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NUMERICAL COMPUTATION OF THE CAPACITY OF

GENERALIZED CONDENSERS

MOHAMED M S NASSER AND MATTI VUORINEN

Abstract. We present a boundary integral method for numerical computation of the
capacity of generalized condensers. The presented method applies to a wide variety of
generalized condenser geometry including the cases when the plates of the generalized
condenser are bordered by piecewise smooth Jordan curves or are rectilinear slits. The
presented method is used also to compute the harmonic measure in multiply connected
domains.

1. Introduction

The conformal capacity of condensers is an important notion in geometric function the-
ory [Ah, AVV, DEK, D1, Ku2, PS, VA] and in various applications of electronics. However,
the analytic forms of the capacity are known only for special types of condensers. So, the
use of numerical methods for computing such capacity is unavoidable. Indeed, numeri-
cal computing of capacity of condensers have been intensively studied in the literature,
see e.g., [BBG, BSV, HRV1, HRV2, DEK]. The capacity of condensers is one of the sev-
eral “conformal invariants” which are powerful tools in complex analysis. Some of the
other important examples of conformal invariants are the harmonic measure, the loga-
rithmic capacity, the extremal length, the reduced extremal length, and the hyperbolic
distance [Ah, D1, D2, GM, VA, V]. Numerical computing of such invariants has been
studied also in the literature, see e.g., [BBG, LSN, PS, R, RR].

Capacity of generalized condensers is another important example of conformal invari-
ants [D1, DE, DK1, DK2, VA]. In this paper, we present a numerical method for computing
the capacity of generalized condensers. We consider the case in which the plates of the
generalized condensers are bordered by piecewise smooth Jordan curves or are rectilinear
slits. As far as we know, the proposed method is the first numerical method for computing
the numerical values of the capacity of the generalized condensers. The boundary integral
equation with the generalized Neumann kernel [N3, WN] plays a key role in developing
our method. The presented method can be used also to compute the harmonic measure in
multiply connected domains.

Let B be an open subset of C = C ∪ {∞}. We consider generalized condensers of the
form C = (B,E, δ) where E = {Ek}mk=1, m ≥ 2, is a collection of nonempty closed pairwise
disjoint sets in Ek ⊂ B and δ = {δk}mk=1 is a collection of real numbers containing at
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least two different numbers. The set G = B\ ∪m
k=1 Ek is called the field of the condenser

C, the sets Ek are the plates of the condenser, and the δk are the levels of the potential
of the plates Ek, k = 1, 2, . . . , m [D1, p. 12]. We assume that G is a finitely connected
domain without isolated boundary points and that ∂G ∩ (∪m

k=1Ek) consists of m piecewise
smooth Jordan curves, then the conformal capacity of C, cap(C), is given by the Dirichlet
integral [D1, p. 13, p. 305]

(1.1) cap(C) =

∫∫

G

|∇u|2dxdy

where u is the potential function of the condenser C, i.e., u is continuous in G, harmonic
in G, and equal to δk on ∂Ek for k = 1, 2, . . . , m and satisfies ∂u/∂n = 0 on ∂B\ ∪m

k=1 Ek

where ∂u/∂n denotes the directional derivative of u along the outward normal.
The analytical description of the problem is given in Section 2 and it is based on the

classical theory of integral equations [Mi] and on the definition of the generalized capacity
due to Dubinin [D1]. In Section 3 we formulate the computational problem as a Riemann-
Hilbert problem and prove a preliminary analytical result. The main theoretical results
are presented in Section 4 and they deal with unique solvability of algebraic linear systems
related to the Riemann-Hilbert problem. Also an outline of an algorithm for the numerical
solution of the integral equation is given. In Section 5 we give a MATLAB implementation
of the algorithm. This algorithm is tested in Section 6 in the case of capacity computation
of condensers with piecewise smooth boundary curves and results are compared, with good
agreement of results, to earlier numerical results from [BSV]. In Section 7 we apply the
algorithm for the computation of the capacity of generalized condensers. In Section 8, we
use the presented algorithm with the help of conformal mappings to compute the capacity
of rectilinear slit condensers. In the final Section 9 we show that the same method also
works for the computation of the harmonic measure.

2. The potential function

In this paper, for k = 1, 2, . . . , m, we assume that Ek = Gk where Gk is a simply
connected domain bordered by a piecewise smooth Jordan curve Γk. We assume also that
either B = C or B ( C is a multiply connected domain of connectivity ℓ ≥ 1 bordered by
ℓ piecewise smooth Jordan curves Γk for k = m + 1, m + 2, . . . , m + ℓ. We assume ℓ = 0
when B = C and ∞ ∈ B when B is unbounded. Then, the field of the condenser is the
multiply connected domain G of connectivity m+ ℓ bordered by

Γ = ∂G =

m+ℓ
⋃

k=1

Γk,

where the orientation of the curves Γk is such that G is always on the left of Γk for
k = 1, 2, . . . , m + ℓ. For each k = m + 1, m+ 2, . . . , m + ℓ, the simply connected domain
on the right of Γk will be denoted by Gk.

The domain G is either bounded or unbounded. If G is unbounded, we assume ∞ ∈ G.
If G is bounded, then one of the simply connected domains G1, . . . , Gm or Gm+1, . . . , Gm+ℓ
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is unbounded and contains ∞. If the unbounded domain is one of the domains G1, . . . , Gm,
then we assume it is the domain Gm and the curve Γm enclose all the other curves
Γ1, . . . ,Γm−1,Γm+1, . . . ,Γm+ℓ. Similarly, if the unbounded domain is one of the domains
Gm+1, . . . , Gm+ℓ, then we assume it is the domain Gm+ℓ and the curve Γm+ℓ enclose all
the other curves Γ1, . . . ,Γm+ℓ−1. Based on the boundedness of the domains B and G, we
define the integers m′ and l′ by

(2.1) m′ =

{

m− 1, if G is bounded and B is unbounded,

m, otherwise,

and

(2.2) ℓ′ =

{

ℓ− 1, if G is bounded and B is bounded,

ℓ, otherwise.

In particular, if G is unbounded, then B is unbounded (since G ⊆ B), m′ = m, ℓ′ = ℓ,
and hence m′ + ℓ′ = m + ℓ. If G is bounded, then either m′ = m − 1 or ℓ′ = ℓ − 1 and
hence m′ + ℓ′ = m+ ℓ− 1. Further, m′ = m− 1 means that Γm is the external boundary
component of G. Similarly, ℓ′ = ℓ−1 means that the external boundary component of G is
Γm+ℓ. With these definitions of m′ and ℓ′, the domains G1, . . . , Gm′ and Gm+1, . . . , Gm+ℓ′

are bounded simply connected domains. For each of these bounded domains, we assume
that αk is an auxiliary point in Gk for each k = 1, 2, . . . , m′ and βk is an auxiliary point in
Gm+k for each k = 1, 2, . . . , ℓ′.

The potential function u is then a solution of the Laplace equation ∆u = 0 with the
mixed Dirichlet-Neumann boundary condition

u(ζ) = δk, ζ ∈ Γk, k = 1, 2, . . . , m,(2.3a)

∂u

∂n
(ζ) = 0, ζ ∈ Γk, k = m+ 1, m+ 2, . . . , m+ ℓ.(2.3b)

Note that the boundary value problem (2.3) reduces to a Dirichlet problem for ℓ = 0. Note
also that the problem (2.3) does not reduce to a Neumann problem since m ≥ 2. The
problem (2.3) has a unique solution u [IS].

A more general form of such mixed boundary value problem has been considered in [IS]
using a Cauchy integral method and in [AMN, NMA] using the boundary integral equation
with the generalized Neumann kernel. Due to the simple forms of the boundary conditions
in (2.3), the method presented in [AMN, NMA] will be further simplified in this paper to
obtain a simple, fast, and accurate method for computing the potential function u and the
capacity cap(C) of the generalized condenser C.

The harmonic function u is the real part of an analytic function F in G. The function
F is not necessarily single-valued, but it can be written as [Ga, GM, Mi, Mu]

(2.4) F (z) = g(z)−
m′

∑

k=1

ak log(z − αk)−
ℓ′
∑

k=1

bk log(z − βk)
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where g is a single-valued analytic function in G and a1, . . . , am′, b1, . . . , bℓ′ are undeter-
mined real constants such that [Mi, §31]

(2.5) ak =
1

2π

∫

Γk

∂u

∂n
ds, k = 1, 2, . . . , m′,

and

bk =
1

2π

∫

Γm+k

∂u

∂n
ds, k = 1, 2, . . . , ℓ′.

