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ABSTRACT 

The striatum is the primary target in regional 11C-Raclopride PET studies, and despite its small volume, it 

contains several functional and anatomical subregions. The outcome of the quantitative dopamine 

receptor study using 11C-Raclopride PET depends heavily on the quality of the region-of-interest (ROI) 

definition of these subregions. The aim of this study was to evaluate subregional analysis techniques 

because new approaches have emerged but have not yet been directly compared. In this paper, we 

compared manual ROI delineation to several automatic methods. The automatic methods employed 

either direct clustering of the PET image or individualization of chosen brain atlases based on MRI or PET 

image normalization. State-of-the-art normalization methods and atlases were applied, including those 

provided in the FreeSurfer, SPM8 and FSL software packages. Evaluation of the automatic methods was 

based on voxel-wise congruity with the manual delineations and the test-retest variability and reliability 

of the outcome measures using data from seven healthy male subjects who were scanned twice with 

11C-Raclopride PET on the same day. The results show that both manual and automatic methods can be 

used to define striatal subregions. Though most of the methods performed well with regard to the test-

retest variability and reliability of binding potential, the smallest average test-retest variability (TRV) and 

standard error of measurement (SEM) were obtained using a connectivity-based atlas and PET 

normalization (TRV=4.5%, SEM=0.17). In conclusion, the current state-of-the-art automatic ROI methods 

can be considered good alternatives for subjective and laborious manual segmentation in 11C-Raclopride 

PET studies. 

KEYWORDS: PET, 11C-Raclopride, striatum, ROI analysis
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Introduction 

Positron-emission tomography (PET) with 11C-Raclopride provides a widely validated method for 

assessing  baseline  levels  of  dopamine  (DA)  type  2  receptor  (DA2R)  availability  [1]  as  well  as  DA2R  

occupancy provoked by either pharmacological [2] or non-pharmacological [3;4] stimuli. In humans the 

DA2R are most abundant in the striatum where they act as modulators of various functions, such as 

locomotion, and reward-system, as well as many high order cognitive functions such as working memory 

[5]. The reward system is thought to be linked with addictive behaviors such as substance abuse [6] and 

pathological gambling [7], and thereby linked to dopaminergic signaling. Thus, 11C-Raclopride-PET can be 

employed in the research of numerous facets of human behavior and cognition in health and in disease 

(see [4] for review). As a downside, methodological  caveats such as erroneous region-of-interest (ROI) 

delineation can significantly hamper the reliability and sensitivity of 11C-Raclopride-PET due to small size 

of striatal substructures relative to the spatial resolution of PET. In the current work we tackled the ROI-

delineation issue through investigation of numerous ROI-delineation techniques in the analysis of high-

resolution 11C-Raclopride-PET. 

Inaccuracies in ROI delineation can hamper the sensitivity of the PET assessment, and in the worst case 

generate biased inferences (c.f. [4]). In a PET assessment of specific receptor binding, decreased 

sensitivity can be due to oversized ROIs compared to the receptor population, or due to intra- or inter-

subject mismatches in region definitions. Oversized ROIs can yield exaggerated partial-volume effect 

(PVE) resulting in underestimated PET radioactivity, while direct PET-based segmentation can in the 

worst case result in biased outcome (c.f. [4]). Furthermore, inaccuracies in the ROI border placement 

between adjacent regions can result in attenuated stimulus-response in a single assessment, or 

decreased statistical power in a group-level assessment due to additional methodological variability 

between subjects.    

Concept of sub-striatal ROI-delineation that is based on functional rather than structural territories was 

first introduced by Mawlawi and colleagues [8] and later reviewed and validated by Martinez and 

colleagues using d-amphetamine induced striatal activation [9]. Martinez and colleagues [9] defined 

functional territories on the basis of experimental animal studies that included three striatal subregions: 
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the limbic striatum (LSTR), involved in drive and motivation; the associative striatum (ASTR), involved in 

cognition; and the sensorimotor striatum (SMST), involved in locomotion. Furthermore, they showed 

significant differences in the response to amphetamine-stimulus between the subregions using 11C-

Raclopride-PET. The concept of functional subdivision is nowadays established and the ROI-delineations 

are mostly generated by hand using the guidelines of Mawlawi, Martinez and colleagues. More recently 

Tziortzi and colleagues [10] have refined the guidelines of Mawlawi and colleagues in the light of current 

understanding of the striatal functional organization in humans. Nevertheless, manual ROI-delineation 

inevitably contains a subjective component that hampers the reproducibility of 11C-Raclopride-PET 

analysis. Thus, automated methods are called upon that provide precise and repeatable striatal ROI-

delineation. 

