
SAMoC: Self-Aware Access Monitoring and
Controlling Framework for Android

Nanda Kumar Thanigaivelan, Ethiopia Nigussie, Seppo Virtanen, and Jouni
Isoaho

Department of Future Technologies, University of Turku, Turku, Finland
{nakuth,ethnig, seppo.virtanen, jisoaho}@utu.fi

Abstract. We present the concept and specification of a self-aware ac-
cess monitoring and controlling framework for Android. The lack of users’
security awareness, Android operating system’s security limitations and
the widespread use of Android for personal and organizational activi-
ties emphasizes the importance of improving its security. The proposed
SAMoC framework strengthens the security of Android through learn-
ing based operation refinements. The introduction of a monitoring agent
on each resource and a self-aware layer in the Android software stack al-
lows to detect unexpected events and perform fine-grained access control
over the resources. The self-aware layer can automatically refine the poli-
cies or provide suggestions depending on its configuration. The SAMoC
framework enforces specific restrictions on an individual user basis and
allows the users to play a role in the system operation optimization due
to its transparent nature.

Keywords: Self-aware security · Mobile security · Access control.

1 Introduction

Mobile devices are becoming the dominant devices for communication and online
service consumption among individual users and organizations. The exponential
growth in the number and diversity of the available applications is the main
reason for widespread popularity of mobile devices. The increase in popularity of
mobile devices along with users’ limited security awareness, and operating system
vulnerabilities make these devices easy target for security attacks. An increasing
number of organizations is allowing employees to access the enterprise’s resources
through mobile devices and even encouraging to use their own devices (Bring
Your own Devices (BYoD)). In addition to enterprise apps, a number of other
apps from various channels may also be installed in the same device, exposing
the enterprise to numerous security threats and attack vectors.

This work focuses on access control for Android based mobile devices to en-
sure their security. Android is an open-source operating system developed based
on the Linux kernel [1]. The Android operating system deploys mechanisms such
as application sandboxing and the Android permission model. The sandboxing
provides application isolation and containment using Linux access control and

2 N. K. Thanigaivelan et al.

process protection mechanisms. The permission model restricts an applications
capabilities by regulating sensitive API calls that access protected resources. Per-
missions to access certain resources are granted during first access request. Users
tend to approve all requested permissions since the users may not understand
fully the consequences. Though runtime permission revocation is introduced in
Android 6.0. it still fails to allow fine grained permission control. Third-party
libraries (for example, advertisement and analytics) cannot be prevented from
abusing the granted permissions of their host apps because of the unavailability
of separation mechanisms. In other words, Android lacks runtime configurable
access control for preventing an application from accessing any open interfaces
of another application and abusing its granted permissions.

The future mobile devices will be part of the internet-of-things (IoT) and
they can operate as sensing, actuating, and intermediate gateway devices in
IoT. Intercommunication among mobile devices is highly likely in future IoT
applications. These activities will enhance the roles and usage of mobile devices
which makes them an attractive target for attacks since the impact of attacks
can be higher. Therefore, it is necessary to come up with a system which is able
to reconfigure and adapt its operation to ever evolving threat. To counter such
circumstances, the system has to be self-aware.

In this work, we present the concept and specification of a self-aware access
monitoring and controlling framework for Android. The main working principle
of the framework is to monitor, to learn and then to refine existing policies or
defining new ones at runtime. A self-aware layer is introduced in the Android
software stack with the sole intention of learning from the monitored information
and implementing appropriate controlling measures. The contributions of this
work are as follows:

– Introduction and adaptation of self-awareness in Android Mandatory Ac-
cess Control (MAC): to detect and/or prevent unexpected events including
the current and future intentional or unintentional malicious activities and
resource abuses.

– Self-optimization of operations: through continuous monitoring and learning,
the framework defines new access policies or refines existing policies which
in turn optimizes the operation and resource usage.

– Multiuser environment support: to allow enforcing different restriction poli-
cies and customizing them accordingly for each user account in a single
device.

