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Abstract

Animal models suggest that the gut microbiota can influence cognitive development

and functioning via various pathways. In line with that, a first human study found

associations between infant fecal microbiota composition and cognition at 2 years

of age. This longitudinal study investigated whether fecal microbiota composition in

infancy and childhood is associated with executive functioning in childhood. We fol-

lowed healthy individuals from birth to their 10th year of life. Executive functioning

was assessed using theDigit Spanworkingmemory test at 10 years of age and the eco-

logically valid Behavior Rating Inventory for executive functioning at 8 and 10 years.

Stool samples were collected at month 1, 3 and 4 as well as at 6 and 10 years. The

V4 region of the 16S ribosomal RNA was analyzed to determine microbial composi-

tion at the genus level. Using established statistical techniques for microbiota analy-

sis, we did not find associations between fecal microbiota composition and executive

functioning after accounting for breastfeeding, maternal education, child sex and age.

Our study results are most compatible with the absence or only a weak relationship

between infant and childhood fecal microbiota composition and executive functioning

in childhood in healthy community children.
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1 INTRODUCTION

The gut-brain axis is a complex bidirectional network where the gut

and the brain are connected via various pathways (Mayer et al., 2014).

The gut microbiota, the ecosystem of microorganisms in the intesti-

nal lumen, is a critical part of this network. It can generate endocrine-

, neurocrine- and immune-related signals that can shape the develop-

ment and functioning of the central nervous system (deWeerth, 2017;

Mayer, 2011). In the present study, we investigatedwhether infant and

childhood fecal microbiota (FM) composition as ameasure of the distal

gut microbiota can predict individual variation in executive function-

ing (EF) in childhood. Identifying and describing possible relationships

between the (early) FM and EF is a necessary first step toward devel-
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oping prevention, diagnostic and intervention strategies targeting the

microbial ecosystem in the gut. The following paragraphswill elucidate

the importance of EF and why the FM is a relevant study variable for

psychologists researching child cognitive development (Sarkar et al.,

2018).

EF comprises cognitive functions central to goal-directed, efficient

and adaptive behavior (Huizinga & Smidts, 2010). These include inhi-

bition, shifting, self-monitoring, planning, attention and working mem-

ory. Proper EF is crucial for every-day-life and academic achievement

(Huizinga & Smidts, 2010; Huizinga et al., 2018). Disruption of EF has

negative effects on health outcomes and is itself part of several psychi-

atric disorders, such as attention deficit hyperactivity disorder, bipo-

lar disorder and schizophrenia (Testa & Pantelis, 2009). Thus, proper
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development of EF is crucial for the quality of life of the individual.

EF emerges as the output of various neural networks during the first

years of life (Goldstein &Naglieri, 2014) and continues to develop dur-

ing childhood, adolescence and even adulthood (Best & Miller, 2010).

These neural networks rely on the development of frontal and pos-

terior cerebral cortex and subcortical regions (Goldstein & Naglieri,

2014). The plasticity of these networks is maximal early in life (Dia-

mond, 2013). As extensively reviewed (Borre et al., 2014; Varier et al.,

2020), the colonization of the intestines by microbes occurs simulta-

neously with and influences this pivotal period of brain development.

For example, experimental rodent studies revealed that the gut micro-

biota affects social behavior, cognitive performance and neurobiology

in brain regions related to learning and memory (Ohland et al., 2013;

Savignac et al., 2015; Vázquez et al., 2015; Wang et al., 2015) and that

there exists a time window in early life for such effects to take place

(Buffington et al., 2016; Sudo et al., 2004). Therefore, it is necessary to

study the gut microbiota in infancy in relation to EF later in life to dis-

entangle such early programming effects (Borre et al., 2014). In sum,

EF is important for the quality of life of the individual. It develops early

in life and continues to develop throughout adulthood. The gut micro-

biota may influence both the early development and current function-

ing of the brain.

