and incongruous stimuli were presented as separate curves
within the same figure, allowing direct comparison. The figures were
presented in randomized order to three raters, who independently
evaluated whether N400 effect was present. N400 effect was defined to
be present if all of the three raters agreed on it. Agreement between
inspectors was evaluated using Fleiss's kappa and within rater pairs
using Cohen's kappa.

2.2.3. Average-in-a-time-window ANOVA
The amplitudes of each trial were averaged in the time window

300–600ms post-stimulus (Kutas and Hillyard, 1980). The analysis was
restricted to 13 channels from the centroparietal area (Cz, C1, C2, C3,
C4, Pz, P1, P2, P3, P4, CPz, CP1, CP2). All statistics were computed
using SPSS Statistics 22 (IBM Corp., NY, USA). Repeated-measures
analyses of variance (ANOVAs) were performed at trial-level separately
for each participant to compare congruent and incongruent trials and to
allow for repeated measures from the 13 electrodes (Kotchoubey et al.,
2005). P-values smaller than 0.05 were considered as evidence of the
presence of N400 effect. All the comparisons were separately calculated
for the active and passive paradigm.
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2.2.4. Cluster-based non-parametric testing
Cluster-based non-parametric testing was carried out utilizing the

FieldTrip toolbox (Oostenveld et al., 2011) for MATLAB. The congruous
and incongruous conditions were compared using one-tailed in-
dependent samples t-tests in the time window of 200–800ms post-sti-
mulus (Cruse et al., 2014), and for both paradigms separately. Spatio-
temporally adjacent samples were clustered by summing their t-values
if a significant effect was detected simultaneously in at least two
channels having a maximum distance of 40mm in the standard head
model. The t-value of the cluster was compared with the t-value dis-
tribution of 1000 random permutations to obtain a Monte Carlo esti-
mate of cluster p-value. An alpha threshold of 0.05 was used, and the
clusters with lower p-values were defined as indicative of statistically
significant N400 effect.

2.2.5. Bayesian method
Linear regression-based estimation was performed based on a novel

Bayesian approach, which is described in more detail in a separate
technical report (Pesonen et al., 2019). In this approach, we explicitly
model the voltage amplitude curve in the time window of 0–800ms
relative to the stimulus, and find the posterior distribution for the
parameters that define N400 component for each subject at each of the
13 channels from the centroparietal area. The stimulus-free background
EEG signal was assumed to be a stationary Gaussian process with mo-
ments evaluated from the stimulus-free epochs recorded before and
after the stimulus blocks. The early part (0–296ms) of the voltage-
amplitude after stimulus presentation was assumed equal for the con-
gruent and incongruent stimuli. The latter part (300–800ms) was as-
sumed to differ by an additive component in the curve under different
types of stimuli.

Using these assumptions and a Gaussian prior distribution for the
parameters, the Gaussian posterior distribution was evaluated in closed
form. The subject-level posterior distribution was evaluated from
channel-level posterior distributions, by assuming a common additive
N400 component to the investigated channels. If the probability of a
negative N400 effect within a time window 300–600ms was>95%,
N400 effect was concluded to be present.

2.2.6. t-CWT
The t-CWT method was applied using the publicly available

MATLAB package t-CWT 2.01 (Bostanov, 2015). The example data
provided in the package was used as a template when importing the
pre-processed epochs into the analysis. The time window of interest was
set to 300–600ms and the analysis was restricted to the region of in-
terest of 13 channels from the centroparietal area. The cutoff scale Sc
was 50ms corresponding to the cutoff frequency of 20 Hz. We wanted
to restrict the analysis to N400 effect which was possible only by lim-
iting the time window and cutoff scale, because restricting the analysis
to a negative extremum in a broader time window (like in Bostanov and
Kotchoubey, 2006) is not implemented in the package. Log-grid sam-
pling rate R was 15 points per scale which has previously been shown to
result in optimal ratio of efficiency and computational time (Bostanov,
2015). The fade-in time Tin was 20ms, fade-out time Tout was 200ms
and the eigenvalues that represented 99% of variance in principal
component transformation were retained.