The rest of the paper is structured as follows. Android and its security lim-
itations are presented in Section 2. The key features of the proposed self-aware
access monitoring and controlling (SAMoC) framework are discussed in Section
3. The concept of self-awareness in general and its importance in Android secu-
rity context are explained in Section 4. The detailed specification of the SAMoC
framework is presented in Section 5. Finally, discussion and conclusion are pre-
sented in Section 6 and Section 7, respectively.

SAMoC Framework 3

2 Android and its Security Limitations

Android is a Linux-based open source mobile operating system, developed by
Open Handset Alliance led by Google. The Linux kernel is customized for An-
droid to provide features such as Binder, asynchronous shared memory, process
memory allocator and power management. The kernel layer acts as a hardware
abstraction layer and provides various services such as networking, file system
and device drivers. The middleware layer consists of Android framework, na-
tive and runtime libraries including Android Runtime (ART). It is responsible
for handling application life cycle management and other system services along
with the access restrictions on application resource accessibility. The application
layer hosts the core/system applications and other applications written by An-
droid developers. In addition to Java, developers can use C/C++ through the
Java Native Interface (JNI). The Android application architecture is unique in
such a way that it is designed to provide application compatibility, portability
and security.

2.1 Android Security Model

Since Android is Linux-based operating system, it inherits user resource isolation
and process isolation from Linux. Android extends the user resource isolation
feature by extending to application level. Under this modification, each appli-
cation is assigned with unique ID (UID) upon installation and executes it as
a dedicated process using the same UID. Also, dedicated data directory for its
resources is given and restricts to access other files unless explicitly permitted.
The system resources such as daemons and system applications are owned either
by system or root user and executed under pre-defined UID. Thus, it achieves
isolation in terms of both process level as well as file level.

Due to the isolation, application cannot access any resources other than their
own resources. In order to provide access to the resources such as internet con-
nectivity, data and hardware features, Android introduced access rights in the
form of permissions. Application required to access those features need to obtain
appropriate permission and the developer must declare the required permission
in the AndroidManifest. Android offers 130 permissions and also allow develop-
ers to define their own permissions to enforce access restrictions on their appli-
cation’s critical application resources [11]. Android framework enforces access
verification during runtime to ensure applications has appropriate access rights.
There are few permissions which are not monitored by the Android framework
since they are mapped to the low level operating system control.

2.2 Limitations

Isolation of applications and their resource accessibility is contained through ap-
plication sandboxing. Android also caters permission to access other resources
in order to capitalize their features for enhancing user experiences. Due to its
popularity and continuous increase in user base, it has attracted the attention

4 N. K. Thanigaivelan et al.

of research community to identify the vulnerabilities and possible solutions [5, 6,
4, 7, 12–14]. Also, it has gained the attention of adversaries, who aim to exploit
the vulnerabilities for their own benefits. To enhance the security through the
enforcement of MAC at kernel layer, SE Linux is introduced into the Android
platform since version 4.3 (as SEAndroid). The implementation of SE Linux is
still evolving in Android from permissive mode in version 4.3 to full enforcement
mode in version 5.0. SEAndroid provides huge advantage in protecting the de-
vice, for example, it has the capability to prevent application installation based
on its signatures [10]. However, it is not possible to define the certificates for all
available applications in the policy. Extending SE Linux to cover the Android’s
middleware is challenging mainly because of implementations complexity as well
as requiring an invasive and costly set of changes [10]. Due to these constraints
the middleware is loosely protected by Android’s default security model. SE
Linux also requires specialized skills for implementing and enforcing policies.

From version 6.0 onwards, several enhancements are introduced and one ex-
ample is runtime permission revocation. It allows users to change (grant or re-
voke) the status of the applications’ permissions as needed. This is one important
step in improving security but it fails to provide fine granularity for controlling
the resources. In this work, we are presenting a framework which provide fine
granular access control, and more controllable system features.