At present, there is a lack of human developmental studies that

focus on the relationship between the FM and cognitive function-

ing. Studies that found associations focused on temperament (Aatsinki

et al., 2019), attention toemotional faces (Aatsinki et al., 2020) or social

behaviors related to autism (Laue et al., 2020). One study provided

indirect support for a potential relationship between the early FM and

later cognitive functioning as antibiotic treatment in the first 2 years

of life was related to worse cognitive functioning at 11 years (Slyker-

man et al., 2019). Earlier, the first human developmental study (Carlson

et al., 2018) examined whether FM around 1 year of age is related to

cognitive functioning and global and regional brain volumes at 1 and 2

years of age in 89 typically developing infants. Cluster analysis of bac-

terial abundances identified three groups that significantly predicted

cognition at 2 but not 1 year of age. Lower alpha diversity was related

to higher cognitive functioning at 2 years of age. Furthermore, FMwas

weakly related to regional brain volumes at 1 (N = 46) and 2 (N = 27)

years of age, as well as brain functional connectivity (N = 39) (Carl-

son et al., 2018; Gao et al., 2019). A limitation of this study was that

there was only one measurement of the FM, while infants show rapid

shifts in microbial composition and diversity. Hence, multiple sample

time points are necessary to distinguish temporary shifts in composi-

tion frommore stable characteristics (Bäckhed et al., 2015; deMuinck

& Trosvik, 2018; Meij et al., 2016). The finding that higher alpha diver-

sity was associated with lower cognitive scores (Carlson et al., 2018)

might indicate that lowalpha diversity at around1 year of age is benefi-

cial for infant cognitive development or that there are underlying envi-

ronmental factors that cause lower alpha diversity and have a positive

influence on cognitive development. For instance, previous research

found that breastfed infants have a more stable FM composition that

is dominated by the genus Bifidobacterium and is therefore less diverse

(Stewart et al., 2018). Breastfeeding alsohasbeenpositively associated

with cognitive functioning in previous studies (Kim&Choi, 2020).

Based on the outlined preclinical studies and the first human study

(Carlson et al., 2018; Gao et al., 2019), we hypothesized (1) that FM

composition in infancy and childhood is associated with childhood

EF, (2) that there is a negative association between alpha diversity

in infancy and childhood EF and (3) that (infant) FM samples can be

grouped into clusters of community similarity that are differentially

associated with EF. In the context of hypothesis 2, we also investi-

gated whether alpha diversity in childhood was related to childhood

EF. Finally, we exploredwhethermicrobiota compositional change over

time (volatility) is associated with EF in childhood.

To investigate our hypotheses, we took the dynamic nature of the

FM into accountbyanalyzing stool samples obtainedat5different time

points, from here on referred to as T1–T5. Three stool samples per

child were collected in infancy at months 1, 3 and 4 (T1–T3). Twomore

samples were collected at 6 and 10 years of age (T4–T5). We further-

more collected questionnaire and test measurements of EF at 8 and

10 years of age and tested our hypotheses using diverse complemen-

tary statistical and machine learning approaches as described in our

preregistration (https://aspredicted.org/uc98s.pdf). This study repre-

sents a further important step in translating findings from animal stud-

ies into human research. It is the first study that examined the relation-

ship between FM and EF beyond the age of toddlerhood and spanning

a period of 10 years.

2 MATERIALS AND METHODS

2.1 Participants

Participants are children from the 193 healthy mother-infant dyads

from the ongoing longitudinal BIBO study that started in the third

trimester of pregnancy and is ongoing (Beijers et al., 2011). Moth-

ers were recruited on a voluntary basis during late pregnancy as they

responded to flyers that were spread among midwife practices in the

cities of Nijmegen, Arnhem and surrounding areas. Inclusion crite-

ria were an uncomplicated singleton pregnancy, no drug use and no

current physical or mental health problems. Furthermore, all infants

were healthy, born at full term (≥37 weeks), and with a 5-min APGAR

score ≥7. Out of 220 women, eight were excluded due to medical

reasons such as preterm birth. Another 19 women discontinued the

study within the first 3 postpartum months due to personal circum-

stances.When the children were 10 years old, 177mother-child dyads

were still participating. Table 1 shows demographic variables for the

156 study participants that had complete data for this study. Table 2

shows participant numbers at the different time points. All moth-

ers gave written informed consent, and the ethical Committee of the

Faculty of Social Sciences, Radboud University Nijmegen approved

the study (ECG/AvdK/07.563, ECG300107, ECG13012012, SW2017-

1303-497, SW2017-1303-498).