The presence of N400 effect was assessed using the methods im-
plemented in the t-CWT 2.01 package: individual split-half, individual
hold-out, group hold-out and individual biased. The individual split-
half method was utilized in two separate analyses: in the first analysis,
the data were split 50%/50% into training and test sets, and in the
second analysis, 80% of the data were utilized for training and, simi-
larly to Bostanov (2015), 20% were included in the test set. The a priori
error rate was computed based on the actual number of trials in each
condition. In the split-half and group hold-out approaches, Hotelling's
T2 test p-values smaller than 0.05 were considered as evidence of the
N400 effect while for the individual hold-out method the binomial

distribution p-values for the difference of actual and a priori error rates
are presented. Although the individual biased method has previously
been reported to be highly efficient (Bostanov and Kotchoubey, 2006),
its results are presented without the randomization test correction that
would be needed to compensate the accumulation of chance bias as the
correction is not implemented in the package.

2.2.7. Performance evaluation of different methods
The differences between the subsets of participants in whom N400

effect was detected by visual inspection, ANOVA, cluster-based non-
parametric testing or Bayesian method were evaluated quantitatively
by formal comparisons of epoch characteristics and qualitatively by
visual classification. To avoid unnecessary complexity and excessive
multiple comparisons, the t-CWT method with its alternative testing
approaches was not included in quantitative and qualitative compar-
isons between different methods.

For the quantitative comparisons, N400 effect size and its maximum
and median values were calculated from the difference waves for each
individual. The standard deviation, kurtosis and skewness were calcu-
lated over trials using the time-windowed amplitude averages, and
between sample points averaged over trials. Each analysis was re-
stricted to the time window from 300 to 600ms in the Cz channel. The
maximum and average of global field power (GFP) (Lehmann and
Skrandies, 1980) were calculated separately for congruent and incon-
gruent trials using average referenced data between 300 and 600ms.
The participants were stratified by whether a significant N400 effect
was detected by each method and the resulting subgroups were com-
pared with independent samples t-tests separately for each of the four
methods in the two paradigms. In addition, the participants in whom
N400 effect was not detected with any method were compared to those
with a significant effect according to at least one method. As each
quantitative feature was tested five times in the two paradigms, all
values were compared to the Bonferroni corrected α-level of 0.005.

In the qualitative comparison of the analysis methods, the same
N400-average-figures that were used in the context of visual inspection
method were visually classified based on timing (typical/early/late/
inconsistent), topography (typical/local/frontal/inconsistent), length of
effect (typical/short/long/inconsistent), morphology (typical/typical
but rough/multiple-peaked/flat/flat but rough/inconsistent), alpha
synchronization (not prominent/strong) and overall signal quality
(normal/noisy). The classification was performed by one rater in ran-
domized order.

3. Results

The experiment was successfully completed in all participants. In
the active paradigm, the participants responded to a median of 100%
(range 90–100%) of the 150 stimuli, and 94% of the participants had
response rate≥ 99%. Median of 100% (range 96–100%) of the re-
sponses were correct.

3.1. Visual inspection

Visual inspection of N400 effect resulted in substantial agreement
between the raters with Fleiss's kappa value of 0.68 and Cohen's kappa
values of 0.78 (A–B), 0.68 (B-C) and 0.60 (A–C) for rater pairs. At least
two raters reported N400 effect in 118/158 ERP-figures, while all three
reported the effect in 105 plots. N400 effect was detected in at least one
of the two paradigms for 67 (85%) participants, when agreement of
three raters was required (Table 1).

3.2. Average-in-a-time-window ANOVA

The numbers of individual participants with significant (p < 0.05)
effects are shown in Table 1. N400 effect was detected in at least one of
the two paradigms for 54 (68%) participants.
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3.3. Cluster-based non-parametric testing

The effect was observed at single-subject level in 47 (59%) parti-
cipants in at least one paradigm (Table 1). The significant clusters
identified by the algorithm mostly interposed 200 and 600ms and had
a broad scalp distribution (Fig. 1).

3.4. Bayesian method

The computed probabilities for N400 detection for 79 subjects in
active and passive setting are illustrated in Fig. 2, and the performance
results for 95% detection probability are shown in Table 1. N400 effect

was detected in at least one of the two paradigms for 70 (89%) parti-
cipants.