The automated, or operator-independent methods for striatal ROI-delineation can be based on a) 

individualization of a ROI-set defined in a standard space through image deformation (see [11] for 

review); b) by direct automatic clustering of the PET image (see [12] or c) individual measurement of 

cortico-striatal connectivity as suggested by Tziortzi and colleagues [13]. In the current work we 

examined the approaches that did not require DTI-measurements. The first approach based on the 

individualization of a template ROI-set has been successfully implemented using conventional PET-

scanning (see [11] for review). In the study of del Campo and colleagues [11] a probabilistic atlas was 

generated on the basis of manual ROI-delineations and subsequently individualized using non-rigid 

transformations. Their conclusion was that automated method based on probabilistic atlas can provide 

an accurate and efficient alternative to manual ROI-drawing. The second approach employing direct PET 

image clustering has been previously implemented for high-resolution PET data (see [14] for validation). 

In the study of Farinha and colleagues the direct PET image clustering was used to generate five striatal 

subregions in both striata instead of three for the first time [14].  

Primary aim of the current study was to explore the characteristics of various ROI-delineation methods 

employed in the analysis of high-resolution 11C-Raclopride-PET, as new methodologies have emerged 

but have not yet been evaluated. 11C-Raclopride-PET has widespread usage and recent investigations 

suggest benefit of connectivity-based ROI-methods over the structure-based manual ROI-delineation 
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[13]. In particular, the potential advantage of high-resolution PET is not fully exploited if the ROI-

methods are inaccurate. We approached the ROI-method optimization task through evaluation of the 

current state-of-the-art ROI delineation methods with regard to their test-retest characteristics. A test-

retest dataset of 7 healthy male subjects scanned twice (during the same day) with the HRRT was 

previously collected to investigate the short-term repeatability and reliability of the 11C-Raclopride 

assessment in high-resolution and at resting state [15]. The ultimate aim of test-retest setup is to 

substitute testing against an unknown ground truth in methodological testing, and it has therefore been 

recommended for methodological comparison studies (see [16] for review). The repeated scans in the 

presumably same condition allow estimation of method-wise bias as well as reliability through analysis 

of variance (ANOVA). It was shown in our previous report [15] that the binding potentials (BPs) within 

the manually delineated SB ROIs (based on rules by Martinez and colleagues) were not biased crossing 

the trials for the current dataset, thus, it is reasonable to expect non-biased estimates using any of the 

tested methods. Furthermore, the test-retest setup can be employed to estimate the dissection 

between the inherent, true variation between subjects from that due to methodological imprecision. 

Methods 

Overview 

The primary objective of the current work was to compare the striatal ROI delineation approaches in the 

analysis of high-resolution 11C-Raclopride-PET data to provide practicable guidelines for realistic imaging 

conditions. Analysis of the 11C-Raclopride-PET data most commonly employs the SRTM [17] with 

cerebellar cortex as the reference region to obtain the BPND (see [18] for nomenclature) estimates, thus, 

the SRTM-BPND was considered as the primary parameter of interest in the test-retest evaluations.  

Subjects 

The current study re-uses human 11C-Raclopride-PET measurements acquired originally for different 

purpose as reported in [15]. The original study protocol was approved by the Ethics Committee of the 

Hospital District of Southwestern Finland. The study subjects were given written information about all of 
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the relevant issues involved in the study. Written consent, not limited for single usage of the data, was 

obtained from each subject. The study was performed according to the Declaration of Helsinki. 

All of the subjects were right handed and nonsmokers. The age, height, and weight of the subjects were 

24.5±3.5 years, 185.5±12.5 cm, and 74±14 kg, respectively (mean±SD). To exclude any structural brain 

abnormalities and obtain anatomical references, all subjects underwent 1.5T magnetic resonance 

imaging. Each subject underwent two 11C-Raclopride PET scans in a resting condition on the same day 

between 10.00 a.m. and 6.00 p.m., the tracer injections being at least 2.5 hours apart.  