2.2 Procedure

Mothers completed demographic questionnaires in the third trimester

of pregnancy (M = 37.4, SD = 1.4 weeks) as well as questionnaires



ECKERMANN ET AL. 3 of 14

TABLE 1 Demographic characteristics of subjects

Characteristic N= 1561

Maternal age 32.8 (30.3, 34.7)

Maternal ethnicity (Caucasian) 96.9%

Birthweight 3.618 (3.232, 3.931)

Smoking during pregnancy 2 (1.5%)

Alcohol during pregnancy 21 (15%)

Deliverymode

Assisted vaginal 15 (9.9%)

Cesarean section 8 (5.3%)

Vaginal 128 (85%)

Gestational length (days) 282 (275, 287)

Firstborn 69 (44%)

Maternal education

Secondary education 30 (19.2%)

College or university 126 (80.8%)

Child sex

Female 71 (46%)

Male 85 (54%)

Child’s age at FM collection*

T1 28 (27, 28)

T2 82 (75, 89)

T3 112 (107, 119)

T4 6.06 (6.01, 6.15)

T5 10.11 (9.96, 10.21)

Antibiotics

Birth-T1 1 (1%)

Birth-T2 2 (1.8%)

Birth-T3 2 (2.3%)

5–6 years 22 (17%)

9–10 years 6 (4.5%)

Child’s age at EF collection

8 years 8.04 (8.02, 8.10)

10 years 10.13 (10.00, 10.22)

Note:Missing values for any of the listed variableswere omitted to calculate

shown descriptive statistics.

Abbreviations: EF, executive functioning; FM, fecal microbiota.
1N (%); Median (IQR).

*T1–T3, age in days; T4–T5, age in years.

TABLE 2 Sample size per time point of stool sample collection and
outcome variable

Time DS F DS BW DS LNS BRIEF

T1 135 132 131 144

T2 125 123 122 131

T3 123 121 120 129

T4 139 137 136 144

T5 146 146 145 146

Abbreviations: BW, backwards; BRIEF, behavior rating inventory of execu-

tive functioning; DS, Digit Span; F, forwards; LNS, letter-number sequenc-

ing.

about the delivery and the infant immediately after birth.

Information about breastfeeding was obtained weekly through

diaries (0–6 months) and through monthly health interviews (0–12

months). When the children were 8 and 10 years old, mothers filled in

the behavior rating inventory of executive function (BRIEF) question-

naire. The Digit Span test scores were obtained during a home visit at

10 years.

2.3 Measures

2.3.1 Fecal samples

We instructed parents to collect fecal samples at nine time points post-

partum as well as one sample at 6 and 10 years of age. Due to finan-

cial constraints, we could use only three out of nine samples in infancy.

After collection and temporary storage at −20◦C at home, samples

were transported in coolers and later stored at −80◦C. Next, they

were processed at the Microbiology Laboratory at Wageningen Uni-

versity as described in a previously published protocol (Gu et al., 2018;

Ramiro-Garcia et al., 2018) (Supporting Information 1). Note that 16S

rRNA sequencing was carried out on an Illumina HiSeq2000 sequenc-

ing platform at Eurofins Genomics, Germany. We utilized the NG-Tax

2.0 pipeline (Poncheewin et al., 2020) to process amplicon sequence

variants. Only reads with matching barcodes were kept. Amplicon

sequence variants were obtained by assigning reads to each sam-

ple based on distinguishable barcodes. The SILVA_132_SSU 16S rRNA

gene reference database was used for taxonomic assignment (Quast

et al., 2012).

2.3.2 Digit Span (forwards, backwards and
letter-number sequencing)

The Digit Span is part of the Wechsler Intelligence scale for children

and measures working memory (Petrosko, 1975). For the Digit Span

tests, a trained instructor readsout numbers and the child has to repeat

these either in the given order (Digit Span forwards) or backwards

(Digit Span backwards). Themaximum score for each subtest is 14. For

the Digit Span letter-number sequencing test, the instructor reads out

a number of letters and numbers. The child has to memorize and give

back the numbers in ascending order, and then the letters in alphabeti-

cal order. Themaximum score forDigit Span letter-number sequencing

is 30 points. For all Digit Span tests, each level of difficulty consists of

two trials whereby each correct trial is worth 1 point. As soon as both

trials are answered incorrectly, the test is finished. Previous research

suggests that the different Digit Span tests measure different aspects

of working memory functioning (Clair-Thompson & Allen, 2013; Ger-

ton et al., 2004; Rosenthal et al., 2006). This was also reflected by

low-moderate correlation strength among our Digit Span subscores

(r < 0.41). As norms were only available for the total score at the time

of ourpreregistration,weused the rawsubscores and corrected for age

and gender within the analysis.
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F IGURE 1 Directed acyclic graph based on
literature review. Grey variables with a leading U
reflect unmeasured variables, for example:
SES, unobserved socioeconomic status; FM, fecal
microbiota; EF, executive functioning. The graph
applies to each time point of FMmeasurement and
each EFmeasurement separately