3.5. t-CWT

The detection results based on the Hotelling's T2 test p-values are
shown for the t-CWT split-half method, conducted with two different
ratios of trials split in training and test sets, and group hold-out method
(Table 1). The full t-CWT analysis results are presented in Supple-
mentary Table 1. The results showed high variation and low con-
cordance between different approaches. The N400 effect was detected
in at least one paradigm in 32% (25/79) of participants with 50‐%/50%

Table 1
The number of participants with detected N400 effect.

n (% of all 79 participants)

Active Passive Active & passive Only activea Only passivea Neither

Visual 56 (70.9%) 49 (62.0%) 38 (48.1%) 18 (22.8%) 11 (13.9%) 12 (15.2%)
ANOVA 43 (54.4%) 33 (41.8%) 22 (27.8%) 21 (26.6%) 11 (13.9%) 25 (31.6%)
Clustered 39 (49.4%) 25 (31.6%) 17 (21.5%) 22 (27.8%) 8 (10.1%) 32 (40.5%)
Bayes 60 (75.9%) 60 (75.9%) 50 (63.3%) 10 (12.7%) 10 (12.7%) 9 (11.4%)
t-CWT
Split-half 50%/50% 19 (24.1%) 11 (13.9%) 5 (6.3%) 14 (17.7%) 6 (7.6%) 54 (68.4%)
Split-half 80%/20% 13 (16.5%) 7 (8.9%) 3 (3.8%) 10 (12.7%) 4 (5.1%) 62 (78.5%)
Group hold-out 34 (43.0%) 27 (34.2%) 14 (17.7%) 20 (25.3%) 13 (16.5%) 32 (40.5%)

a Without cases detected in both active and passive paradigm.
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Fig. 1. Clusters that reached statistical significance in terms of time (A.) and electrodes (B.). The sample points and electrodes that belong to the statistically
significant clusters are marked with white color.
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split-half method, 22% (17/79) with 80‐%/20% split-half method, and
59% (47/79) with group hold-out method.

3.6. Performance evaluation of different methods

Due to the variety of different t-CWT approaches (Supplementary
Table 1), the t-CWT results were omitted from the following perfor-
mance evaluation of different methods. The individual p-values and
effect sizes for visual inspection, ANOVA, cluster-based non-parametric
testing and Bayesian method are reported in the Supplementary
Table 2. N400 effect was detected by at least one of the four methods
(visual inspection, ANOVA, cluster-based non-parametric testing and
Bayesian method) in 86% (68/79) of participants in the active para-
digm and in 86% (68/79) of participants in the passive paradigm
(Fig. 3). All four methods detected N400 effect in the same 37% (29/79)
of participants in the active paradigm and in 25% (20/79) in the passive
paradigm. The second largest intersection between methods was that of
visual inspection, ANOVA and Bayesian method. Bayesian regression
turned out to be the most lenient method, and resulted in 7 subjects in
the active and 17 subjects in the passive paradigm in whom N400 effect
was not observed with the other approaches. Also visual inspection
detected N400 effect in almost all participants who were also identified
with ANOVA and cluster-based methods (Fig. 3).

Visual inspection covered 82% (56/68) and 72% (49/68), ANOVA
63% and 49%, cluster-method 57% and 37%, and Bayesian regression

88% and 88% of the subjects with N400 effect identified by at least one
method in the active and passive paradigms, respectively. Out of the
participants detected in at least one paradigm, 57% (38/67) were de-
tected in both paradigms with visual inspection, 41% (22/54) with
ANOVA, 36% (17/47) with cluster-method and 71% (50/70) with
Bayesian regression. In four (5%) participants N400 effect was not
identified by any of these four methods in either active or passive
paradigm.

We examined which characteristics of the individual ERPs were
associated with the ability of visual inspection, ANOVA, cluster-based
non-parametric testing and Bayesian method to detect N400 effect.
With all methods separately and with the combination of the four
methods, the cases with detected N400 effect had more negative am-
plitude, maximum and median of N400 effect (p < 0.005) in Cz elec-
trode compared with the cases without detected effect. The only ex-
ception was the maximum of participant-wise average in the passive
paradigm where the difference was statistically significant only with
ANOVA and the cluster-method. Other measures did not differ sig-
nificantly between the cases with and without detected effects using
any method (p > 0.005).