The binding potentials of these subjects have been reported previously [15]. However, in the current 

study, the data set was exploited for the ROI method comparison, rather than for research of the 

binding potential per se. None of the results in the current study are identical to the previously reported 

results due to small differences in the data preprocessing and manual ROI delineation. However, there 

was a strong correlation between the results from these two studies (data not shown); and the current 

results should not be considered as individual observations in a meta-analysis. 

MR imaging 

The MRI was performed with a 1.5-T MRI system (Gyroscan Intera CV Nova Dual; Philips Medical 

Systems, Best, The Netherlands) with a SENSE head coil. Transversal T1-FFE 3D images were acquired 

with isotropic 1 mm voxel size, repetition time (TR) 25 ms, echo time (TE) 4.6 ms and flip angle (deg) 30. 

Parallel imaging was used with factor 2. 

PET imaging 

The 11C-Raclopride preparation and PET imaging have been previously described [15]. PET 

measurements were performed using the HRRT scanner (Siemens Medical Solutions, Knoxville, TN, 

USA), a brain-dedicated high-resolution PET research tomograph. The HRRT system is a dual-crystal-

layer scanner capable of depth-of-interaction (DOI) measurement of the coincidence photons. The 

intrinsic resolution of the HRRT system is approximately 2.5 mm, while the measured spatial resolution 

(full-width-at-half-maximum, FWHM, of a point-source) varies between 2.5 mm and 3.5 mm within a 

field-of-view (FOV) covering most of the brain [19]. In the current work a transmission scan was 
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acquired prior to 11C-Raclopride injection for attenuation-map calculation. PET scanning in listmode was 

initiated at the time of tracer injection and continued until 55 minutes from injection time. A dynamic 

serie was generated from the listmode data using the following frame sequence: 2x0.5, 9x1, 3x2, 3x3, 

and 6x5 minutes. Image reconstructions were performed using the ordinary-Poisson ordered-subsets 

expectation maximization (OP-OSEM) algorithm [20], with resolution-modeling (RM-OP-OSEM) [21] 

based on external measurement of the scanner point-spread function (PSF). Number of iterations in RM-

OP-OSEM reconstruction was 10 while the number of subsets was 16, and the image voxel-size was 

approximately 1.22x1.22x1.22 mm3. Tissue attenuation maps were reconstructed using the maximum-a-

posteriori for transmission data (MAP-TR) algorithm with the standard human brain priors for bone, soft 

tissue, noise, water, or air [22]. Scattered events were estimated using the single scatter simulation 

algorithm [23], while randoms were estimated from the block singles using a variance reduction 

algorithm [24]. In the RM-OP-OSEM algorithm the emission data was not pre-corrected but the 

correction terms were included in the update equation in order to avoid bias due to zero-truncation of 

the pre-corrected data [20]. 

Image Preprocessing 

Image preprocessing steps are illustrated in a diagram in Figure 1. Image preprocessing was conducted 

in Statistical Parametric Mapping (SPM) software (version 8, Wellcome Trust Centre for Neuroimaging, 

London, UK, http://www.fil.ion.ucl.ac.uk/spm/). Firstly, the SPM8 realign-function was used for 

correcting the dynamic PET imaging data for misalignments between scans as well as between frames 

using normalized mutual-information (NMI) algorithm. The first frame with a decent signal (frame 5) 

was chosen as a reference in both sessions. Initially, each frame in both PET sessions were registered 

within session (to frame 5 position), followed by registration of the second PET session data to the first 

PET  session  orientation  (frame 5  of  session  two to  the  frame 5  of  session  one).  After  the  first  pass,  a  

mean image of all frames (from both sessions) was formed and each frame was re-registered to the 

mean image. The two pass procedure was employed in order to minimize misalignment between PET 

sessions that might hamper the test-retest characteristics in ROI-based analysis. Registrations were 

visually confirmed. The subsequent analysis were performed with the assumption that the data from 
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the two PET-sessions were spatially aligned, that is, the ROI-methods that do not directly employ PET-

data were not repeated for each PET, but the same ROIs were employed for both sessions. The two pass 

registration process should help to protect against any systematic biases in the registration between the 

two PET sessions. 