Hence, using (2.3b), we have bk = 0 for all k = 1, 2, . . . , ℓ′. Thus, the function F has the
representation

(2.6) F (z) = g(z)−
m′

∑

k=1

ak log(z − αk).

Since u is harmonic in the domain G, then [Mi]
∫

Γ

∂u

∂n
ds = 0,

which in view of (2.3b) implies that

(2.7)
m
∑

k=1

∫

Γk

∂u

∂n
ds = 0.

Recall that a1, . . . , am′ are given in (2.5). So, if m′ = m− 1, we define

(2.8) am =
1

2π

∫

Γm

∂u

∂n
ds.

Hence, it follows from (2.5), (2.7), and (2.8) that

(2.9)
m
∑

k=1

ak =
m
∑

k=1

1

2π

∫

Γk

∂u

∂n
ds = 0,

which implies, in the case m′ = m− 1, that

(2.10) am = −
m−1
∑

k=1

ak.

Using Green’s formula [D1, p. 4], Equation (1.1) can be written as

(2.11) cap(C) =

∫

∂G

u
∂u

∂n
ds.

Since ∂u/∂n = 0 on ∂B = ∪ℓ
k=1Γm+k and u = δk on Γk for k = 1, 2, . . . , m, then in view

of (2.5) and (2.8), we have

(2.12) cap(C) =
m
∑

k=1

δk

∫

Γk

∂u

∂n
ds = 2π

m
∑

k=1

δkak.
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Equation (2.12) gives us a simple formula for computing the capacity of the generalized
condenser C in terms of the levels δk of the potential of the plates and the values of the
constants ak for k = 1, 2, . . . , m.

In this paper, the boundary integral equation with the generalized Neumann kernel will
be used to compute the constants ak as well as the values of the function u(z) for z ∈ G.
However, to use the integral equation, we will first reformulate the above mixed boundary
value problem as a Riemann-Hilbert problem as it will be described in the next section.
Solving the mixed boundary value problem by reducing it to a Riemann-Hilbert problem
is a well known approach and has been used by many researchers in the literature (see
e.g., [AMN, Ga, HB, Mu, NMA]).

3. The Riemann-Hilbert problem

For each k = 1, 2, . . . , m + ℓ, the boundary component Γk is parametrized by a 2π-
periodic complex function ηk(t), t ∈ Jk := [0, 2π]. The total parameter domain J is the
disjoint union of the m+ ℓ intervals J1, . . . , Jm+ℓ,

J =
m+ℓ
⊔

k=1

Jk =
m+ℓ
⋃

k=1

{(t, k) : t ∈ Jk}.

The elements of J are ordered pairs (t, k) where k is an auxiliary index indicating which
of the intervals contains the point t [N3]. A parametrization of the whole boundary Γ is
then defined by

(3.1) η(t, k) = ηk(t), t ∈ Jk, k = 1, 2, . . . , m+ ℓ.

For a given t, the value of auxiliary index k such that t ∈ Jk will be always clear from the
context. So we replace the pair (t, k) in the left-hand side of (3.1) by t in the same way as
in [N3]. Thus, the function η in (3.1) is written as

(3.2) η(t) =















η1(t), t ∈ J1,
η2(t), t ∈ J2,

...
ηm+ℓ(t), t ∈ Jm+ℓ.

Since u = δk is known on the boundary components Γk for k = 1, 2, . . . , m and since
u = ReF , then the boundary values of the function F satisfy

(3.3) Re [F (η(t))] = δk, η(t) ∈ Γk, k = 1, 2, . . . , m.

On the boundaries ∂B = ∪ℓ
k=1Γm+k, the potential function u satisfies the boundary condi-

tion ∂u/∂n = 0 where n is the outward normal vector on ∂B. Let T be the unit tangent
vector on ∂B. Then, for η(t) ∈ ∂B,

(3.4) n(η(t)) = −iT(η(t)) = −i
η′(t)

|η′(t)| = eiν(η(t))
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where ν(η(t)) is the angle between the positive real axis and the normal vector n(η(t)).
Using the Cauchy-Riemann equations, the derivative of the analytic function F is then

F ′(z) = ∂u(z)
∂x

− i∂u(z)
∂y

. Thus,

(3.5)
∂u

∂n
= ∇u·n = cos(ν)

∂u

∂x
+sin(ν)

∂u

∂y
= Re

[

eiν
(

∂u

∂x
− i

∂u

∂y

)]

= Re

[−iη′(t)

|η′(t)| F
′(η(t))

]

which, in view of (2.3b), implies that

Re [−iη′(t)F ′(η(t))] = 0, η(t) ∈ Γm+k, k = 1, 2, . . . , ℓ.

Integrating with respect to the parameter t yields

(3.6) Re [−iF (η(t))] = νk, η(t) ∈ Γm+k, k = 1, 2, . . . , ℓ,

where ν1, ν2, . . . , νℓ are real constants of integration. Thus, by (3.3) and (3.6), the boundary
values of the function F satisfy the boundary condition

Re
[

e−iθ(t)F (η(t))
]

= δ(t) + ν(t)

where

(3.7) θ(t) =











































0, t ∈ J1,
...

0, t ∈ Jm,

π/2, t ∈ Jm+1,
...

π/2, t ∈ Jm+ℓ,

, δ(t) =











































δ1, t ∈ J1,
...

δm, t ∈ Jm,

0, t ∈ Jm+1,
...

0, t ∈ Jm+ℓ,

, ν(t) =











































0, t ∈ J1,
...

0, t ∈ Jm,

ν1, t ∈ Jm+1,
...

νℓ, t ∈ Jm+ℓ,

i.e., θ(t) = 0 and ν(t) = 0 for ℓ = 0. Then, it follows from (2.6) that the single-valued
analytic function g satisfies the boundary condition

(3.8) Re
[

e−iθ(t)g(η(t))
]

= δ(t) + ν(t) +

m′

∑

k=1

akRe
[

e−iθ(t) log(η(t)− αk)
]

.

Lemma 3.9. The functions γk, for k = 1, . . . , m′, defined on J by

(3.10) γk(t) =















Re
[

e−iθ(t) log(η(t)− αk)
]

, if ℓ′ = ℓ,

Re

[

e−iθ(t) log
η(t)− αk

η(t)− α

]

, if ℓ′ = ℓ− 1,

are periodic for t ∈ Jj, j = 1, 2, . . . , m+ ℓ. For both cases, we have

(3.11)
m′

∑

k=1

akγk(t) =
m′

∑

k=1

akRe
[

e−iθ(t) log(η(t)− αk)
]

.
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Proof. Since θ(t) = 0 when t ∈ Jj for each j = 1, 2, . . . , m, then the functions γk(t) in (3.10)
are periodic for t ∈ Jj for each j = 1, 2, . . . , m.

When t ∈ Jj for each j = m+ 1, m+ 2, . . . , m+ ℓ, we have the following two cases:
a) ℓ′ = ℓ. For this case, Γm+ℓ is not the external boundary component of G. Recall that,

for each k = 1, 2, . . . , m′, αk is in the interior of the curve Γk. Thus, none of the auxiliary
points α1, . . . , αm′ is interior to any of the curves Γm+1, . . . ,Γm+ℓ. Hence, the winding
number of the function z − αk is always zero along each boundary component Γm+k for
k = 1, 2, . . . , ℓ. Thus, we can always choose a branch cut of the logarithm function such
that the functions γk(t) given by the first formula in (3.10) are periodic for t ∈ Jj for each
j = m+ 1, m+ 2, . . . , m+ ℓ.

b) ℓ′ = ℓ − 1. For this case, Γm+ℓ is the external boundary component of G. Hence,
none of the auxiliary points α, α1, . . . , αm′ is interior to any of the curves Γm+1, . . . ,Γm+ℓ−1.
However, all the auxiliary points α, α1, . . . , αm′ are interior to the curve Γm+ℓ. Thus, the
winding number of the function z−αk

z−α
is always zero along each boundary component Γm+k

for k = 1, 2, . . . , ℓ. Hence, we can choose a branch cut of the logarithm function such that
the functions γk(t) given by the second formula in (3.10) are periodic for t ∈ Jj for each
j = m+1, m+2, . . . , m+ ℓ. For this case, we need to prove also that equation (3.11) holds
for the functions γk(t) defined by the second formula in (3.10). Since Γm+ℓ is the external

boundary component of G, we have m′ = m, and by (2.9), we have
∑m′

k=1 ak = 0. Thus,

m′

∑

k=1

akγk(t) =
m′

∑

k=1

akRe

[

e−iθ(t) log
η(t)− αk

η(t)− α

]

= Re
[

e−iθ(t) log(η(t)− α)
]

m′

∑

k=1

ak +

m′

∑

k=1

akRe

[

e−iθ(t) log
η(t)− αk

η(t)− α

]

=
m′

∑

k=1

akRe

[

e−iθ(t) log(η(t)− α) + e−iθ(t) log
η(t)− αk

η(t)− α

]

=

m′

∑

k=1

akRe
[

e−iθ(t) log(η(t)− αk)
]

,

and hence (3.11) holds for the functions γk(t) defined by the second formula in (3.10). �

Taking into account (3.11), we rewrite the boundary condition (3.8) as

(3.12) Re
[

e−iθ(t)g(η(t))
]

= δ(t) + ν(t) +
m′

∑

k=1

akγk(t)

where the functions γk are defined by (3.10). Since we are interesting in computing only
u = ReF , we can assume that g(∞) = c is real for unbounded G and g(α) = c is real for
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bounded G. We introduce an auxiliary function f defined in G by

(3.13) f(z) =

{

g(z)− c, if G is unbounded,

(g(z)− c)/(z − α), if G is bounded.