2.3.3 Behavior rating inventory of executive
function

Designed to achieve high ecological validity (Gioia & Isquith, 2004),

the BRIEF was frequently utilized in clinical practice and research set-

tings tomeasure daily life EF in children (Huizinga& Smidts, 2010). The

BRIEF consists of 75 items that measure eight scales: Inhibition, Shift,

Emotional Control, Initiate, Working Memory, Plan/Organize, Organi-

zation of Materials, and Monitor. Based on these scales, the age and

gender normed T-scores for the Metacognition and Behavior Regula-

tion Indices can be obtained. It is advised to use these subscales when

the T-scores between them differ significantly (Huizinga & Smidts,

2010). That was not the case in our sample. Therefore, we calculated

age and gender normed T-scores for the total score of the BRIEF as a

general indicator of EF. A higher BRIEF score indicates lower EF. Note

thatwe used themean of the 8- and 10-year scores for the random for-

est models. In the linear models that relate alpha diversity or volatility

to EF, we applied amultilevel structure for the repeatedmeasurement.

2.3.4 Confounding variables

Figure 1 shows a directed acyclic graph (Williams et al., 2018) based on

our literature review. Directed acyclic graphs graphically depict poten-

tially confounding variables of the association between an exposure

(here FM) and an outcome (EF). They furthermore provide a set of rules

to identify variables that reduce or induce bias when being adjusted

for in a statistical model (Cinelli et al., 2020). The rationale behind our

assumed graph (Figure 1) is as follows: socioeconomic status, age and

sex can influence EF measurements (Cuevas et al., 2014; Grissom &

Reyes, 2019) and FM (Bolnick et al., 2014; Bowyer et al., 2019; de

Muinck & Trosvik, 2018). Aswe have no directmeasurement of socioe-

conomic status, maternal education serves as a proxy in our study and

might itself also influencebothFM(e.g., via diet) andEFof the child.Age

of the child during the EF taskwas included as it is expected to increase

the precision of the effect of interest (Cinelli et al., 2020). Age and child

sexwere left out for themodels that included theBRIEF scores as these

were normed by age and sex. Breastfeeding is a strong driver of the

gut microbiota in infancy, while there is contradictory research about

a relationship with later EF (Belfort et al., 2016; Rochat et al., 2016).

For the analyses that include the childhood FM, diet is a confounding

factor thatwe cannot adjust for.Wemight partiallymitigate a potential

bias under the assumption thatmaternal education has an effect on the

child’s diet (Cinelli et al., 2020). However, confounding effects of diet in

childhood cannot be entirely ruled out given our data. In infancy, vari-

ation in diet is reflected in the amount of received breastfeeding. We

considered other variables not shown in the graph:Gestational age and

birthweight are not expected to influenceEFunless the infantwasborn

preterm or has low birthweight (<2500 g) (Houdt et al., 2019). To infer

the total effect of the FM under the assumed directed acyclic graph

model, all variables shown in the graph have to be included. However,

several covariate structures were explored to also give room to other

candidate directed acyclic graphs (e.g., a graph where breastfeeding is

not related to EF). These did not lead to different conclusions.

2.4 Statistical analysis

We performed our analyses in R (Team, 2020) version 4.0.2 and Stan

(Carpenter et al., 2017) version 2.21.0. We used the packages micro-

biome (Shetty&Lahti, 2019) andphyloseq (McMurdie&Holmes, 2013)

to process microbiome data in R. Per time point and outcome variable,

data from all mother-infant dyads that provided fecal samples and the

outcome variable were used. Among those subjects, there was very

little missingness in the covariates (education: 0.7%–1.7%, age: 0.8%–

2.4%).We performed complete case analyses in these cases.

2.4.1 Code availability

The code corresponding to all statistical analyses is publicly available

(https://doi.org/10.5281/zenodo.5026029).