Furthermore, a MRI-based procedure was employed to standardize the head posture in PET data. First, 

the MRI-data was registered with the individual mean PET image (c.f. previous paragraph) using the 

SPM8 coreg-function and NMI optimization. Registrations were visually confirmed. Secondly, the MRI-

data was registered with a MNI152 template image using rigid registration (coreg-function). The coreg-

function allowed simultaneous registration of pre-registered PET-data through transformation matrix 

manipulation. Both the MRI- and PET-data were resliced into 1.5 mm x 1.5 mm x 1.5 mm voxel size of 

the MNI152 template image. The rigid registration does not provide exact spatial matching between 

individuals but works as a means to standardize the orientation of the anterior commissure (AC) – 

posterior commissure (PC) line. Standardization of the AC-PC line orientation may facilitate the manual 

ROI delineation as the structures appear in the same orientation as in the typical brain atlases, while the 

head posture during PET imaging can be somewhat tilted. 

Non-rigid Image Deformation Procedures 

Spatial normalization parameters (deformation fields; non-rigid mappings) were obtained using the 

Unified Segmentation algorithm in SPM8 [25] and using combination of the FLIRT and FNIRT functions in 

FSL5 (FMRIB, Oxford, UK, http://fsl.fmrib.ox.ac.uk/) [26]. First, the spatial normalization mappings were 

applied to the individual mean PET images. After visual inspection the FSL-based normalized PET-data 

was found slightly more consistent as compared to the SPM-based, thus FSL-normalization was chosen 

for PET-template image generation. A Raclopride-specific template image was formed from the seven 

normalized 11C-Raclopride mean images as an average (see Figure, Supplemental Digital Content 6, for 

visualization). PET-based image normalization was performed using SPM8 Normalise-function [27], and 

the novel Raclopride-specific template image as a target. Both the source and target image data were 

pre-smoothed using a 3D Gaussian filter with 4 mm (FWHM) kernel size in each direction. 
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In the current work the goal of non-rigid spatial matching was to form an individualizing spatial mapping 

from the atlas-defining space to the individual coordinates. Atlas-based ROI-delineation can be obtained 

through either mapping the PET-data into atlas-defining space or mapping the atlas into individual 

space. In the current work the latter approach was chosen to minimize the need for interpolation of the 

PET-data, and to more readily obtain quality assurance of the spatial deformations through visual 

inspection of the ROIs in the individual space. The inverse deformation (that is, deformation from 

standard space to the individual space) was obtained directly in the Unified Segmentation algorithm in 

SPM, while the FSL-based deformation fields were explicitly inversed using invwarp-function of FSL. The 

PET-based SPM normalizations were inversed using the Deformations-function and the Inverse-

component in SPM8. The three individualizing mappings are hereafter denoted as MRIF, MRIS and PETS 

for MRI-based mappings using FSL and SPM and PET-based mapping using SPM, respectively. 

ROI Methods 

The manual and automatic ROI methods for sub-striatal segmentation examined in this study are 

summarized in Table 1 and illustrated in a diagram in Figure 1. The methods examined in the current 

study had differences in the naming and definitions of the striatal subregions. To allow for a comparison 

between methods, common regions consisting of the whole striatum (STR), the limbic striatum (LSTR), 

the associative striatum (ASTR) and the sensorimotor striatum (SMST) were formed as primary targets. 

Table 2 summarizes the initial regions and combinations for each method. 

Manual Segmentation 

Manual segmentation of the striatum was performed by two operators, one with more experience 

(MANSEG1) and other with less experience but instructed by the first (MANSEG2). Individual T1-

weighted MRI fused to PET sum image (both sessions together) was used as a reference. Thus, the ROI 

delineation was performed only once by both operators and the same ROIs (within operator) were 

employed to extract data from both sessions using co-registered PET-images (c.f. previous paragraphs). 

The anatomical landmarks described by Mawlawi, Martinez and colleagues [8;9] were applied in the ROI 

delineation, and all ROIs were drawn on coronal slices. The PET sum image was used as additional 
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guidance in the striatum border search to minimize PVE. Manual segmentation included five anatomical 

substructures per hemisphere, which were combined into the three functional substructures: the 

ventral striatum as such formed the LSTR, the pre-commissural portions of the caudate (CAUA) and 

putamen (PUTA) formed the ASTR, and the post-commissural portions of the caudate (CAUP) and 

putamen (PUTP) formed the SMST (see Table 2). 