Hence statistical comparisons did not reveal where the differences
between visual inspection, ANOVA, cluster-based non-parametric
testing and Bayesian method in the detection of N400 lie, the averaged
ERPs of each participant were explored qualitatively (Table 2). The
cases where N400 effect was not detected by any of the four methods
were characterized by inconsistent timing, topography, length or shape.
The Bayesian method was the only to detect several cases which were
inconsistent in terms of these factors. Although effects typical in terms
of timing, topography, length or shape were mainly detected with all
the other methods, cluster-method detected only half or less of them.

4. Discussion

There are various methods to analyze ERPs on single-subject level,
but it is often difficult to evaluate the effects of methodological choices
on the results of a given study. The aim of our study was to investigate,
utilizing five different analysis methods, the detection rate of N400
effect on single-subject level in active and passive paradigms. We ob-
served substantial differences between the methods: N400 effect was
detected in 16–76% of 79 participants in the active and 9–76% of the
participants in the passive paradigm (Table 1). N400 effect was not
detected by any method in 8 participants in the active and 10 partici-
pants in the passive paradigm, but only two of them were the same
subjects. ANOVA was the only method where all positive observations
overlapped with at least one other method. The t-CWT and cluster-
based technique identified the smallest numbers of cases with N400
effect while the Bayesian regression was the most liberal statistical
method in this study. However, none of the used methods detected all
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Fig. 2. Tukey boxplot of the posterior probabilities of N400 effect as computed
using Bayesian regression. The performance summary of the Bayesian approach
can be found in Table 1, when the detection limit is at least 95%. The median
was 1.00 in both paradigms (thick bar).

ANOVA Clustered

Visual Bayesian

3

0

0

0

2

0

1 2
7

1
29

2

3 10

8

ANOVA Clustered

Visual Bayesian

5

0

0

0

0

0

1 1
17

1
20

2

1 10

10

Active Passive

Fig. 3. The numbers of participants in whom N400 effect was detected by visual inspection, ANOVA of average amplitudes in a time window, cluster-based non-
parametric testing, and Bayesian approach.

R.E. Kallionpää, et al. International Journal of Psychophysiology 144 (2019) 14–24

20



cases identified by the other methods.
To our knowledge, N400 effect at single-subject-level has been

previously studied in healthy participants using auditory sentence sti-
muli in six studies (Cruse et al., 2014; Daltrozzo et al., 2009;
Hinterberger et al., 2005; Kotchoubey, 2005; Rohaut et al., 2015;
Sculthorpe-Petley et al., 2015), utilizing five different methods. While
cluster-based nonparametric testing detected N400 effect in 49.4%
(active paradigm) and 31.6% (passive paradigm) of participants in the
present study, the same method found N400 effect only in 17–26% of
participants in previous studies (Cruse et al., 2014; Sculthorpe-Petley
et al., 2015). This may indicate that the experimental paradigm of the
present study was more powerful. The detection rate of visual inspec-
tion, ANOVA and Bayesian regression was higher than that of the
cluster-based method and similar to what has been observed in previous
studies utilizing other methods. The variants of the t-CWT method were
the least sensitive in the current study with detection rates in active and
passive paradigm ranging from 8.9% to 43% using the group hold-out
method and the two variants of individual split-half method. This is in
contrast to previous studies where slightly different variants of t-CWT
have detected N400 in 60–80% of participants (Daltrozzo et al., 2009;
Kotchoubey, 2005). We acknowledge that the t-CWT-based approaches
may not show their full potential in our hands, as restricting the ana-
lysis to negative extrema only or the randomization tests needed for the
interpretation of the individual biased results are not available in the
published software package. With methods other than those utilized in
the current study, N400 effect has been detected in 40–42% of parti-
cipants using consecutive t-tests (Hinterberger et al., 2005; Rohaut
et al., 2015), an approach that resembles the cluster-based testing.
Multiple-linear spatial regression approach based on scalp topographies
of voltages has shown N400 effect in 42% of participants (Rohaut et al.,
2015). A method based on support vector machine classified the aver-
aged ERPs 92% correctly (Sculthorpe-Petley et al., 2015). ANOVA has
not been applied at single-subject level in healthy participants but in a
non-comparable patient population the N400 effect was detected in
14% of severely brain-damaged but conscious participants (Kotchoubey
et al., 2005).