2.4.2 Random forest regression

The Random Forest algorithm (Breiman, 2001) is invariant to scaling

of inputs, computationally efficient, appropriate for high dimensional

data, able to predict nonlinear relationships and thus well suited to
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analyze microbiome data (Belk et al., 2018; Louppe, 2014; Namkung,

2020). For each outcome and time point of microbiota determination,

we fitted a random forest model using the ranger package (Wright &

Ziegler, 2017) with relative abundances. First, we tuned the hyper-

parameters mtry and sample.fraction using the package tuneRanger,

which uses the mean squared error as out of bag error. Next, 10×

fourfold cross-validation was performed to estimate Pearson corre-

lations of predicted values and leave-out values. To obtain a distribu-

tion of Pearson correlations under the null hypothesis, we performed

the same procedure (incl. hyperparameter tuning) after permutation

of the outcome variable (1000 permutations). We used the median

Pearson correlation of the cross-validation procedure to obtain the p-

value. Since we tested 20 random forest models for significance, we

accounted for multiple testing using the Benjamini–Hochberg proce-

dure (Benjamini & Hochberg, 1995). We also explored the Random

Forest algorithm for feature selection as described in Bommert et al.

(2020). Briefly, random forest accuracy was evaluated by the set of

top scoring taxa that were identified in a fourfold cross-validation, and

then used to train a new model on the whole data set. This was per-

formed for each outcome and time point separately.

2.4.3 Bayesian linear models

We fitted Bayesian robust linear models to regress EF on Shannon

diversity and volatility, respectively. Shannon diversity is a commonly

used measure of alpha diversity. Experiments with alternative alpha

diversity indices (observed richness, Chao1, inverse Simpson) yielded

similar results. For volatility, we calculated intrasubject Aitchison dis-

tance sequentially resulting in four volatility scores for each individ-

ual: T1–T2, T2–T3, T3–T4 and T4–T5. This allowed us to determine

whether volatility in infancy between infancy and childhood and in

childhood is associated with EF. Covariates were included for both

Shannon and volatility models as described. Maternal education was

modeled using an ordinal regression approach as described by McEl-

reath (2020) to respect the ordinal nature of this variable (Liddell &

Kruschke, 2018). We used cmdstanr (Gabry & Cesnovar, 2020) to fit

the models. The cmdstanr package utilizes the probabilistic program-

ming language Stan (Carpenter et al., 2017). Stan estimates parameters

using theHamiltonianMonteCarlo (HMC)method. All continuous pre-

dictorswere standardized to ease interpretability and setting prior dis-

tributions for the parameters. Priorswere set based on prior predictive

simulations such that the parameter space was only mildly restricted

and the same priors could be used across all models. A Gaussian prior

with a mean of 0 and a standard deviation of 0.5 was used for all β
coefficients across allmodels. Assigning a prior probability to the effect

centered at 0 and constraining themodel to not consider highly unreal-

istic slope sizes results in a more conservative model compared to the

classical approach (Gelman & Tuerlinckx, 2000; Gelman et al., 2012).

Note that changing prior distributions to more or less constrictive pri-

ors did not influence the results. Posterior predictive checks and resid-

ual plots were used to evaluate appropriateness of the model. Finally,

we evaluated correct functioning of the HMC method by screening

chainplots anddiagnostic parameters suchasdivergent transitions and

rhat4 values (Gabry et al., 2019).

2.4.4 Partitioning around Medoids

We applied the Partitioning around Medoids clustering algorithm to

the centered-log-ratio transformed genus level abundances (Aitchi-

son distance) (Gloor et al., 2017) using the R package cluster. For

each time point, we determined whether clustering is present based

on prediction strength (Tibshirani & Walther, 2005) and the Silhou-

ette Index utilizing functions from the packages cluster and fpc. Both

measures are absolute measures of cluster strength that indicate sup-

port for clustering when they fall above a predefined threshold. The

Calinski–Harabasz index is a relative measure of cluster strength that

reflects which number of clusters is most likely (assuming that clusters

are present). We considered clusters to be valid if either Prediction

Strength is ≥0.9 or Silhoutte Index is ≥0.5 as recommended by Koren

et al. (2013).

3 RESULTS

Figure 2 shows the distributions for all outcome variables including

their means, ranges, medians and interquartile ranges. In the following

sections, we describe the results per analysis method.

3.1 Predicting EF from genus level abundances:
Random forest regression

Table 3 shows the median correlation between the random forest pre-

dictions and the leave-out values with the corresponding p-values and

q-values for eachmodel. If relative abundances at genus level are asso-

ciated with EF, we would expect a significant correlation between the

random forest predictions and the known outcome. Only two models

yielded significant results: Predicting the combined BRIEF scores and

Digit Span backwards from the samples obtained at T1 and T2, respec-

tively. However, after applying the Benjamini–Hochberg procedure to

correct for multiple testing, they no longer remain significant. In gen-

eral, the correlation coefficients vary closely around zero, indicating

that it was not possible to predict EF scores based on genus level rel-

ative abundances at any time point. In a separate exploratory analy-

sis, we used feature selection prior to fitting the final models to avoid

potential overfitting to uninformative features. This approach did not

change results meaningfully (Table S1).