3 Key Features of SAMoC Framework

A self-aware system is capable of knowing its environment, the on-going ac-
tivities and implementing appropriate corrective measures at run-time in order
to achieve and maintain the required performance. By introducing a self-aware
concept in mobile MAC, we are aiming to achieve the following main goals:

– Self-awareness: to reduce user intervention in security policy enforcement and
maintenance by creating self-aware components. These components can ac-
cess logs, learn, able to predict unexpected behaviors/events, and refine/define
new policies accordingly.

– Highly refined policies: to attain higher granularity in policy refinement,
access restriction enforcement based on the resource features rather than
the enforcement on application level or resource level will be introduced.
For example, in the proposed framework, instead of blocking entire internet
access resource, it is possible to allow certain protocol on particular port(s)
and deny the rest of the protocol for an application.

– BYOD and parental solutions: The system will provide multi-user support
and it is tightly coupled with device users. This allows enforcement of differ-
ent sets of control policies and customization of each policy set for individual
user account in a device.

– Improved system resilience: The integration of five subsystems into the frame-
work (application installation and monitor, device resource controller, com-
munication controller, self-aware subsystem, and SAMoC user interface) en-
hances the system’s resiliency by allowing to run atleast one subsystem

SAMoC Framework 5

continuously. The user can decided to enable/disable the certain subsys-
tem(s)/policies and keep the rest active all the time.

– Easy to use: since there is no predefined structure/syntax for writing most
of the policies, the personal users can easily adopt to the system.

– Transparency: Allowing device users to access the system logs and the en-
forced policies enables the users to understand behind-the-scene operations
either fully or partially depending on their knowledge.

4 Adaptation of Self-Awareness in Security Context

A number of researches have been conducted and many solutions have been
proposed to thwart the threats in the Android but most of them are concentrated
on either providing resource access restriction or prevention of identified threats
and few works target both cases [7, 10]. The existing research on mobile security
fail to recognize the assimilation of mobile devices in IoT and the resulting
change in the mobile usage landscape. Mobile device are part of IoT and play
an important role in IoT as a sensing, actuating, and/or intermediate gateway.
The interoperability of mobile in IoT is facilitated due to the introduction of
6lowPAN based wireless sensor networks. There is also on-going effort to connect
IP networks through bluetooth low energy [15, 16]. One potential example of this
integration is the possibility of gathering information through crowd sensing
by using the sensors available in the mobile devices along with other sensor
networks [17, 18]. Intercommunication between the mobile devices is highly likely
in future IoT applications. In these circumstances, it is difficult to know the
security threats beforehand. In order to protect the device resources, we need
to develop a system which is capable of self-reconfiguration and self-adaptation.
To realize this objective, we have to make the system self-aware.

Any system which has the capability to learn and adapt itself through moni-
toring its own operations and environment is termed as self-aware system. Imple-
mentation of self-aware systems is not an easy task but they can offer numerous
benefits upon proper employment.

4.1 Self-awareness in Security Context

The advantages of self-awareness especially detection and prevention of malicious
activities through monitoring and learning are critical to the security of the
systems since threats or threat sources are dynamic and evolving. To capitalize
on these benefits, we have adapted the self-awareness into the security context.
The customized self-aware agent is shown the Figure 1.

The self-aware agent comprises of five components and the tasks of each
component are described as follows.

Self-Configure: the purpose of self-configuration is to update the settings of
the self-aware agent components by considering the previous and current circum-
stances to ensure the required objectives are fulfilled with minimal overheads.
The self-configure component is also responsible for guiding the rest of self-aware

6 N. K. Thanigaivelan et al.

b

c

d

a

Self-execution

Self-execution

Perceive

external

environment

Self- execution

Self-

Configure
Optimize

Learn &

Evaluate

Monitor &

Enforce

Continuous

monitoring of

system

operations

e

e

f
Actions:

a) Configure/Refine SA components

b) Policies

c) Monitored output

d) Monitored output + Previous evaluation outcome

e) Evaluation outcome (current)

f) Define/Refine/Optimize

recommendation/enforcement on policies

Knowledge

Base

Fig. 1. Customized self-aware agent for security context

agent components execution for efficient power and device usability. It will over-
see the internal and external factors such as peek device usage, active and idle
duration, and then define/refine execution period for itself, Learn and Evaluate
and Optimize components.