Then f is a single-valued analytic function in G with f(∞) = 0 for unbounded G. Let
A(t) be the complex-valued function defined by [N3]

(3.14) A(t) =

{

e−iθ(t), if G is unbounded,

e−iθ(t)(η(t)− α), if G is bounded.

Hence the boundary condition (3.12) implies that the function f is a solution of the fol-
lowing Riemann-Hilbert problem

(3.15) Re [A(t)f(η(t))] = −c cos θ(t) + δ(t) + ν(t) +

m′

∑

k=1

akγk(t).

Observe that solving the Riemann-Hilbert problem (3.15) requires finding the unknown
analytic functions f as well as the unknown real constants a1, . . . , am, c, ν1, . . . , νℓ in the
right-hand side of (3.15).

4. The generalized Neumann kernel

The generalized Neumann kernel N(s, t) is defined for (s, t) ∈ J × J by [WN]

N(s, t) =
1

π
Im

(

A(s)

A(t)

η̇(t)

η(t)− η(s)

)

.

Closely related to the kernel N is the following kernel M(s, t) defined for (s, t) ∈ J × J
by [WN]

M(s, t) =
1

π
Re

(

A(s)

A(t)

η̇(t)

η(t)− η(s)

)

.

The kernel N is continuous and the kernel M has a singularity of cotangent type [WN].
Let H denote the space of all real-valued Hölder continuous functions on the boundary

Γ. In this paper, for simplicity, if φ is a real-valued function defined on the boundary Γ,
then we write φ(η(t)) as φ(t). Further, any piecewise constant function h ∈ H defined by

h(t) = hk for t ∈ Jk,

with real constants hk for k = 1, . . . , m+ ℓ will be denoted by

h(t) = (h1, . . . , hm+ℓ), t ∈ J.

The integral operators with the kernels N(s, t) and M(s, t) are defined on H by

(Nφ)(s) =

∫

J

N(s, t)φ(t) dt, s ∈ J,(4.1)

(Mφ)(s) =

∫

J

M(s, t)φ(t) dt, s ∈ J.(4.2)
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The identity operator on H will be denoted by I. Then, we have the following theorem
from [N2].

Theorem 4.3. For each k = 1, 2, . . . , m′, let the function γk be given by (3.10). Then,

there exists a unique real-valued function µk ∈ H and a unique piecewise constant real-

valued function hk = (h1,k, h2,k, . . . , hm+ℓ,k) such that

(4.4) A(t)fk(η(t)) = γk(t) + hk(t) + iµk(t), t ∈ J,

are boundary values of an analytic function fk in G with f(∞) = 0 for unbounded G. The

function µk is the unique solution of the integral equation

(4.5) (I−N)µk = −Mγk

and the function hk is given by

(4.6) hk = [Mµk − (I−N)γk]/2.

The integral equation (4.5) been used for computing the conformal map from bounded
and unbounded multiply connected domains onto several canonical slit domains, see e.g., [N1,
N2, N3]. The following lemma is needed to prove Theorems 4.9 and 4.22 below.

Lemma 4.7. If f is an analytic function in G with f(∞) = 0 for unbounded G such that

its boundary values satisfy the boundary condition

(4.8) Re [A(t)f(η(t))] = γ(t)

for a piecewise constant real-valued function γ(t) = (c1, c2, . . . , cm+ℓ), then f is the zero

function and c1 = c2 = · · · = cm+ℓ = 0.

Proof. The solvability of the Riemann-Hilbert problem (4.8) depends on the winding num-
ber of the function A. For the function A defined in (3.14), the Riemann-Hilbert prob-
lem (4.8) is not necessarily solvable [N3]. However, by Theorem 4.3, a unique piecewise con-
stant real-valued function h(t) = (h1, h2, . . . , hm+ℓ) exists such that the Riemann-Hilbert
problem

Re [A(t)f(η(t))] = γ(t) + h(t)

is uniquely solvable (see also [N3, WN]). By the uniqueness of the piecewise constant
function h and since the function γ is a piecewise constant function, the function h must
be given by h(t) = −γ(t) since the problem

Re [A(t)f(η(t))] = γ(t) + h(t) = 0

will be solvable and has the zero solution f(z) = 0. �

In the remaining part of this section, we shall use Theorem 4.3 to present a method
for computing the real constants a1, . . . , am and hence computing cap(C) through (2.12).
Recall from (2.1) that either m′ = m or m′ = m − 1. These two cases of m′ will be
considered separately in the following two subsections.
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4.1. Case I: m′ = m. This case includes the following two subcases:

(1) Both G and B are unbounded (see Figure 1). For this subcase, we have m′ = m ≥ 2,
ℓ′ = ℓ ≥ 0 (where B = C for ℓ = 0), A is given by the first formula in (3.14), and
the functions γk for k = 1, 2, . . . , m are given by the first formula in (3.10).

(2) Both G and B are bounded (see Figure 2). For this subcase, we have m′ = m ≥ 2,
ℓ′ = ℓ − 1 ≥ 0, Γm+ℓ is the external boundary component of G, A is given by the
second formula in (3.14), and the functions γk for k = 1, 2, . . . , m are given by the
second formula in (3.10).

For these two subcases, all the simply connected domains G1, . . . , Gm are bounded (see
Figures 1 and 2). In Figures 1 and 2, and in all figures throughout the paper, the boundaries
of the domain B are the “dash-dotted” curves and the boundaries of the plates of the
condenser are the “solid” curves.

Figure 1. An example of an unbounded multiply connected domain G for
m = 4 and ℓ = 3 for Case I (both G and B are unbounded).

Figure 2. An example of a bounded multiply connected domain G for m =
3 and ℓ = 3 for Case I (both G and B are bounded).
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The following theorem provides us with a method for computing the unknown real
constants a1, . . . , am. The theorem will be proved using an approach similar to the approach
used in proving Theorems 4.2 and 4.3 in [NLS],

Theorem 4.9. For each k = 1, 2, . . . , m, let the function γk be defined by (3.10), µk

be the unique solution of the integral equation (4.5), and the piecewise constant function

hk = (h1,k, h2,k, . . . , hm+ℓ,k) be given by (4.6). Then, the boundary values of the function f
in (3.15) are given by

(4.10) A(t)f(η(t)) =

m
∑

k=1

ak[γk(t) + hk(t) + iµk(t)]

and the m+ ℓ+1 unknown real constants a1, . . . , am, c, ν1, . . . , νℓ are the components of the

unique solution vector of the linear system

(4.11)























h1,1 · · · h1,m 1
...

. . .
...

... O
hm,1 · · · hm,m 1
hm+1,1 · · · hm+1,m 0 −1 O

...
. . .

...
...

. . .

hm+ℓ,1 · · · hm+ℓ,m 0 O −1
1 · · · 1 0 0 · · · 0













































a1
...

am
c
ν1
...

νℓ























=























δ1
...

δm
0
...

0
0























.

Proof. Suppose that f is the analytic function in G with f(∞) = 0 for unbounded G and

satisfies the boundary condition (3.15). Suppose also that f̂ is defined in G by

(4.12) f̂(z) =

m
∑

k=1

akfk(z)

where fk are as in Theorem 4.3 and the constants a1, . . . , am satisfy the condition (2.9).

Then f̂ is analytic in G with f(∞) = 0 for unbounded G and the boundary values of f̂
satisfy

(4.13) Re
[

A(t)f̂(η(t))
]

=

m
∑

k=1

akγk(t) +

m
∑

k=1

akhk(t).

Then the function Ψ defined by Ψ(z) = f̂(z) − f(z) is analytic in G with Ψ(∞) = 0 for
unbounded G. Since m′ = m, it follows from (3.15) and (4.13) that

(4.14) Re [A(t)Ψ(η(t))] =
m
∑

k=1

akhk(t) + c cos θ(t)− δ(t)− ν(t).