Due to the lack of firm operational criteria for what constitutes an
N400 observation, it may be impossible to evaluate the sensitivity of
different methods as it is not known whether the effect cannot be de-
tected independently of the analysis method or whether the method is

not able to separate the ERP effect from the noise even when the effect
is there. Regardless, it is clear that the choice of analysis methods has
significant impact on the obtained results. While in the current study
we compared different analysis methods for only the detection of N400
effect, large differences between analysis methods have also been re-
ported with mismatch negativity (MMN) (Gabriel et al., 2016) which
reflects more automatic cognitive processing of physical characteristics
of a sound than N400. Yet, the performance of the methods used in the
current study may differ in the detection of other ERPs.

4.1. Factors to consider in single-subject ERP research

Multiple other factors than just the choice of an analysis method
may affect the detection rate of ERPs at single-subject level as discussed
below.

4.1.1. Individual differences
As previously reported (Cruse et al., 2014; Daltrozzo et al., 2009;

Hinterberger et al., 2005; Kotchoubey, 2005; Rohaut et al., 2015;
Sculthorpe-Petley et al., 2015) and evident also in the present study,
N400 effect cannot be detected in all healthy participants which is a
common limitation with cognitive ERPs (Connolly and D'Arcy, 2000).
Different ERP amplitudes between individuals may partly result from
the differences in individual anatomy, such as the position and or-
ientation of ERP generators and thickness of the skull (reviewed by
Luck et al., 2011). The differences may also be due to SNR or in-
dividual's concentration and attention. In addition, women have been
shown to have larger and earlier N400 effect compared to men
(Daltrozzo et al., 2007), which also indicates a limitation of the present
study with only male participants.

Nevertheless, single-subject level cognitive ERPs are considered as
possible measures of higher-order brain functions and potential tools in
diagnostics of, e.g., patients with disorders of consciousness
(Bekinschtein et al., 2009; Rohaut et al., 2015; Steppacher et al., 2013).
As patients with, for example, brain injury may show atypical topo-
graphy and latency of specific ERPs, the absence of an ERP does not
evidence the absence of cognitive processing typically related to that
ERP, either in patients or in healthy individuals.

Table 2
N400 effect detection rate of different analysis methods by the qualitative properties of the ERP. Cases from both active and passive paradigms are included.

Class (n) Visual (66%) ANOVA (48%) Clustered (41%) Bayes (76%) None (14%)

Total (158)

Timing Typical (110) 75% 59% 45% 85% 9%
Early (29) 72% 34% 48% 52% 14%
Late (3) 0% 0% 0% 100% 0%
Inconsistent (16) 6% 6% 6% 50% 50%

Topography Typical (122) 77% 57% 48% 81% 7%
Local (5) 0% 0% 0% 60% 40%
Frontal (13) 77% 46% 38% 69% 15%
Inconsistent (18) 6% 6% 6% 50% 50%

Length Typical (86) 83% 56% 43% 85% 5%
Short (23) 30% 0% 17% 48% 30%
Long (30) 87% 90% 73% 90% 3%
Inconsistent (19) 5% 5% 5% 47% 53%

Morphology Typical (72) 86% 63% 56% 82% 7%
Typical but rough (22) 95% 82% 59% 91% 0%
Multiple-peaked (23) 39% 26% 30% 70% 13%
Flat (15) 60% 27% 20% 73% 20%
Flat but rough (7) 29% 29% 0% 86% 14%
Inconsistent (19) 11% 5% 5% 42% 53%

Alpha synchronization Not prominent (106) 75% 49% 44% 75% 13%
Strong (52) 50% 46% 33% 77% 15%

Overall signal quality Normal (113) 75% 52% 45% 78% 10%
Noisy (45) 44% 38% 29% 71% 24%
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4.1.2. Characteristics of the experiment
The characteristics of the experiment, e.g., task and attention to the

stimuli, whether the experiment is conducted with closed or open eyes,
or modality and type of stimuli, may affect the sensitivity of the method
to detect the ERP effect. Similarly to the previous observations (Cruse
et al., 2014; Erlbeck et al., 2014), all applied methods detected fewer
significant N400 effects in the passive compared to the active paradigm.
Bayesian regression was the most robust method from the perspective
of attention and task as 71% of participants detected in at least one
paradigm were the same in both paradigms. With other methods, the
switch from active to passive paradigm resulted in lower N400 effect
detection rate. The cases with the effect found in the passive but not in
the active paradigm might be explained by the presence of the P3
component which is related to response preparation and which tem-
porally overlaps with N400.