Monitor and Enforce: it engages in continuous observation and enforcement
of the policies on the systems activities. It ensures that the applications behavior
and system resources accessibility conform with the provided policies. It is also
responsible for transferring the observation to the Knowledge Base (KB). The
information observed by this component will be used as a basis for the Learn
and Evaluate component.

Learn and Evaluate: this component has two operating phases. In the learning
phase, information gathered by Monitor and Enforce component are analyzed in
order to derive the common system behavior patterns. On successive execution
of this phase, it will generate a new pattern if there is a change in the systems
application behavior, otherwise the same common pattern will be generated.
In the evaluate phase, the identified pattern is compared against the common
patterns. Upon on detection of deviation, it will construct appropriate changes
and submit the recommended changes to the KB.

Optimize: this component examines the recommendations provided by the
Learn and Evaluate component and change the policies accordingly or provide
them as suggestions to the user depending on the chosen configuration. It is also
responsible for restoring the policies to the previous states if the applied changes
fails to fullfill the requirement.

Knowledge Base: is used as a storage space for all activities. It contains the
policies, system activities as logs, derived patterns, and policy recommendations,
along with the setting configuration of the self-aware agent. As can be seen from
Figure 1, all the inputs and outputs for the other four components of self-aware
agent are from and to the KB.

5 SAMoC Framework Specification

The primary objective of the proposed framework is to achieve higher degree of
security by inhibiting malicious or unintended activities through highly refined

SAMoC Framework 7

policy enforcement, self-learning, and self-reconfiguration. The system which is
developed by incorporating the SAMoC framework will reduce the requirement
for human involvement in making more appropriate decisions which in turn im-
prove the security of the mobile device as well as system usability. The framework
engages in continuous monitoring of the resources and communication channels
to ensure that all apps are working appropriately according to the defined poli-
cies. It also performs periodic assessment of monitored information as this is
necessary for policies and processes refinement. Since the framework will be in-
grained into the Android platform, it will start functioning upon device boot.
The framework operates along with Android’s default security implementation.

5.1 Assumptions

As in other system developments, we have defined certain assumptions to ensure
proper functioning of the system. The users and administrators who are con-
figuring the polices are fully trusted and they required to posses knowledge on
system functionality principles. We assume that no application is granted root
permission and the device will not be rooted in any circumstances as this may
result in applications to abuse system resources intentionally or unintentionally.
The Android operating system and the components that we are introducing are
fully trusted.

5.2 SAMoC Mobile

The mobile part consists of the following components: handlers, self-aware com-
ponents and synchronization components. The architecture of the SAMoC mo-
bile is shown in Figure 2.

Handlers: The handlers consist of two major components: policy handlers
and event-log handlers. They play a crucial role in the framework since all the
communication towards logs and policies are directed by them. Policy handlers
are responsible for providing appropriate policy to the monitoring and enforcing
component to act upon the resources. Event-log handlers perform log mainte-
nance by allowing other SAMoC mobile components to read or write the logs as
and when they needed.

Self-Aware Component : self-aware component is the core of the framework. It
comprises of self-configuration, monitoring and enforcing components, evaluation
and optimization components. The self-configuration component is responsible
for guiding the rest of self-aware components by updating their execution set-
tings. Monitoring and enforcing enhances the normal Android execution flow
by placing appropriate hooks in the Android components which are responsible
for handling applications and their device services accessing capabilities. The
evaluation component is responsible for making policy recommendations by ac-
cessing the logs, identifying the correlation and establishing relationship among
the correlated information. The optimization component will refine the existing
policies, define new policies or recommend changes to the user based on the
recommendations provided by the evaluation component.