Atlas-based Segmentation 

The atlas individualization process is illustrated in a diagram in Fig. 1. Three atlases were considered in 

the atlas-based striatal segmentation: the probabilistic structural atlases by Fischl and colleagues [28] 

and by Tziortzi and colleagues [10] and a connectivity based atlas by Tziortzi and colleagues [13]. The 

latter two are included in the FSL package (striatum-structural-2mm and striatum-con-label-thr50-7sub-

2mm),  whereas  the  first  is  a  FreeSurfer  built-in  atlas.  The  structural  atlas  in  FreeSurfer  is  based  on  

automated labeling of several brains, whereas the structural FSL atlas was obtained by directly 

segmenting the MNI152 template according to the guidelines in [10]. The SB atlas segmentations 

yielded caudate (CAU), putamen (PUT) and nucleus accumbens (NACC) or ventral striatum (VST) ROIs, 

which were transformed into STR (all regions) and LSTR (NACC or VST) for comparison (see Table 2). The 

structural atlases were individualized within the host software packages only and are denoted as FSSEG 

for FreeSurfer and as STRUCTMRIF for FSL. 

The connectivity-based atlas was generated using diffusion tensor imaging (DTI) and a tractography 

technique to find the projection territories in the striatum that innervate certain cortical regions [13]. 

Tziortzi and colleagues employed probabilistic tractography in 12 healthy male volunteers to investigate 

the projections between the cortex and striatum yielding connectivity-based (CB) subdivision of the 

striatum in each subject. As a result of the connectivity analysis, Tziortzi and colleagues generated 

atlases at different probability thresholds. For the current study we chose a 7 substructure atlas with a 2 

mm voxel-size that was obtained at a 50% probability threshold (striatum-con-label-thr50-7sub-2mm). 

The 7 substructures were named by the cortical regions that they innervate: limbic, executive, rostral 

and caudal motor, parietal, temporal and occipital. For the CB atlas ROIs, the motor, parietal, temporal 

and occipital components were combined to form the SMST, whereas the executive component was 
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considered the ASTR and limbic was considered the LSRT (see Table 2). The connectivity atlas was 

individualized using the individualizing mappings as described above and are denoted as CONNMRIF, 

CONNMRIS and CONNPET for MRI-FSL, MRI-SPM and PET-SPM normalizations, respectively.  

Direct PET Image Segmentation 

Principle of the direct PET image segmentation process is illustrated in a diagram in Figure 1. An 

automatic PET image clustering algorithm employs the known heterogeneity of the dopamine receptor 

distribution [29] to find clusters of distinct 11C-Raclopride binding in the striatum. Similar to the methods 

of Tohka et al. [30] and Farinha et al. [14], the algorithm consists of two main steps: 1) initial striatum 

extraction and 2) weighted kernel k-means clustering [31]. In the current study the initial step was 

implemented using a Markov Random Field (MRF) model-based extraction similar to that of other 

authors [30;32](see Document, Supplemental Digital Content 1, that describes the method MRF-based 

method), instead of a possibly more error prone deformable surface model approach we have used in 

[14]. Benefit of using MRF based striatum extraction lies in the inclusion of the PVE kernel in the image 

model inspired by MRI segmentation approaches [32].  Prior to the clustering step the BPND image was 

smoothed using an edge-preserving 3D Gaussian filter with FWHM=2.5mm and the result of the 

striatum extraction step as a striatal mask (see Fig. 1). In the second step, the weighted kernel k-means 

algorithm was applied to partition the connection graph into five segments using a geometrical division 

of the striatum into pre- and post-commissural caudate and putamen and ventral striatum as 

initialization, instead of a random initialization approach [14]. The automatic PET image segmentation 

results are denoted as PETSEG throughout the report. PETSEG yielded the same substructures as the 

manual segmentation; thus, the same combination strategy was used to obtain LSTR, ASTR and SMST 

(see Table 2). 

Pharmacokinetic modeling methods 

Pharmacokinetic modeling was performed for ROI time-activity course (TAC) data using SRTM [17]. 