The right-hand side is a piecewise constant function, and then Lemma 4.7 implies that Ψ
is the zero function and hence f(z) = f̂(z). Thus, (4.10) follows from (4.4) and (4.12).
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Further, since Ψ is the zero function, the right-hand side of (4.14) is also the zero function
and hence

(4.15)

m
∑

k=1

akhk + c cos θ(t)− ν(t) = δ(t).

Since, in view of (3.7), cos θ(t) = 1 for t ∈ Jk for k = 1, 2, . . . , m and cos θ(t) = 0 for
t ∈ Jk for k = m+1, m+2, . . . , m+ ℓ, then (4.15) and (2.9) imply that the real constants
a1, . . . , am, c, ν1, . . . , νℓ are the components of a solution vector of the linear system (4.11).

To show that the linear system (4.11) has a unique solution, let [a1, . . . , am, c, ν1, . . . , νℓ]
T

be a solution to the homogeneous linear system obtained by assuming that the right-hand
side of (4.11) is the zero vector. Then, the homogeneous system implies that

(4.16)

m
∑

k=1

akhk + c cos θ(t)− ν(t) = 0,

m
∑

k=1

ak = 0.

Assume that the functions fk are as in Theorem 4.3 and f̂ is defined by (4.12). Hence, in

view of (4.13), the boundary values of the function f̂ satisfy

(4.17) Re
[

A(t)f̂(η(t))
]

=
m
∑

k=1

akγk(t) + ν(t)− c cos θ(t).

Then, we define a function F̂ in G by

(4.18) F̂ (z) =























(z − α)f̂(z)−
m
∑

k=1

ak log(z − αk), if G is bounded,

f̂(z)−
m
∑

k=1

ak log(z − αk), if G is unbounded,

For unbounded G, the function F̂ (z) can be written as

F̂ (z) = f̂(z)−
m
∑

k=1

ak[log z + log(1− αk/z)] = f̂(z)− log z
m
∑

k=1

ak −
m
∑

k=1

ak log(1− αk/z).

Since f̂(∞) = 0 and
∑m

k=1 ak = 0, we have F̂ (∞) = 0. Thus, the function F̂ (z) is analytic
in G for both cases of bounded and unbounded G but it is not necessarily single valued.
In view of (3.14), the boundary values of the function F̂ satisfy

Re
[

e−iθ(t)F̂ (η(t))
]

= Re
[

A(t)f̂(η(t))
]

−
m
∑

k=1

akRe
[

e−iθ(t) log(η(t)− αk)
]

.

Then by (3.11) and (4.17), we have

Re
[

e−iθ(t)F̂ (η(t))
]

= ν(t)− c cos θ(t),
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which, in view of (3.7), implies that

(4.19a) Re
[

F̂ (η(t))
]

= −c for η(t) ∈ Γk, k = 1, 2, . . . , m,

and

(4.19b) Im
[

F̂ (η(t))
]

= νk for η(t) ∈ Γk, k = m+ 1, m+ 2, . . . , m+ ℓ.

By differentiation both sides of (4.19b) with respect to the parameter t, we obtain

(4.20) Im
[

η′(t)F̂ ′(η(t))
]

= 0 for η(t) ∈ Γk, k = m+ 1, m+ 2, . . . , m+ ℓ.

Let the real function u be defined for z ∈ G ∪ ∂G by

u(z) = Re F̂ (z).

Then u is harmonic in G. In view of (3.5), we have

(4.21)
∂u

∂n
= Re

[−iη′(t)

|η′(t)| F̂
′(η(t))

]

=
1

|η′(t)|Im
[

η′(t)F̂ ′(η(t))
]

.

Thus, by (4.19a), (4.20), and (4.21), the boundary values of u satisfy the mixed-boundary
condition

u(ζ) = −c, ζ ∈ Γk, k = 1, 2, . . . , m,

∂u

∂n
(ζ) = 0, ζ ∈ Γk, k = m+ 1, m+ 2, . . . , m+ ℓ.

Since the above mixed boundary value problem has a unique solution, it is clear that the
unique solution is the constant function u(z) = −c for all z ∈ G ∪ ∂G. Thus the real part

of F̂ is constant for z ∈ G, and hence, by the Cauchy-Riemann equations, F̂ is constant
in G, say equal to C. This implies that F̂ (z) = 0 for all z ∈ G when G is unbounded since

F̂ (∞) = 0. Then, for all z ∈ G, it follows from (4.18) that

m
∑

k=1

ak log(z − αk) =

{

−C + (z − α)f̂(z), if G is bounded,

f̂(z), if G is unbounded,

which implies that that a1 = a2 = · · · = am = 0 since the functions on the right-hand
side are single-valued and the function on the left-hand side is multi-valued. Thus, for
bounded G, we have (z − α)f̂(z) = C for all z ∈ G. By substituting z = α, we find

C = 0 and hence F̂ (z) = 0 for all z ∈ G ∪ ∂G. Thus for both cases of bounded and
unbounded G, we have F (z) = 0 for all z ∈ G ∪ ∂G. Hence, it follows from (4.19) that
c = 0 and ν1 = ν2 = · · · = νℓ = 0. Thus, the homogeneous linear system has only the trivial
solution [a1, . . . , am, c, ν1, . . . , νℓ]

T = 0, and hence the matrix of the linear system (4.11) is
non-singular. �
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4.2. Case II: m′ = m − 1. For this case, G is a bounded multiply connected domain of
connectivity m + ℓ with m ≥ 2 and B is an unbounded multiply connected domain of
connectivity ℓ′ = ℓ ≥ 0 (where B = C for ℓ = 0). Here, the simply connected domains
G1, . . . , Gm−1 are bounded, the simply connected domain Gm is unbounded, and Γm is
the external boundary component of G (see Figure 3). Further, A is given by the second
formula in (3.14) and the functions γk for k = 1, 2, . . . , m−1 are given by the first formula
in (3.10). For this case, the values of the unknown real constants a1, . . . , am−1, c, ν1, . . . , νℓ
can be computed as in the following theorem. Then am is computed through (2.10).

Figure 3. An example of a bounded field of the condenser G for m = 3
and ℓ = 3 for case II (m′ = m− 1, ℓ′ = ℓ).

Theorem 4.22. For each k = 1, 2, . . . , m − 1, let the function γk be defined by (3.10),
let µk be the unique solution of the integral equation (4.5), and let the piecewise constant

function hk = (h1,k, h2,k, . . . , hm+ℓ,k) be given by (4.6). Then, the boundary values of the

function f in (3.15) are given by

(4.23) A(t)f(η(t)) =
m−1
∑

k=1

ak[γk(t) + hk(t) + iµk(t)]

and the m+ ℓ unknown real constants a1, . . . , am−1, c, ν1, . . . , νℓ are the unique solution of

the linear system

(4.24)



















h1,1 · · · h1,m−1 1
...

. . .
...

... O
hm,1 · · · hm,m−1 1
hm+1,1 · · · hm+1,m−1 0 −1 O...

. . .
...

...
. . .

hm+ℓ,1 · · · hm+ℓ,m−1 0 O −1









































a1
...

am−1

c
ν1
...
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=



















δ1
...

δm
0
...

0



















.

Proof. The theorem can be proved by the same argument as in the proof of Theorem 4.9.
�
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4.3. Computing the capacity cap(C) and the potential function u. By solving the
integral equations (4.5) and then solving the linear system (4.11) (or (4.24)), we obtain the
real constants a1, . . . , am. Then, we can compute the capacity cap(C) from (2.12). We can
also compute the boundary values of the auxiliary analytic function f(z) through (4.10)
or (4.23). Then the values of f(z) at interior points z ∈ G can be computed by Cauchy’s
integral formula. Since u(z) = Re [F (z)], it follows from (2.6) and (3.13) that the function
u(z) is given for z ∈ G by

(4.25) u(z) =























c+ Re [(z − α)f(z)]−
m′

∑

k=1

ak log |z − αk|, if G is bounded,

c+ Re [f(z)]−
m′

∑

k=1

ak log |z − αk|, if G is unbounded,

4.4. Outline of the algorithm. The method presented in this section for computing the
capacity cap(C) and the potential function u can be summarized in the following algorithm.
Steps 10–12 are needed only if it is required to compute the values of the potential function.

Algorithm 4.26. (Computing the capacity cap(C) and the potential function u).

1. Parametrize the boundary components Γj by ηj(t), t ∈ [0, 2π], for j = 1, 2, . . . , m+ℓ,
where Γj for j = 1, 2, . . . , m are the boundaries of the plates Ej of the condenser

and Γj for j = m+1, m+2, . . . , m are the boundary components of the domain B.