8 N. K. Thanigaivelan et al.

Synchronization Components: Synchronization component is responsible for
handling request access to the policies by the SAMoC UI. In addition, it will also
handle compression, decompression and purging old logs from the repository.

Repository is a storage component which contains the policies and logs gen-
erated by the framework components. It will also acts as knowledge base for
self-aware components by storing and retrieving the settings required for their
self-execution, behavioural patterns and policy recommendations.

...

Self-Aware Components

Synchronization

ComponentsPolicy

Handlers

Event Log

Handlers
Repository

Package

Manager

Content

Providers

Device

Services

Package

Monitor

Device

Service

Monitor

...

Monitoring and Enforcing

Components

SAMoC

Kernel MAC

Learn &

Evaluate

Self-

configure
Optimize

Applications

Activity

Monitor

Content

Providers

Monitor

SAMoC User

Interface

Fig. 2. Mobile software stack with SAMoC framework. The fully shaded blocks are
the proposed new modules of the framework and the partially shaded blocks consist of
framework module extensions in Android.

5.3 SAMoC Mobile Subsystems

One of the goals of the framework is to guarantee the existence of least de-
gree of security at any time in order to maintain system resiliency. In order to
achieve this goal, SAMoC mobile is classified into five subsystems: application
installation and monitor, device resource controller, communication controller,

SAMoC Framework 9

self-aware subsystem and SAMoC user interface. The subsystems relies on dif-
ferent components and in certain cases, they can share the same components for
the fulfilment their operations.

Application installation and monitor subsystem is responsible for handling
the applications related activities including installation restriction and inter-
communication between the applications.

Device resource controller functions are responsible to oversee the resource
accessibility by the applications and enforce appropriate policies to restrict the
access.

Communication controller will regulate the applications communication with
external networks. It is in charge for allowing or refusing the outside connections
based on the protocols and networks.

Self-aware subsystem observes the external environment and configure its
own operations accordingly. It will also access logs, learn, create and test the
established patterns, construct and apply/revoke suggestions to improve the
framework operations.

SAMoC user interface is the interface application for SAMoC mobile which
provides appropriate user interfaces for different subsystems. The user is able to
control the subsystems or access logs through the interface.

5.4 SAMoC Mobile Software Architecture

In order to reduce development complexity as well as future enhancement and
maintenance, we have adopted layered architecture for the implementation. The
layered architecture allows to have complete control over the SAMoC mobile
components individually and it is easier to add additional components in future.
The architecture also helps in restricting the visibility of the implementations.
The SAMoC mobile software architecture is shown in Figure 3.

Core Components: Monitoring and

Enforcing Components (Exposed), Self-

Aware Components & Handlers

Access Layer: Connects & manipulates

repo (DB, XML, JSON)

Model Layer: Contains the data

models

Interface Layer: DbInterface,

XMLObjInterface, JSONObjInterface

Resource access

requests interception

allow/deny

access

Control

Layer

Underlying

Layer

Applications

Fig. 3. SAMoC mobile software architecture

10 N. K. Thanigaivelan et al.

The entire architecture is grouped into two layers: control layer and under-
lying layer. The control layer contains all the implementation of the SAMoC
mobile components (handlers, self-aware component and synchronization). The
visibility of the handlers and self-aware component except the monitoring and
enforcing tasks are hidden. The monitoring and enforcing components are vis-
ible and hooked into the Androids system service implementations while syn-
chronization component provides interface to SAMoC application (SAMoC user
interface). Using SAMoC user interface, users are able to perform administration
tasks, such as writing policies and reviewing logs. It will be installed by default
as system application in Android operating system.

The underlying layer comprises of three sublayers (Model, Access and Inter-
face Layers) which contains the basic classes required to manipulate the repos-
itory. The model layer represents the data models of the database tables and
XML structures. The access layer will manipulate the repository objects whose
references will be provided by the interface layer. The Control layer components
use the models to store/retrieve the information by calling the Access layer meth-
ods which in turn get the appropriate reference on the information objects from
the Interface layer.