STRM yields a binding potential of the tracer that is relative to the non-displaceable binding as 

measured in the reference tissue and is therefore denoted as BPND [18].  The  ROI-TAC  modeling  was  
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conducted using in-house software fit_srtm version 3.0.7 for non-linear SRTM (Turku PET Centre, Turku, 

Finland). An atlas-based automated method for cerebellar ROI generation was chosen for the reference 

region TAC extraction. The reference region method was chosen on the basis of cerebellar distribution 

volume test-retest characteristics (see Table, Supplemental Digital Content 2, for cerebellar test-retest 

characteristics). 

Statistical methods 

Spatial agreement between MANSEG1 and each of the segmentation methods was determined at the 

ROI voxel set level, that is, the MANSEG1 ROIs were considered as a reference, although not necessarily 

ground truth. The ROI voxel set similarity was measured using the Jaccard coefficient expressed as the 

ratio between the size of the intersection and the size of the union of the voxel sets 

J(A,B)=(|A B|)/(|A B|) 

The Jaccard coefficient takes values between 0 (no agreement) and 1 (perfect match) and is a widely 

used performance measure for evaluating image segmentation algorithms.  

Furthermore, agreement of the binding potentials (BPND as obtained through ROI-TAC SRTM-analysis) 

between MANSEG1 and each of the segmentation methods was determined using the limits of 

agreement (LOA), expressed as the mean of pairwise differences and 95% confidence interval. 

Moreover, the Pearson’s product moment correlation coefficient was calculated between MANSEG1-

BPND and each of the methods to assess the similarity of the BPND rank order.  

The test-retest setting allowed method-independent estimation of the repeatability and reliability of 

each method. That is, instead of choosing one of the possibly erroneous methods as a reference, each 

method can be assessed independently. Therefore test-retest setting has been suggested for method 

comparison studies (see [16] for review). In the current study the test-retest characteristics were 

considered as the primary figure of merit in the evaluation of BPND-estimates (as obtained through 

various ROI-delineations), and the test-retest characteristics were calculated also for the ROI-volumes 

when applicable. Using MRI-based atlas-individualization methods there was only one ROI-set for each 

individual, thus no replication characteristics for ROI-volume could be formulated. While using the direct 
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PET-image segmentation, PET-based atlas individualization and manual segmentation there were two 

independent ROI-sets for each individual and formulation of the ROI volume test-retest characteristics 

was possible.  

The repeatability of BPND and ROI-volume (when applicable) were calculated using the test-retest 

variability (TRV) [16], which relates the difference in the two measurement outcomes to that of their 

mean. The per cent TRV can be expressed as 

TRV(%)=100% x (2|X1-X2|)/(X1+X2) 

where X1 is the measurement outcome in PET-session 1 and X2 is the measurement outcome in PET-

session 2. The TRV(%) is reported as the mean±SD over the seven subjects for each method. 

A common measure of test-retest reliability is intra-class correlation coefficient (ICC) that is based on 

the one-way random effects analysis of variance model, denoted as ICC(3,2) in Shrout and Fleiss [33]: 

ICC=(MSB – MSw)/(MSB +(k-1)MSw) 

where MSB indicates the between subjects and MSw is the within subjects mean of the sum of squared 

differences, and k=2. It is apparent that ICC is a relative measure of reliability and depends heavily on 

the current samples variability. Generally large between-subject variability (large MSB) results in ICC 

closer to one (good reliability) although the within-subject repeatability might be poor. In method 

comparison studies this feature of the ICC contains a particular caveat due to the possibly method-

dependent outcome of MSB. That is, one of the methods can exaggerate the between-subject variability 

and thereby wrongly benefit from that as high ICC. In the current study the manual approach embodies 

a considerable subjective component that can result in exaggerated between-subject variability in the 

ROI-delineation, thus a more robust measure of reliability is required. 