2. If G is bounded and B is unbounded, then we define m′ = m − 1 and ℓ′ = ℓ. For

this case, the plates E1, . . . , Em−1 are bounded, the plate Em is unbounded and Γm

is the external boundary component of G.

3. If both domains B and G are bounded, then we define m′ = m and ℓ′ = ℓ − 1.
For this case, the plates E1, . . . , Em are bounded and Γm+ℓ is the external boundary

component of G.

4. If both domains B and G are unbounded, then we define m′ = m and ℓ′ = ℓ. For

this case, the plates E1, . . . , Em are bounded.

5. Define the functions A by (3.14).
6. Define the functions γk for k = 1, 2, . . . , m′ by (3.10).
7. For k = 1, 2, . . . , m′, compute the function µk by solving the integral equation (4.5)

and compute the function hk through (4.6).
8. Compute the m + ℓ + 1 real constants a1, . . . , am, c, ν1, . . . , νℓ by solving one of the

linear system (4.11) or (4.24). For m′ = m− 1, am is computed through (2.10).
9. Compute the capacity cap(C) from (2.12).

10. Compute the boundary values of the analytic function f through (4.10) or (4.23).
11. Compute the values of f(z) for z ∈ G by the Cauchy integral formula.

12. Compute the values of the potential function u by (4.25).

5. Numerical implementation of the algorithm

The main steps in the Algorithm 4.26 are steps 7 and 8. In step 8, the size of the
linear system is usually quite small and hence we solve it using MATLAB “backslash”
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operator. For step 7, the m′ integral equation (4.5) are solved using the MATLAB function
fbie from [N3]. In the function fbie, the integral equations (4.5) is discretized by the
Nyström method with the trapezoidal rule [AT, TW]. The size of the obtained linear system
is usually large. So, in the function fbie, the linear system is solved iteratively using
the MATLAB function gmres. The matrix-vector multiplication in gmres is computed
in a fast and efficiently way using the MATLAB function zfmm2dpart from the toolbox
FMMLIB2D [GG]. The function fbie computes also the m′ piecewise constant functions hk

in (4.6).
For domains with smooth boundaries, we use the trapezoidal rule with equidistant nodes.

We discretize each interval Jk = [0, 2π], for k = 1, 2, . . . , m + ℓ, by n equidistant nodes
s1, . . . , sn where

(5.1) sk = (k − 1)
2π

n
, k = 1, . . . , n,

and n is an even integer. We write s = [s1, . . . , sn]. Then, we discretize the parameter
domain J by the m+ ℓ copies of s,

(5.2) t = [s, s, . . . , s]T .

This leads to the discretizations

(5.3) η(t) = [η1(s), η2(s), . . . , ηm+ℓ(s)]
T , η′(t), A(t), γk(t), k = 1, 2, . . . , m′.

In MATLAB, these discretized functions are stored in the vectors et, etp, A, gamk, re-
spectively. Then the discretizations vectors muk and hk of the functions µk and hk in (4.5)
and (4.6) are computed by calling

[muk,hk] = fbie(et,etp,A,gamk,n,iprec,restart,tol,maxit).

In the numerical experiments in the next sections, we choose iprec = 5 (the tolerance
of the FMM is 0.5 × 10−15), restart=[ ] (GMRES is used without restart), tol=1e-14
(the tolerance of the GMRES method is 10−14), and maxit=100 (the maximum number of
GMRES iterations is 100). The values hj,k are then computed by taking arithmetic means:

hj,k =
1

n

jn
∑

i=1+(j−1)n

hk(ti), j = 1, 2, . . . , m+ ℓ, k = 1, 2, . . . , m′.

These values are used to build the linear system (4.11) or (4.24). Thus, the computa-
tional cost of the overall method for computing the capacity cap(C) is O(m′(m+ ℓ)n lnn)
operations for step (7) and O((m+ ℓ)3) operations for step (8).

For fast and accurate computing of the Cauchy integral formula in step (11), we use the
MATLAB function fcau from [N3]. The function fcau is based on using the MATLAB
function zfmm2dpart in [GG]. Using the function fcau, the Cauchy integral formula can
be computed at p interior points in O(p+ (m+ ℓ)n) operations.

For domains with corners (excluding cusps), the trapezoidal rule with equidistant nodes
yields only poor convergence and hence the trapezoidal rule with a graded mesh will be
used [Kre]. Equivalently, we can remove the discontinuity of the derivatives of the solution
of the integral equation at the corner points by choosing an appropriate one-to-one function
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σ : J → J . Then we parametrize the boundary Γ by η(t) = η̂(σ(t)) where η̂ is any
parametrization function of the boundary Γ (see [Kre, LSN] for more details, the above
function σ is denoted by δ in [LSN]).

The proposed method can be implemented in MATLAB as in the following function
capgc.m.

function [cap , uz] = capgc(et,etp,alphav,deltav,m,mp,ell,alpha,z)

% Compute the capacity of the generalized condensers (B,E,delta)

%

% Input:

% 1,2) et, etp: parametrization of the boundary and its first derivative

% 3) alphav=[alphav(1),...,alphav(mp)]: alphav(j) is an auxiliary point

% interior to the boundary component \Gamma_j

% 4) deltav=[deltav(1),...,deltav(m)]: deltav(j) is the value of the

% potential function u on \Gamma_j

% 5) m: the number of the closed sets E_k

% 6) mp: mp=m-1 if \Gamma_m is the external boundary component of G,

% o.w., mp=m

% 7) ell: the multiplicity of the domain B (B=C for ell=0)

% 8) alpha: for bounded G, alpha is an auxiliary point in G

% for unbounded G, alpha=inf

% 9) z: a row vector of points in G (if it is required to compute u(z))

%

% Output:

% cap (the capacity of the generalized condensers (C,E,delta)).

% uz (the values of the potential function u(z) if z is given).

%

% Computing the constants \h_{j,k} for j=1,2,...,m+ell and k=1,2,...,mp

ellp = ell ; ellp(abs(alpha)<inf & mp==m)=ell-1;

n=length(et)/(m+ell); tht=zeros(size(et)); tht(m*n+1:end)=pi/2;

if mp==m & ellp==ell

A=exp(-i.*tht);

else

A=exp(-i.*tht).*(et-alpha);

end

for k=1:mp

for j=1:m+ell

jv = 1+(j-1)*n:j*n;

if (ellp==ell)

gamk{k}(jv,1)=real(exp(-i.*tht(jv)).*clog(et(jv)-alphav(k)));

else

gamk{k}(jv,1)=real(exp(-i.*tht(jv)).*...

clog((et(jv)-alphav(k))./(et(jv)-alpha)));

end

end
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[mu{k},h{k}]=fbie(et,etp,A,gamk{k},n,5,[],1e-14,100);

for j=1:m+ell

hjk(j,k)=mean(h{k}(1+(j-1)*n:j*n));

end

end

% Computing the constants a_k for k=1,2,...,m

mat=hjk; mat(1:m,mp+1)=1; mat(m+1:m+ell,mp+1)=0;

mat(1:m,mp+2:mp+ell+1)=0; mat(m+1:m+ell,mp+2:mp+ell+1)=-eye(ell);

rhs(1:m,1)=deltav; rhs(m+1:m+ell,1)=0;

if mp==m

mat(m+ell+1,1:m)=1; mat(m+ell+1,m+1:m+ell+1)=0; rhs(m+ell+1,1)=0;

end

x=mat\rhs; a=x(1:mp,1); c=x(mp+1);

if mp==m-1

a(m,1)=-sum(a);

end

% Computing the capacity

cap = (2*pi)*sum(deltav(:).*a(:));

% compute the values of the potential function u(z) if z is given

if nargin==9

fet = zeros(size(et)); uz=zeros(size(z));

for k=1:mp

fet = fet+a(k).*(gamk{k}+h{k}+i.*mu{k})./A;

uz=uz-a(k)*log(abs(z-alphav(k)));

end

if abs(alpha)<inf

fz=fcau(et,etp,fet,z);

uz=uz+c+real((z-alpha).*fz);

else

fz=fcau(et,etp,fet,z,n,0);

uz=uz+c+real(fz);

end

end

end

In this paper, computations were performed in MATLAB R2017a on an ASUS Laptop
with Intel(R) Core(TM) i7-8750H CPU @2.20GHz, 2208 Mhz, 6 Core(s), 12 Logical Pro-
cessor(s), and 16GB RAM. The computation times presented in this paper were measured
with the MATLAB tic toc commands. All the computer codes of our computations are
available in the internet link https://github.com/mmsnasser/gc .