5.5 SAMoC Mobile Policy

SAMoC mobile policies are highly refined which restrict access to resources using
its very own features. The efficiency of the framework depends on the policies
available in the repository which will be defined by the users. The defined poli-
cies play a crucial role in determining the system efficiency during initial phase
of its operations. There are certain control policies which will be delivered as
settings to control the self-aware agent behaviors such as automatic enforcement
of learned changes or provide them as recommendation to the user.

There are no pre-defined profiles/profile names in the SAMoC framework but
pre-defined policies are available. SAMoC framework has default policies which
will be enforced upon device boot for example denial of non-market application
installation and denial of adb install command. Policies are created and enforced
on individual account basis.

SAMoC framework does not force users to learn/develop special skills before
using the system since most of the policies do not have any syntax or pre-defined
structure. One of the goals of SAMoC is to make the system easy to use even
for the user who has limited knowledge. To realize this, most of the policies
will configured through the SAMoC user interface application. It will provide
appropriate user interface in the form of settings for policy writing.

6 Challenges

At the current development stage, self-awareness including self-configuration of
the self-aware agent is adopted. The self-configuration allows to configure and
adapt the learn and evaluate processes, and to optimize the components of the

SAMoC Framework 11

self-aware agent according to the external environment and device usage. The
learn, evaluate and optimize processes can not run continuously due to the fol-
lowing reasons: 1) for optimal learning, they require a sufficient number of log
entries, 2) initiating the learning process results in resource wastage if there is
no considerable number of new log entries recorded in-between the successive
learning sessions, and 3) these processes should not consume the resources while
the device is busy with other activities. These three processes run on certain time
frames and the self-configuration subsystem is responsible for deciding the ideal
time frame for the execution. Care has to be taken in determining the succes-
sive time frames. If the interval between successive time frames is too large, the
device may fail to detect unexpected events or new type of attacks because the
self-aware agent has not learned the new patterns. If it is too small, it leads to un-
necessary resource consumption. As discussed, the self-configuration component
is in a key role in configuring the initial settings of self-aware agent components
which will have impact on identification of new threat patterns and optimiza-
tion of the controlling process. To devise appropriate logic for implementation
of these tasks requires careful analysis.

In the framework, two options for optimization are given. The first option is
the self-aware agent taking the optimization action by itself without requiring
the user’s approval. The other one is the self-aware agent providing suggestions
for optimization to the user. The decision to accept or deny the recommendations
will be made by the user. In this case, the enterprise or individual users, who may
hesitate to adopt the SAMoC framework can choose the second option. These
options grant flexibility in controlling the optimization component only. The rest
of the self-aware agent components will operate on their own but their processes
can be reviewed through monitored logs. It is not wise to control the entire
self-aware agent operation since the threats evolve dynamically. Therefore, the
system which handles the threats needs to be continuously improved, especially
on its own. In addition, to detect the unforeseen events or unknown threats, the
system requires agility, and to be agile, it has to operate on its own.

7 Summary

The concept and specification of a self-aware access monitoring and controlling
framework (SAMoC) for Android were presented. The SAMoC framework in-
troduces the self-aware agent into the Android operating system to harden the
security of the devices. The agent performs information gathering, learning from
gathered information, evaluation of the available policies in comparison with the
learning outcome and optimization or suggestion of the necessary improvements.
The integration of a self-aware agent enables the SAMoC Framework to detect
unexpected events, enforce highly refined restrictions over the resource accessibil-
ity and change the statuses of the enforcement (revoke and grant rights) during
runtime. Provisions are provided to control the framework’s subsystem opera-
tions, such as disabling an individual subsystem and implementing/suggesting
the policies’ refinements. The framework also allows to apply different sets of

12 N. K. Thanigaivelan et al.

control policies in a single device in a multi-user environment and has provisions
to engage users in the security operations and enhancements. All these features
of the framework make it a prominent choice for Android security.