The correct motor responses in the active paradigm indicate that the
participants comprehended the sentences, and it seems plausible that
the processing of meaning has likely been similar in the passive para-
digm, although the detection rate was lower. As the active and passive
paradigms were performed always in the same order and the duration
of the experiment was relatively long, the vigilance of the participants
might have been reduced in the passive paradigm. Because the ampli-
tude of N400 effect was smaller in the passive setting, there was more
deviation between different analysis methods in detecting the effect.

In this study, conducting the experiment with closed eyes resulted in
alpha contamination that was even more prominent in the passive
paradigm. Based on the qualitative analysis, the Bayesian approach and
ANOVA were the most resistant methods to alpha interference, and
might thus be reasonable choices when the data to be analyzed is
contaminated with frequencies that cannot be filtered out.

4.1.3. Selection of analysis method
The methods adopted in the current study used a priori information

to a different degree. Visual inspection utilized the least amount of
information, as only the averaged amplitude curves were analyzed and
the deviance between the trials was discarded. In the case of ANOVA,
the within-trial information was lost in the time-windowed averaging.
Cluster-based method, t-CWT and Bayesian regression utilized the lar-
gest amount of data – Bayesian regression even took advantage of the
background-EEG.

In terms of quantitative parameters, only the amplitude of N400
effect was associated with the detection of the effect. Quantitative
parameters did not explain the differences between results of visual
inspection, ANOVA, cluster-based non-parametric testing, and Bayesian
approach. In the qualitative comparison, the observed differences be-
tween the methods reflected the properties of the methods. The cluster-
method and visual inspection were able to detect early effects as well
as, or almost as well as, typically timed effects. However, both methods
were easily interfered by alpha synchronization and overall poor signal
quality. Bayesian method detected even many of the weak and short
effects and was tolerant for alpha synchronization, which explains the
substantial number of participants where no other method detected
effect, especially in the passive setting. Notably, however, the qualita-
tive analysis was performed using the same figures as with the visual
inspection method and may thus be biased relative to that method.

4.1.4. Method-specific choices
We are fully aware that in the current study information utilized by

the different methods was not identical, such as the selection of the set
of time points and channels to be analyzed. However, each method was
employed with the parameters typically used in conjunction with the
method and no within-method parameter alterations were im-
plemented. These choices necessarily affected the obtained results and
rendered the results incompatible for direct comparison.

In case of visual inspection, the full agreement requirement between
the three raters made the method strict, although the agreement

between raters was good. The results of ANOVA, Bayesian method and
t-CWT would have been weaker and irrelevant without using an a priori
known region of interest. In t-CWT, the use of pre-defined time window
instead of the entire ERP waveform was mandatory because the current
t-CWT 2.01 MATLAB package does not have an option for restricting
the analysis to negative effects only. On the other hand, flexibility is the
greatest advantage of the cluster-method and visual inspection, as they
are individually adaptive and no strict preliminary information on the
location of the effect is needed. Therefore, restricting the set of channels
to be analyzed would have compromised the cluster-based method and
visual inspection.

When using methods that require more restricted a priori informa-
tion, such as specified length of time window or set of channels, the
choice has an impact on the detection rate of the effect. In our study, for
example, the time window of 300–600ms used with ANOVA, Bayesian
regression and t-CWT might have been shortened to, e.g., 300–500ms
(Van Petten et al., 1991) and the set of centroparietal channels might
have been more restricted. In the Bayesian regression, an oversimplified
assumption was made that the ERPs to congruous and incongruous
stimuli do not differ before the time point 300ms, although N400 effect
can begin earlier especially when combined with phonological mis-
match negativity (Connolly and Phillips, 1994). A large variance
Gaussian prior was used for the unknown variables mainly for com-
putational convenience.

The results of a total of five variants of the t-CWT methods are
shown in Supplementary Table 1, although only three of them allow
direct interpretation of Hotelling's T2 test p-values without additional
calculations, such as randomization tests. Notably, the split-half method
is sensitive to the ratio of the training and test sets, and the variant with
only 20% of trials included in the test set showed the lowest detection
rate. This is in contrast to a previous study where a test set with 20% of
trials showed sufficient discrimination of whole ERP waveforms from
passive oddball task (Bostanov, 2015). The group hold-out yielded the
highest detection rate. However, this approach utilizes data from a
group of individuals for training, which may not always be available for
analyses at single-subject level.