6. Numerical Examples - Regular Condensers

In this section, we shall consider several numerical examples of regular condensers. Some
of these examples either have know capacity or have been considered in the literature. So,
we can compare the obtained results with the exact capacity or with known capacity

https://github.com/mmsnasser/gc
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computed by other researchers. For such case, we have ℓ = 0 and {δk}mk=1 containing
exactly two different numbers which are 1 and 0.

6.1. Two circles.

In this example, we consider the generalized condenser C = (B,E, δ) with B = C (and
hence ℓ = 0), E = {E1, E2} (and hence m = 2), and δ = {0, 1}. The plates of the condenser
are given by Ek = Gk, k = 1, 2, where G1 = {z : |z| < 1} and G2 = {z : |z − a| < r}
for r > 0 and a real number a with a > 1 + r. So, for this example, the generalized
condenser reduces to a regular condenser, ℓ′ = ℓ = 0, and m′ = m = 2. Thus, the field
of the condenser, G is the doubly connected domain in the exterior of the two circles
Γ1 = {z : |z| = 1} and Γ2 = {z : |z − a| = r} (see Figure 4 (left) for a = 2 and
r = 0.5). The exact value of conformal capacity is given by cap(G) = 2π/ log(1/q) where
q is obtained by solving the following equation [V]

(1 + q)2

q
=

(1 + a− r)(a+ r − 1)

r
.

We use the method presented in Section 5 with n = 210 to compute approximate values
for the capacity for a = 2 and for several values of r between 0.01 and 0.99. The relative
errors for the computed values for this case are presented in Figure 4(right). The level
curves of the function u for a = 2 and r = 0.5 are shown in Figure 4 (left).

0 0.25 0.5 0.75 1

-15

-14

-13

Figure 4. The field of the condenser and the level curves of the function u
for Example 6.1 (left) and the relative errors in the computed values (right).

6.2. Square with two triangles.

In this example, we consider the generalized condenser C = (B,E, δ) with B = C,
E = {E1, E2, E3} where Ek = Gk, k = 1, 2, 3, and δ = {1, 1, 0}. Here, G1 is the interior of
the triangles with the vertices ia,−(b−a)/

√
3+ ib, (b−a)/

√
3+ ib, G2 is the interior of the

triangles with the vertices −ia, (b− a)/
√
3− ib,−(b− a)/

√
3− ib, and G3 is the exterior of

the square with the vertices 1 + i,−1 + i,−1− i, 1− i. So, ℓ′ = ℓ = 0, m = 3, m′ = 2, and
the generalized condenser reduces to a regular condenser. The field of the condenser, G,
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is then the bounded multiply connected domain in the exterior of the two triangles and in
the interior of the square (see Figure 5).

This example has been considered in [BSV, Example 7] for several values of a and b. We
use the presented method with n = 3× 213 to compute the capacity for the same values of
a and b used in [BSV]. The obtained results as well as the results presented in [BSV] are
shown in Table 1. The level curves of the function u for a = 0.2 and b = 0.7 are shown in
Figure 5.

Figure 5. The field of the condenser and the level curves of the function u
for the condenser in Example 6.2.

Table 1. The approximate values of the capacity Cap(C) for Example 6.2.

a b Our Method [BSV]
0.1 0.3 3.93241437137267 3.9324143
0.2 0.4 4.41198623240832 4.4119861
0.2 0.7 9.49308124679268 9.4930811
0.3 0.8 12.1180118821912 12.1180117
0.3 0.9 21.6586490491066 21.6586487

6.3. Cantor dust.

Cantor dust is a generalization of the classical Cantor middle third set to dimension two.
Let I0 = [0, 1] and recursively define

Ik =
1

3
Ik−1 ∪

(

1

3
Ik−1 +

2

3

)

, k ≥ 1.

This means that Ik is constructed by “removing” the middle one third of each interval Ik−1.
For k = 0, 1, 2, . . ., the the closed set Ik consists of 2k closed intervals. Then, we define the
closed sets Sk as

Sk = Ik × Ik, k ≥ 0,
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where Sk consists of 4k closed square regions, say E1, E2, . . . , E4k (see Figure 6 for k = 1
(left) and k = 2 (right)). Then the Cantor dust is defined as

S =
∞
⋂

k=1

Sk.

For k = 0, 1, 2, . . ., we consider the generalized condensers Ck = (B,E, δ) with B = C
and E = {E1, E2, . . . , E4k}, i.e., we have 4k plates. For the levels of the potential function

δ = {δj}4kj=1, we assume δj = 0 for half of the plates (the plates below the line y = 0.5) and

δj = 1 for the other half (the plates above the line y = 0.5). Thus, ℓ = 0, m′ = m = 4k,
and the generalized condenser reduces to a regular condenser. The field of the condenser,
G, is then the unbounded multiply connected domain in the exterior of the closed sets Sk

(see Figure 6).
The approximate value of the capacity for k = 1, 2, 3, 4, 5 are shown in Table 2 and the

level curves of the function u for k = 1, 2 are shown in Figure 6. For each k, the method
requires solving m′ = 4k integral equations. The CPU time presented in Table 2 shows
that the method can be used to compute the capacity Cap(Ck) in reasonable time even
when m′ becomes large. The presented method is used with n = 29.

Table 2. The approximate values of the capacity Cap(Ck) for Example 6.3.

k m = 4k cap(Ck) Time (sec)
1 4 4.652547172280 0.96
2 16 4.562140107251 7.33
3 64 4.531267950053 87.23
4 256 4.519885740453 1312.67
5 1024 4.515629401820 19880.56

6.4. Cantor dust in a circle.

In this example, we consider the generalized condensers Ck = (B,E, δ) with B = C,
E = {E1, E2, . . . , E4k , E4k+1} where E1, E2, . . . , E4k are as in Example 6.3 and E4k+1 =
{z ∈ C : |z − (0.5 + 0.5i)| ≥ 1}. For the levels of the potential function, we assume
δ = {0, 0, . . . , 0, 1}, i.e., the boundary values of the potential function u are 1 on the circle
|z − (0.5 + 0.5i)| = 1 and 0 on the boundary of Sk, k = 0, 1, 2, . . .. Thus, ℓ′ = ℓ = 0,
m′ = m− 1 = 4k, and the generalized condenser reduces to a regular condenser. The field
of the condenser, G, is then the bounded multiply connected domain in the exterior of the
closed sets Sk and in the interior of the circle |z − (0.5 + 0.5i)| = 1 (see Figure 7).

The approximate value of the capacity for k = 0, 1, . . . , 5 are shown in Table 3 and
the level curves of the function u for k = 1, 2 are shown in Figure 7. As in the previous
example, the presented method is used with n = 29.
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Figure 6. The level curves of the function u for the condenser in Exam-
ple 6.3 for k = 1 (left) and k = 2 (right).

Table 3. The approximate values of the capacity Cap(Ck) for Example 6.4.

k m′ = 4k Cap(Ck) Time (sec)
0 1 11.953050425798967 0.18
1 4 11.598538784854115 1.39
2 16 11.460679479701366 9.49
3 64 11.408998221761493 94.22
4 256 11.389646177509054 1235.45
5 1024 11.382387009959178 19160.17

7. Numerical Examples - Generalized Condensers

In this section, we shall consider several numerical examples of generalized condensers.
For such case, we have either ℓ 6= 0 or ℓ = 0 with {δk}mk=1 containing at least three different
numbers.

7.1. Six circles.

In this example, we assume that E = {E1, E2} where E1 and E2 are as in Example 6.1
with a = 2, i.e., E1 = G1 with G1 = {z : |z| < 1}, and E2 = G2 with G2 = {z : |z−2| < r}
where 0 < r < 1 (and hence m′ = m = 2). We consider the generalized condenser
C = (B,E, δ) where δ = {0, δ2} with a non-zero real number δ2 for two cases of the
domain B.

First, we assume that B is the bounded multiply connected domain

B = BI = {z : |z| < 3, |z + 2| > 0.9, |z ∓ 2i| > 0.9}.
Hence ℓ = 4 and ℓ′ = 3. The field of the condenser, G, is then the bounded multiply
connected domain of connectivity 6 exterior to the circles Γ1 = {z : |z| = 1}, Γ2 = {z :
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Figure 7. The level curves of the function u for the condenser in Exam-
ple 6.4 for k = 1 (left) and k = 2 (right).

|z − 2| = r}, Γ2 = {z : |z − 2| = r}, L1,2 = {z : |z ∓ 2i| = 0.9}, L3 = {z : |z + 2| = 0.9},
and interior to the circles L4 = {z : |z| = 3} (see Figure 8 (left) for r = 0.5).