References

1. The Android source code, https://source.android.com/source/index.html.

2. Zhou, Y. and Jiang, X.: Dissecting android malware: Characterization and evolution.
In: 2012 IEEE Symposium on Security and Privacy, pp. 95–109 (2012)

3. Sood, A. K. and Enbody, R. J.: Malvertising–exploiting web advertising. Computer
Fraud & Security, 11–16. Elsevier (2011)

4. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon,
Y., Octeau, D., and McDaniel, P.: Flowdroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android apps. ACM SIGPLAN No-
tices, vol. 49 (6), pp. 259–269, ACM (2014)

5. Heuser, S., Nadkarni, A., Enck, W., and Sadeghi, A.-R.: Asm: A programmable
interface for extending android security. In: proceedings of 23rd USENIX Security
Symposium (SEC 2014), Usenix (2014)

6. Wang, X., Sun, K., Wang, Y., and Jing, J.: DeepDroid: Dynamically Enforcing
Enterprise Policy on Android Devices. In: proceedings of 22nd Annual Network and
Distributed System Security Symposium (NDSS 2015), The Internet Society (2015)

7. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., and Sadeghi, A.-R.: Xmandroid:
A new android evolution to mitigate privilege escalation attacks. Technische Uni-
versität Darmstadt, Technical Report TR-2011-04 (2011)

8. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.-R., and Shastry, B.:
Towards Taming Privilege-Escalation Attacks on Android. n: proceedings of 19th
Annual Network and Distributed System Security Symposium (NDSS 2012), The
Internet Society (2012)

9. Bugiel, S., Heuser, S., and Sadeghi, A.-R.: Flexible and Fine-grained Mandatory Ac-
cess Control on Android for Diverse Security and Privacy Policies. Usenix security,
pp. 131–146, Usenix (2013)

10. Smalley, S., and Craig, R.: Security Enhanced (SE) Android: Bringing Flexible
MAC to Android. n: proceedings of 20nd Annual Network and Distributed System
Security Symposium (NDSS 2013), vol. 310, pp. 20–38, NDSS (2013)

11. Android Developers-Mainfest.permission, http://developer.android.com/reference/android/Manifest.permission.html

12. Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B-G., Cox, L. P., Jung, J.,
McDaniel, P., and Sheth, A. N.: TaintDroid: an information-flow tracking system
for realtime privacy monitoring on smartphones. ACM Transactions on Computer
Systems (TOCS), vol. 32 (2), ACM (2014)

13. Fawaz, K., and Shin, K. G.: Location privacy protection for smartphone users. In:
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communica-
tions Security, pp. 239–250, ACM (2014)

14. Wei, F., Roy, S., and Ou, X.: Amandroid: A precise and general inter-component
data flow analysis framework for security vetting of android apps. In: Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications Security,
pp. 1329–1341, ACM (2014)

15. Isomaki, M., Nieminen, J., Gomez, C., Shelby, Z., Savolainen, T., and Patil, B.:
IPv6 over BLUETOOTH (R) Low Energy, 2015

SAMoC Framework 13

16. Wang, H., Xi, M., Liu, J., and Chen, C.: Transmitting IPv6 packets over Bluetooth
low energy based on BlueZ. In: proceedings of 15th International Conference on
Advanced Communication Technology (ICACT), pp. 72–77, IEEE (2013)

17. Skorin-Kapov, L., Pripuzic, K., Marjanovic, M., Antonic, A., and Zarko, I. P.:
Energy efficient and quality-driven continuous sensor management for mobile IoT
applications. In: proceedings of 2014 International conference on Collaborative Com-
puting: Networking, Applications and Worksharing (CollaborateCom), pp. 397–406,
IEEE (2014)

18. Angelopoulos, C. M., Evangelatos, O., Nikoletseas, S., Raptis, T. P., Rolim, J. D.
P., and Veroutis, K.: A user-enabled testbed architecture with mobile crowdsensing
support for smart, green buildings. In: the proceedings of 2015 IEEE International
conference on communications (ICC), pp. 573–578. IEEE (2015)