Additionally, the choices made in signal preprocessing produce
differences in results between studies. Naccache et al. (2016) have, for
example, suggested that when complex analysis methods of EEG are
used, artifact removal and inspection of raw data have remarkable
impact on results. Also other steps of data preprocessing such as fil-
tering and baseline correction affect the results. Kayser and Tenke
(2015) have highlighted the importance of the choice of EEG reference
and encouraged the use of reference-free surface Laplacian transform. It
has been shown that N400 topography is affected by reference selection
(Curran et al., 1993). In the current study, the most conventional and
recommended reference, linked mastoids, was used (Duncan et al.,
2009), and therefore our results should be compared only with the
other N400 studies using the same reference.

4.1.5. Future implications
The controversial results yielded by different methods have led

many researchers to utilize multiple methods for single-subject analyses
to increase reliability (Rohaut et al., 2015; Sculthorpe-Petley et al.,
2015; Steppacher et al., 2013). One possible solution to tackle the true
detection rate of different analysis methods for various ERPs might be
to use simulated datasets with several parameter modifications, as in
some previous reports (Groppe et al., 2011b; Real et al., 2014).

In the current study, visual inspection was a sensitive method,
which makes it suitable for evaluating the rationality of the results of
the statistical methods. This is supported by, e.g., Steppacher et al.
(2013) who found visual inspection of N400 effect to have better spe-
cificity for recovery from the disorders of consciousness compared with
the more sensitive t-CWT method (Bostanov, 2004). The methods that
identify N400 effect in many subjects in whom the effect is not detected
with visual inspection should be utilized with caution. In the present
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study, Bayesian regression detected N400 effect in 17% (10/60) of
participants in active and 32% (19/60) in passive paradigm that were
not detected with visual inspection. In the MMN study by Gabriel et al.
(2016), t-test method yielded 29% (5/17), cross-correlation method
32% (6/19), t-CWT 26% (7/27) and multivariate method 27% (4/15) of
cases that were not confirmed by visual inspection. In this sense, our
implementation of Bayesian regression produced similar results. Re-
lying blindly on a single statistical method may not be sufficient for
drawing conclusions on single-subject ERPs, yet visual inspection also
has its drawbacks, such as the difficulty of evaluating inter-trial var-
iation.

If the method requires a precise region of interest and time window,
it could be beneficial to fix those using group-level averages of the
studied population (Rohaut et al., 2015). However, in patient studies, it
may be hard to define whether the ERP effect is real if its location, time
range and morphology differ from the same ERP effect in healthy
participants. The single-subject analyses of event-related potentials in-
volve the continuous balancing between insufficient individuality (bias
toward false negatives) and too extensive individuality (bias toward
false positives) (Kotchoubey, 2015). If ERPs are used to support clinical
decisions, even carefully performed power analysis might not guarantee
that the ERP effect will be detected in every participant. In cases where
single-subject ERPs are applied in patient populations, the lack of 100%
sensitivity even among healthy individuals complicates the interpreta-
tion of the results. Clinical decisions cannot be based on negative ERP
test results as the negative results do not rule out the presence of the
effect or the respective brain function.

4.2. Conclusion

As we show in the current study, different analysis methods provide
results that do not completely overlap. Among the methods used in the
present study, ANOVA is a feasible choice in the analysis of event-re-
lated potentials in single subjects if the spatiotemporal location of the
effect is known and false positive results are to be avoided. The
Bayesian method has high sensitivity but its results should be confirmed
by using some other additional method. Cluster-based non-parametric
testing is a viable choice if conservative results are not an issue and
some deviation in latency, topography and duration of the effect is
assumed. The detection rate of the t-CWT method was much lower in
the current study compared to previous reports which implies a need
for further studies to explore the applicability of its different variants.
Overall, we wish to emphasize that one method alone may not be
sufficient to make informed decisions on the presence or absence of an
ERP component, and utilizing two or more different types of analysis
methods would add the weight of evidence. We hope this study may
help to contextualize and interpret findings from other single-subject
analysis experiments.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.ijpsycho.2019.06.012.
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