Second, we assume that B is the unbounded multiply connected domain

B = BII = {z : |z − 6| > 3, |z + 2| > 0.9, |z − (1± 3i)| > 2}.
and hence ℓ′ = ℓ = 4. Thus, G is the unbounded multiply connected domain of connectivity
6 exterior to the circles Γ1 = {z : |z| = 1}, Γ2 = {z : |z − 2| = r}, L1,2 = {z :
|z − (1 ± 3i)| = 2}, L3 = {z : |z + 2| = 0.9}, and L4 = {z : |z − 6| = 3} (see Figure 8
(center) for r = 0.5).

As in Example 6.1, we use the presented method with n = 210. The approximate values
of the capacity computed for r = 0.5 and for several values of δ2 are presented in Table 4.
The level curves of the function u for r = 0.5 and δ2 = 1 are shown in Figure 8 (left, center).
Figure 8 (right) shows the approximate values of the capacity computed for δ2 = 1 and
for several values of r between 0.01 and 0.99. We see from Table 4 and Figure 8 (right)
that the capacity of the condenser C = (B,E, δ) for B = BI and B = BII is less than the
capacity for B = C (Example 6.1).

Table 4. The approximate values of the capacity Cap(C) for Example 7.1.

δ2 B = BI B = BII B = C

0.15 0.070116283201223 0.064979770350752 0.084657798864524
0.30 0.280465132804894 0.259919081403007 0.338631195458096
0.45 0.631046548811011 0.584817933156765 0.761920189780715
0.60 1.121860531219576 1.039676325612028 1.354524781832383
0.15 1.752907080030588 1.624494258768793 2.116444971613098
0.90 2.524186195244046 2.339271732627063 3.047680759122861
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Figure 8. The field of the condenser and the level curves of the function u
for B = BI (left) and B = BII (center); and the approximate values of the
capacity for δ2 = 1 (right).

7.2. Five circles.

In this example, we consider the generalized condenser C = (B,E, δ) with B = C,
E = {E1, . . . , E5}, and δ = {1, 2, 3, 4, 0}. The plates of the condenser are given by Ek = Gk,
k = 1, . . . , m, where G1,3 = {z : |z ∓ 2| < 1}, G2,4 = {z : |z ∓ 2i| < r}, and G5 = {z : |z| >
4}. So, ℓ′ = ℓ = 0, m = 5, and m′ = 4. The field of the condenser, G, is then the bounded
multiply connected domain in the exterior of the four circles Γ1,3 = {z : |z ∓ 2| = 1} and
Γ2,4 = {z : |z∓2i| = 1}; and in the interior of the circle Γ5 = {z : |z| = 4} (see Figure 9).

The approximate values of the capacity obtained with several values of n are shown in
Table 5. Figure 9 shows the level curves of the function u obtained with with n = 210.

Table 5. The approximate values of the capacity Cap(C) for Example 7.2.

n Cap(C)
25 140.5271930046695
26 140.5271935663499
27 140.5271935663502
28 140.5271935663485
29 140.5271935663483
210 140.5271935663559

7.3. Sierpinski carpet.

The Sierpinski carpet is another generalization of the Cantor set to dimension two. The
construction of the Sierpinski carpet begins with a square S0. The square S0 is subdivided
into 9 congruent subsquares in a 3-by-3 grid, and the central subsquare is removed to
obtain S1. Then, we subdivide each of the 8 remaining solid squares into 9 congruent
squares and remove the center square from each to obtain S2. The same procedure is then
applied recursively to obtain S3, S4, . . . , where

S0 ⊃ S1 ⊃ S2 ⊃ S3 ⊃ S4 ⊃ · · · ,
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Figure 9. The field of the condenser and the level curves of the function u
for the condenser in Example 7.2.

(see Figure 10 for S2 (left) and S3 (right)). Then the Sierpinski carpet is defined as

S =
∞
⋂

k=0

Sk.

For k = 0, 1, 2, . . ., the domain Ŝk = Sk\∂Sk is a multiply connected domain of connec-

tivity 1 +
∑k

j=0 8
j. The domain Ŝk has 1 +

∑k
j=0 8

j boundary components which all are
squares. We will distinguish here two of these squares, namely, the external square which
will be called Γ2 and internal square which was removed from S0 to obtain S1 and it will be
called Γ1. The other −1+

∑k
j=0 8

j squares are in the domain between Γ1 and Γ2. Let B be

the multiply connected domain obtained by removing these −1+
∑k

j=0 8
j squares and the

domains interior to these squares from the extended complex place Ĉ. Let also E1 = G1

where G1 is the domain interior to Γ1 and E2 = G2 where G2 is the domain exterior to Γ2.
In this example, we consider the generalized condensers Ck = (B,E, δ) with E = {E1, E2}
and δ = {0, 1}. Thus, ℓ′ = ℓ = −1 +

∑k

j=0 8
j, m = 2, and m′ = 1. The field of the

condenser, G, is then the bounded multiply connected domain Ŝ (see Figure 10).
The approximate value of the capacity for k = 0, 1, 2, 3, 4 are shown in Table 6 and the

level curves of the function u for k = 2, 3 are shown in Figure 10. The presented method
is used with n = 210. For this example, we have m′ = 1 and hence we need to solve
only one integral equation to compute Cap(Ck) for each k. The presented method can be
used to compute the capacity even when the number of squares is too high. For example,
to compute Cap(Ck) for k = 5, the multiplicity of the domain G is 4682 and hence, for
n = 210, the size of the linear system obtained by discretization the integral equation is
4794368 by 4794368. Although the size of the system is too high, the presented method
requires only 400 seconds to compute the capacity.
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Table 6. The approximate values of the capacity Cap(Ck) for Example 7.3.

k m+ ℓ Cap(Ck) CPU time (sec)
1 2 6.215546324111108 0.25
2 10 5.088779139415422 0.64
3 74 4.076130615454810 3.00
4 586 3.258035364401146 29.69
5 4682 2.600902059654094 399.97

Figure 10. The level curves of the function u for the condenser in Exam-
ple 7.3 for k = 2 (left) and k = 3 (right).

8. Condensers with slit plates

The method presented above can be used to compute the capacity of only condensers
bordered by smooth or piecewise smooth boundaries. Since the Dirichlet integral is con-
formally invariant, the capacities for the cases for which the plates of the condenser are
rectilinear slits can be computed with the help of conformal mappings as in the following
examples.

8.1. Three slits: regular condenser.

In this example, we consider the generalized condenser C = (B,E, δ) with B = C,
E = {E1, E2, E3} where E1 = [−c,−1], E2 = [a, b], and E3 = [1, c], −1 < a < b < 1 < c.
For the levels of the potential of the plates, we consider two cases: δ = {1, 1, 0} and
δ = {0, 1, 0}. So, ℓ = 0, m = 3, and the generalized condenser reduces to a regular
condenser. This example has been considered in [BSV, Example 6] for several values of a
and b.

Here, the field of the generalized condenser, G, is the unbounded triply connected domain
in the exterior of the three slits E1, E2, and E3 (see Figure 11). Hence, the domain G for
this generalized condenser is not bordered by Jordan curves. So, the method presented
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above is not directly applicable to such a domain G. Thus, to compute the capacity of this
condenser, we first map this domain onto a domain Ĝ bordered by smooth Jordan curves
so that our method can be used. An iterative numerical method for computing such a
domain Ĝ has been presented recently in [NG]. Using this iterative method, a conformally

equivalent domain Ĝ bordered by ellipses can be obtained as in Figure 11 (right). For
details on the iterative method for computing the domain G, we refer the reader to [NG].

-2 -1 0 1 2
-1

0

1

-2 -1 0 1 2
-1

0

1

Figure 11. The domains G (left) and Ĝ (right) for the condenser in Example 8.1.

Since the Dirichlet integral is conformally invariant, the capacity for the new domain Ĝ
is the same as the capacity for the original domain G. For the new domain Ĝ, we use the
presented method with n = 211 for several values of the constants a, b, and c (for the same
values used in [BSV]). The level curves of the function u for a = −0.5, b = 0.5, and c = 2
are shown in Figure 12. The obtained approximate values of the capacity as well as the
results presented in [BSV] are shown in Table 7.

Figure 12. The level curves of the function u for the condenser in Exam-
ple 8.1 for Case I (left) and Case II (right).

8.2. Three slits: generalized condenser.

In this example, we consider the generalized condenser C = (B,E, δ) with B = C\[a, b],
E = {E1, E2} where E1 = [−c,−1], E2 = [1, c], and δ = {0, 1}, −1 < a < b < 1 < c.
So, here we have ℓ = 1, m = 2. The domain G of condenser here is the same as in
Example 8.1 and the Dirichlet boundary condition on the middle slit is replaced with
Neumann condition. Thus, as in Example 8.1, we compute first a conformally equivalent
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Table 7. The approximate values of the capacity Cap(C) for Example 8.1.