It has been noted that an absolute measure of reliability would be more appropriate in method 

comparison studies [16]. Moreover, an absolute measure would allow for the calculation of the 

confidence interval of the minimal detectable change (single subject). In the current study the standard 

error of measurement (SEM) was applied as an absolute measure of reliability, as expressed in [16]: 
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SEM=SD (1-ICC) 

where SD indicates the standard deviation of binding parameters from all subjects. The minimal 

detectable change (MD) was calculated on the basis of SEM for a confidence interval of 95% [16] 

MD=SEM*1.96* 2 

MD depicts how much two measurements of the same individual must differ from each other to be 

considered as true change, thus decrease in MD could be interpreted as improved sensitivity. MD(%) 

was calculated relative to the mean BPND. 

The repeatability of the ROI volumes was calculated when applicable; for instance, PETSEG and 

CONNPET were made independently on PET1 and PET2, and manual segmentation was repeated by two 

operators. Furthermore, coefficients of variation were calculated from regional distribution volumes. 

Descriptive statistics include the arithmetic mean±SD and the coefficient of variation 

(COV(%)=100%S X ) for binding parameters. 

Results 

Agreement of ROI Volumes 

Figure 2 illustrates the ROI delineations generated by the various methods (of the combined regions). 

There was reasonable agreement between the methods with regard to the location of the striatum. 

However, manual delineation (particularly MANSEG1) yielded systematically smaller volume for the 

whole striatum ROI as compared to the automated methods (see Figure, Supplemental Digital Content 

3, which illustrates the method-wise volumes). Average volume of the whole striatum was 13 cm3 for 

the manual segmentation (MANSEG1) while average volumes generated with automated methods were 

in the range of 16-21 cm3. Direct PET segmentation was associated with smaller average striatal volumes 

as compared to other automated methods. Size (volume) of the whole striatum ROI may be associated 

with the impact of PVE, in particular, too liberate ROI delineation may yield exaggerated PVE. Indeed, it 

was notified that a strong negative linear correlation (R=-0.93; see Figure, Supplemental Digital Content 

4, which shows the linear regression lines) existed between the average striatal volume (by method) and 
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average BPND (by method), indicating increased PVE with automated methods, in particular when using 

atlas-based methods.  

Variability in the striatal volume between subjects was assessed using CoV(%) as presented in Table 3. 

Manual segmentation and direct PET segmentation yielded larger between subject variability as 

compared to atlas-based automated methods, with approximately two-fold CoV(%) for MANSEG1 as 

compared to that of atlas-based methods. Furthermore, the within subject variability in ROI volumes 

was calculated when applicable (see Table 3 TRV(%) Volume). The inter-operator variability in manual 

ROI  volume was  in  the  range  of  16%-44% (average  TRV(%)),  while  the  direct  PET  image segmentation  

showed TRV(%) of 7%-17% and the CB atlas individualization using PET-normalization (CONNPET) as 

small as 2%-3% (average TRV(%)).  

Illustration of the  ROI contours in Figure 2 showed systematic inter-method differences in the definition 

of the limbic striatum ROIs that resulted in poor spatial agreement as measured using the Jaccard 

coefficient and Pearson’s correlation coefficient (see Table 3) relative to the manual segmentation 

(MANSEG1) , while the agreement was somewhat better in the associative and sensorimotor striatum. 

In particular, the direct PET image segmentation and CB atlas methods yielded large deviation from the 

SB limbic striatum ROIs generated either manually or using atlas individualization.  

Agreement of the BPND Estimates 

Inter-method variability in ROI volumes was manifested in BPND estimates. As was noted earlier the 

average BPND estimate was strongly associated with the striatal volume in the whole striatum, and also 

in the associate striatum, but not in the limbic or sensorimotor striatum (see Figure, Supplemental 

Digital Content 4, which shows the linear regression lines). Thus the differences in BPND estimates in the 

limbic and sensorimotor striatum were not mainly driven by the differences in PVE. On the other hand, 

the Pearson’s correlation coefficient showed strong inter-method correlation between the BPND 

estimates (except for CONNMRIF in SMST, see Table 3),  whereas, the LOA range (see Table 3) showed 

both negative and positive systematic biases relative to MANSEG1. Even between manual 

segmentations significant differences were seen in the associative and sensorimotor striata. 
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Repeatability and Reliability of the BPND estimates 

Intra-method within subject variability of the BPND was  smallest  using  CONNPET (see  TRV(%)  (BPND) in 

Table 3) followed by MANSEG1 and MANSEG2. However, differences in between subject variability 

(repeatability) were mostly small, while that of PETSEG was somewhat larger. The repeatability of 

PETSEG and, subsequently, its reliability was ruined by a single outlier scan with a markedly lower dose 

(3.3 MBq/kg compared with the group mean±SD of 5.6±1.6 MBq/kg) in the second scan. Although the 

outlying subject had exceptionally poor quality PET data, the sensitivity of PETSEG with regard to noise 

must be acknowledged.   