3.2 Bayesian linear models

3.2.1 Associations between Shannon diversity and
EF

Figures 3 and 4 summarize 20 linear models by showing the poste-

rior distributions of the slope coefficients for alpha diversity and the
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F IGURE 2 For each outcome, a boxplot is shown on the first layer. On a second layer, the corresponding single data points are shown in light
grey as well as a larger black point depicting themean. Small random noise is added to the single data points to avoid overplotting. (a) BRIEF (8
years), (b) BRIEF (10 years), (c) Digit Span forwards, (d) Digit Span backwards and (e) Digit Span letter-number sequencing

TABLE 3 Correlation between random forest prediction and real data

Outcome Time point Median Mean SD p q

DS forwards T1 −0.14 −0.14 0.14 .94 0.85

DS backwards T1 −0.07 −0.09 0.13 .77 0.83

DS LNS T1 0.17 0.14 0.17 .10 0.74

BRIEF T1 0.20 0.18 0.11 .04 0.74

DS forwards T2 0.03 0.00 0.15 .46 0.79

DS backwards T2 0.25 0.24 0.15 .01 0.49

DS LNS T2 0.02 0.00 0.15 .52 0.79

BRIEF T2 −0.13 −0.11 0.13 .90 0.83

DS forwards T3 −0.01 0.02 0.17 .60 0.83

DS backwards T3 −0.12 −0.10 0.19 .87 0.83

DS LNS T3 0.03 0.04 0.14 .48 0.79

BRIEF T3 −0.06 −0.06 0.11 .74 0.83

DS forwards T4 0.06 0.06 0.15 .38 0.79

DS backwards T4 −0.13 −0.10 0.14 .88 0.83

DS LNS T4 0.09 0.09 0.12 .25 0.75

BRIEF T4 0.05 0.04 0.14 .44 0.79

DS forwards T5 0.03 0.00 0.14 .46 0.79

DS backwards T5 0.14 0.12 0.12 .13 0.74

DS LNS T5 0.05 0.05 0.11 .39 0.79

BRIEF T5 0.17 0.17 0.13 .08 0.74

Abbreviations: BRIEF, behavior rating inventory of executive functioning; DS, Digit Span; LNS, letter-number sequencing.
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F IGURE 3 Posterior distributions (x-axis) of the beta coefficients of alpha diversity (Shannon) for each outcome (a–d) and time point (y-axis)
when stool samples were obtained. The grey areas reflect the 95% credible intervals of the estimates. (a) Digit Span forwards, (b) Digit Span
backwards, (c) Digit Span letter-number sequencing and (d) BRIEF

F IGURE 4 Posterior distributions of the beta coefficients of the covariates for each outcome averaged over all time points of microbiota
sampling. The grey areas reflect the 95% credible intervals of the estimates. (a) Digit Span forwards, (b) Digit Span backwards, (c) Digit Span
letter-number sequencing and (d) BRIEF

covariates, respectively. Figure 3 corresponds to our hypothesis that

alpha diversity is associated with EF. For every slope, we evaluate the

proportion of the distribution that lies above or below zero. The higher

this proportion, the more confident we can be that the relationship is

positive or negative, respectively. We conclude that the association is

positive or negative with confidence, if the 95% credible interval (CI)

(grey area) excludes zero. Despite two subfigures (Figure 3c T1 and

Figure 3b T5) indicating otherwise, this was not the case for any slope

parameter (Tables S2–S21 for exact CIs). In addition to looking at the

95% CI, we can also evaluate consistency in the most likely direction

of the association within infancy or childhood across our EF measures.