Case I Case II
a b c Our Method [BSV] Our Method [BSV]

−0.9 0 2 1.708669509849820 1.7086693 3.453772340126319 3.4537720
−0.5 0.5 2 2.095326566730911 2.0953263 2.941023714396430 2.9410234
−0.9 0.9 2 3.067636432954407 3.0676361 5.187751867577839 5.1877511

0 0.9 2 3.033274793073555 3.0332745 3.453772340126327 3.4537719
−0.5 0.5 3 2.412575260903909 2.4125750 3.048687933334055 3.0486876
−0.7 0.2 3 2.131839309436634 2.1318391 3.017210220380872 3.0172100
0.5 0.8 3 2.807123923176794 2.8071236 2.312108724455613 2.3121085

domain Ĝ bordered by smooth Jordan curves. Then, for the domain Ĝ, we use the presented
method with n = 211 for the same values of the constants a, b, and c used in Example 8.1.
The obtained results are presented in Figure 13 (left) and in Table 8.

We see from Table 8 that the middle segment [a, b] on the real axis has no effect on the
value of the capacity for this case. However, this will not be the case if we move the middle
segment away from the real axis. To show that, we keep E and δ the same as above and
we change the domain B to B = C\[a+i, b+i], i.e., we move the middle segment vertically
by unity. Then, the values of the capacity depends on a and b (see the fifth column in
Table 8). The level curves of the potential function are presented in Figure 13 (right).

Figure 13. The level curves of the function u for the condenser in Exam-
ple 8.2 for B = C\[a, b] (left) and B = C\[a+ i, b+ i] (right).

8.3. Cantor set.

In Example 6.3, we consider the Cantor dust which a generalization of the classical
Cantor middle third set to dimension two. The boundaries of the closed sets Sk in Ex-
ample 6.3 were piecewise smooth Jordan curves so the method presented in Section 5 is
directly applicable to the problem considered in Example 6.3. In this example, we consider
the classical Cantor middle third set which means the domain G is bordered by slits and
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Table 8. The approximate values of the capacity Cap(C) for Example 8.2.

a b c B = C\[a, b] B = C\[a+ i, b+ i]
−0.9 0 2 1.279261571170975 1.276631670192704
−0.5 0.5 2 1.279261571170975 1.278826082326995
−0.9 0.9 2 1.279261571170975 1.274579061435374

0 0.9 2 1.279261571170975 1.276631670192704
−0.5 0.5 3 1.563401922696102 1.563011913331686
−0.7 0.2 3 1.563401922696101 1.562502672069208
0.5 0.8 3 1.563401922696093 1.562906600728627

hence the presented method is not directly applicable. However, the presented method can
be used with the help of conformal mappings as explained in Example 8.1.

Let Ik, k = 0, 1, 2, . . ., be as defined in Example 6.3. Then, the classical Cantor middle
third set is defined as

I =
∞
⋂

k=1

Ik.

For k = 0, 1, 2, . . ., the closed set Ik consists of 2k closed intervals E1, E2, . . . , E2k (see
Figure 14 for k = 2 (left) and k = 3 (right)). We consider the generalized condensers
Ck = (B,E, δ) with B = C and E = {E1, E2, . . . , E2k}. For the levels of the potential

function δ = {δj}4kj=1, we assume δj = 0 for half of the plates (the plates on the left of the
line x = 0.5) and δj = 1 for the other half (the plates on the right of the line x = 0.5).
Thus, ℓ = 0, m′ = m = 2k, and the generalized condenser reduces to a regular condenser.
The field of the condenser, G, is then the unbounded multiply connected domain in the
exterior of the closed sets Ek (see Figure 14).

The approximate values of the capacity for k = 1, 2, . . . , 9 are shown in Table 9 and the
level curves of the function u for k = 2, 3 are shown in Figure 14. For each k, we need
first to use the iterative method presented in [NG] to compute a domain Ĝ bordered by
smooth Jordan curves which is conformally equivalent to the domain G. Then, we use the
presented method for the new domain Ĝ and the method requires solving m = 2k integral
equations. The total CPU time for the two steps for each k is presented in Table 9. The
presented numerical results obtained with n = 210.

Figure 14. The level curves of the function u for the condenser in Exam-
ple 8.3 for k = 2 (left) and k = 3 (right).
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Table 9. The approximate values of the capacity Cap(Ck) for Example 8.3.

k m = 2k Cap(Ck) Time (sec)
1 2 1.563401922696121 0.22
2 4 1.521894262663735 0.70
3 8 1.498986233451143 2.17
4 16 1.487078427246902 6.84
5 32 1.480987379910617 23.20
6 64 1.477880583227881 91.26
7 128 1.476295519723391 371.64
8 256 1.475486275937497 1405.52
9 512 1.475072901005890 6158.92

9. Harmonic measure

Assume that the multiply connected domain G is as described in Section 2 with ℓ = 0,
i.e., G is a multiply connected domain of connectivity m bordered by Γ = ∪m

k=1Γk where
Γm is the external boundary component if G is bounded. In this section, we shall use the
method described above to compute the “harmonic measure” for the multiply connected
domain G.

For a fixed j, j = 1, 2, . . . , m, let u be the harmonic function in G that satisfy the
boundary condition

(9.1) u(ζ) =

{

1, ζ ∈ Γj,

0, ζ ∈ Γk, k 6= j, k = 1, 2, . . . , m,

where u is assumed to be bounded at ∞ for unbounded G. Then the function u is called
the harmonic measure of Γj with respect to G and will be denoted by ωG,Γj

[CM, GM,
Kra, T]. From the Maximum Principle for harmonic functions [T, p. 77] it follows that
0 < ωG,Γj

(z) < 1 for z ∈ G. The harmonic measure ωG,Γj
(z) is invariant under conformal

maps. If Φ is a conformal mapping from the domain G onto Φ(G), then [AVV, GM]

ωG,Γj
(z) = ωΦ(G),Φ(Γj)(Φ(z))

for all z ∈ G, j = 1, 2, . . . , m.
The boundary condition (9.1) is a special case of the boundary condition (2.3) (here,

ℓ = 0 so we will not have the normal derivative boundary condition). Thus, the algorithm
presented in Section 4.4 can be used to compute the harmonic measure ωG,Γj

(z) for z ∈ G,
j = 1, 2, . . . , m. In fact, by the definition of the function δ in Example 8.1, the level curves
presented in Figure 12 (right) are the level curves of the harmonic measure ωG,Γ2

(z) for
the triply connected domain G in the exterior of the three slits Γ1 (the left slit), Γ2 (the
middle slit), and Γ3 (the right slit). The level curves presented in Figure 12 (left) are the
level curves of the harmonic measure ωG,Γ1

(z) + ωG,Γ2
(z).

We consider two more examples as following.
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9.2. Annulus.

Let G by the annulus G = {z ∈ C : q < |z| < 1}. Then the exact harmonic measures
of the inner circle Γ1 = {z ∈ C : |z| = q} and the outer circle Γ2 = {z ∈ C : |z| = 1} with
respect to G are given by

ωG,Γ1
(z) =

log |z|
log q

, ωG,Γ2
(z) = 1− log |z|

log q
, z ∈ G.

We use the method presented in Section 5 with n = 210 to compute approximate values
of the harmonic measures ωG,Γ1

(z) and ωG,Γ2
(z) for z ∈ G. The absolute error in the

computed values are shown in Figure 15.

Figure 15. The level curves of the absolute error in the computed values
of the harmonic measures ωG,Γ1

(z) (left) and ωG,Γ2
(z) (right) for Example 9.2.

9.3. Two disks and two polygons.

We consider the multiply connected domain G of connectivity 4 in the exterior of the
curves Γ1,Γ2,Γ3 and in the interior of the curve Γ4. Here, Γ1 is the circle |z−0.5| = 0.25, Γ2

is the circle |z+0.5| = 0.25, Γ3 is the polygon with the vertices 0.5−0.5i, 0.5−0.8i,−0.5−
0.8i,−0.5 − 0.5i, and Γ4 is the polygon with the vertices 1, i,−1,−1 − i, 1 − i. We use
the method presented in Section 5 with n = 5× 28 to compute approximate values of the
harmonic measures ωG,Γ1

(z), ωG,Γ2
(z), ωG,Γ3

(z) and ωG,Γ4
(z) for z ∈ G. The level curves

of the computed harmonic measures are shown in Figure 16.
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