If the most likely direction is consistent, this could be interpreted as

evidence for an association between alpha diversity and EF. For exam-

ple, the relationship between alpha diversity andDigit Span backwards
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F IGURE 5 Posterior distributions (x-axis) of the beta coefficients of volatility for each outcome (a–d) and time point pair (y-axis) when stool
samples were obtained. Grey areas reflect the 95% credible intervals of the estimates. (a) BRIEF, (b) Digit Span forwards, (c) Digit Span backwards
and (d) Digit Span letter-number sequencing

(B) is consistently estimated to bemost likely negative in infancy. How-

ever, we can observe consistency in the opposite direction across the

three infant time points for Digit Span forwards (C). Thus, the direc-

tion is not consistent across EF measures. In sum, we cannot observe

evidence for an association between alpha diversity and EF using lin-

ear models. Among the covariates (Figure 4), the model is confident

that maternal education is positively associated with Digit Span letter-

number sequencing. Also, for Digit Span backwards this relationship is

likely (P[βedu > 0] = 0.95). Sex and breastfeeding were not associated

with EF scores, although there is a tendency (P[βmale > 0] = 0.97) for

boys to scorehigheronDigit Span letter-number sequencing.Note that

these results do not differ depending on the alpha diversity index cho-

sen (Figures S1–S4).

3.2.2 Associations between volatility and EF

Figure 5 summarizes our exploratory analyses (not preregistered) that

investigate a potential association between microbiota volatility (Fig-

ure S5) and EF in childhood (Tables S22–S37 for exact CIs). Each curve

depicts a posterior distribution of a slope corresponding to the asso-

ciation between volatility at the given time point and EF in childhood.

Applying the same criteria as outlined in the former section where we

usedBayesian linearmodels, we donot observe a relationship between

microbiota volatility and EF. For time pair T2–T3, the direction of the

association is most likely positive for three out of four EF measures

(note that BRIEF must be interpreted inversely). This might indicate a

positive relationship between volatility in that specific infant timewin-

dowandEF in childhood that could potentially be identifiedwithhigher

samples sizes. Similarly, for T4–T5, we observe that the majority of the

posterior distribution indicate a positive slope across the three-digit

spanmeasures.

3.3 Identifying clusters of FM composition:
Partitioning around Medoids

Neither Prediction Strength nor Silhouette Index indicated the pres-

ence of clustering at any of the five microbiota assessment moments

(Figure6). Thiswas also the casewhenweused the cluster algorithmon

all infant or childhood samples at once. Therefore, no follow-up anal-

yses comparing EF between clusters were warranted. Note that we

preregistered the k-means algorithm rather than Partitioning around

Medoids. The k-means algorithm led to similar results. We presented

Partitioning Around Medoids here as this makes our analyses more

comparable to previous research (Carlson et al., 2018).

4 DISCUSSION

This study examined the relationship between infant and childhoodFM

composition and childhood EF. Our results did not reveal any consis-

tent associations between FMcomposition and EF. The random forests

algorithm, which is able to detect complex nonlinear relationships, was

unable to predict EF from genus level relative abundances at any given

time point. In line with that, Bayesian robust linear models found no

association between alpha diversity or volatility and EF. Finally, we did

not find that infant microbiota composition can be described by clus-

ters based on the Partitioning AroundMedoids method.

There are several potential explanations for the absence of statisti-

cal associations betweenFMcomposition andEF in our data. Consider-

ing that we explored the data using diverse complementary statistical

approaches and also used five different time points of microbiota sam-

pling that we could relate to our outcomes, the most likely explanation

might be that there is no or only a weak relationship between the FM

composition at the genus level and EF in childhood as assessed by our

methods (parent questionnaires and Digit Span tests). That does not

mean that gut microbes may not play a role in EF in humans in general.

It is possible that the effects of the microbiota on EF become apparent

when looking at high-risk populations as opposed to a low-risk healthy

population as in our study. Our hypotheses were mainly based on ani-

mal models that have identified associations between the gut micro-

biota and cognitive functioning (Sarkar et al., 2018). In these mod-

els, higher risk is induced by an intervention (e.g., stressors or antibi-

otics). At the same time, animalmodels have far less variation in the gut

microbiota (Lagkouvardos et al., 2016). Therefore, animal studies may

more easily reveal effects that in the human population are obscured

by the large variability in environments and the more complex
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F IGURE 6 The y-axis shows absolute (a1–e1) and relative (a2–e2) measures of cluster strength for the stool samples obtained at T1 (a), T2 (b),
T3 (c), T4 (d) and T5 (e). The x-axis shows the number of clusters the calculation is based on. Silhouette index and prediction strength are indicated
in red and yellow, respectively, including their predefined thresholds. Neither of thesemeasures exceeds the threshold. Therefore, the
Calinski–Harabasz index (a2–e2) will not be interpreted

microbial ecosystems. Also, the natural gut microbial ecosystem in

infancy is highly variable even within infants (de Muinck & Trosvik,

2018), as was also observed in our data throughout the first 10 years

of life when looking at volatility (Figure S5) or Shannon alpha diversity

(Figures 7 and 8). Correlation coefficients between alpha diversity val-

ues over all time points ranged between 0.22 and 0.29, indicating high

intraindividual variability. To findanassociationbetweenany individual

variable that is highly variable over time might require very large sam-

ple sizes. Indeed, a large-scale study showed that effect sizes of FM-

covariate associations are often surprisingly small, requiring very large

sample sizes to be identified (Falony et al., 2016).

The absence of clustering in our data (determined with Partition-

ing around Medoids) as opposed to the data of, for example, Carl-

son et al. (2018) illustrates other important challenges in microbiome

studies regarding cross-study comparisons, some of which have been

discussed recently (Moreno-Indias et al., 2021). These challenges can

include different choices regarding the sequenced region of the 16S

gene or the pipeline used to process the sequencing data. For exam-

ple, the V2 region has been shown to have higher resolution for lower-

rank genera than the V4 region (Bukin et al., 2019). Other challenges

arise because researchers choosedifferent statisticalmethodsor apply

themdifferently. For instance,weapplied thresholds todefine thepres-

ence of clustering based on Koren et al. (2013). According to these

thresholds, there would have been no clustering in the data of Carlson

et al. (2018) either. As a final example, a Dirichlet Multinomial Mixture

Model (Holmes et al., 2012), which we fitted as part of another project

on the data of this study, can identify three clusters in infancy and

four clusters in childhood (exploratory pairwise comparisons between

these clusters can be found in the Supporting Information). These

examples illustrate that a lackof standardizationof themanynecessary

analysis choices in microbiome studies makes a cross-study compari-

son difficult and inmany cases impossible (Moreno-Indias et al., 2021).

Limitations of our study are that we could not take into account

the functionality of the gut microbial ecosystem or look at species or

even strain level. Relating (predicted) microbial neuroactive metabo-

lites directly to EF was beyond the scope of this study but would be

informative as the metabolites reflect an important pathway through

which bacteria exert effects on the host. Also, it is possible that only

single species or strains of a genus are associated with EF while the

genus is not. Furthermore, given the high variability of the FM, par-

tially caused by known uncontrolled variables such as diet (childhood),

time of defecation, stool consistency and others, our sample size is too

small to be confident that there is not a weak association between

genus level FM and EF. Note, however, that the sample size is large

compared to the earlier human studies (Carlson et al., 2018; Gao et al.,

2019). Lastly, our study sample consisted of highly educated women

with uncomplicated pregnancies and giving birth to healthy, full-term

infants. This limits the generalizability of our findings. Strengths of the

current study include using a longitudinal design over a long-time span.

This allowed us to determine FMat three distinct time points in infancy

and at 6 and 10 years of age in childhood. Repeated microbiota sam-

pling makes our findings more robust compared to studies that ana-

lyzed a single sample. Furthermore, we used the Digit Span memory

task in combination with the ecologically valid BRIEF questionnaire

to measure different aspects of EF. The repeated measurement of the

BRIEF resulted in a more robust estimation of daily life EF. Finally, we
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F IGURE 7 Alpha diversity (Shannon) for each sample in infancy. On each plot maximal eight infants (maximum eight colors) are shown to
enable tracking the paths of the individuals without cluttering. The three dashed lines represent the 25%, 50% and 75% quantiles of all Shannon
values in infancy. The violin plot in the background shows the corresponding whole distribution of Shannon diversity of our infant samples
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F IGURE 8 Alpha diversity (Shannon) for each sample in childhood. On each plot maximal eight children (maximum eight colors) are shown to
enable tracking the paths of the individuals without cluttering. The three dashed lines represent the 25%, 50% and 75% quantiles of all Shannon
values in childhood. The violin plot in the background shows the corresponding whole distribution of Shannon diversity of our childhood samples
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utilized different complimentary and sophisticated statistical methods

to evaluate our hypotheses while accounting for important confound-

ing variables.

5 CONCLUSIONS

In conclusion, we did not find a relationship between infant or child-

hood fecal microbiota composition and executive functioning in child-

hood. Future studies might benefit from a higher taxonomic resolution

than the genus level, repeated assessments and larger sample sizes, as

well as the addition of the (predicted) functional assessment of the gut

microbial ecosystem.
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