Intra-method between subject variability of the BPND was smallest using CONNMRIF (see CoV(%) (BPND) 

in Table 3) followed by CONNPET. There was up to 61% increase in CoV(%) between the smallest 

(CONNMRIF) and largest variability (MANSEG1). On the other hand, the large between subject variability 

resulted in high ICC, as expected. The highest ICC was obtained using MANSEG1 followed by MANSEG2 

and CONNPET. The SEM, however, indicated a different order in performance – the smallest SEM (best 

reliability) was obtained using CONNPET followed by CONNMRIF and then manual segmentation, 

although the differences were not very large. Only PETSEG showed markedly higher SEM as compared 

to the other methods, due to one outlier scan with significantly poorer image quality. The average 

minimal  detectable  change  (MD)  was  close  to  10%  (smallest  using  CONNPET,  see  Table  3)  except  for  

PETSEG (15%). 

Test-retest characteristics within the initial subregions are presented in the Table, Supplemental Digital 

Content 5. For the manual delineation and direct PET image segmentation the five structural striatal 

subregions showed mostly similar test-retest characteristics as the combined functional subregions, 

except for the posterior caudate which showed somewhat poorer performance for MANSEG1 and 

PETSEG as compared to the combined regions. For the CB atlas ROIs the five subregions that constituted 

the sensorimotor striatum ROI showed varying test-retest performance that depended on the ROI size. 

The largest subregions (caudal and rostral motor, and parietal) showed comparable test-retest 

performance with the combined regions, while the smallest subregions (occipital and temporal) showed 

poorer performance. 
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Discussion 

This study compared several ROI-delineation methods for high-resolution 11C-Raclopride-PET. Manual 

ROI-delineation based on rules by Mawlawi and colleagues [8] and Martinez and colleagues [9] can be 

considered as a gold standard due to  its widespread usage. However, the manual ROI delineation 

approaches are associated with considerable operator-dependent variability and high cost, and 

alternative methods are constantly developed. Popularity of automated methods for functional striatal 

subdivision has been limited due to complexity of the segmentation task. Nevertheless, few previous 

studies have shown feasibility of automated segmentation within striatum. For the current study atlas-

based approach and direct PET image clustering algorithms were implemented based on promising 

results in previous studies [11;14]. In the current study the automated methods were not only 

compared against the manual ROI-delineation as is commonly done, but the methodological 

performance was primarily assessed using test-retest protocol. The test-retest protocol has been 

suggested for method comparison studies (see [16] for review) for its method-independent 

performance evaluation. In addition, secondary analysis was made through comparison with the manual 

ROI-method to allow descriptive analysis of the method performance.  

Manual segmentation 

For the data presented in this study, the inter-operator variability in manual ROI-delineation was 

considerable, yielding statistically significant differences between BPND estimates (Table 3). Although the 

linear regression analysis showed good agreement of the BPND estimates the LOA range indicated 

statistically significant inter-operator differences in associative and sensorimotor striatum but not in the 

limbic striatum (Table 3). Inter-operator differences may be attributed to subjective striatum-border 

search, that is, the fused PET and MRI data can be interpreted differently according to operators 

experience and habits. The rules of Mawlawi and Martinez and colleagues describe the structural cues 

based on T1W MRI-data only, but it has been thought that using PET-image fusion as a guideline would 

help to protect against unwanted PVE. Apparently, for the data presented in this study the more 

experienced operator (MANSEG1) was more conservative with regard to the striatum border placement 

than the novice operator (MANSEG2). This was indicated by the systematically smaller ROI-volumes of 
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the experienced operator as compared to the beginner (see Figure, Supplemental Digital Content 3, 

which illustrates the striatal volumes). Smaller ROIs of the experienced operator yielded systematically 

higher BPND estimates, thus implying lesser PVE-contamination in MANSEG1 ROIs. In principle, lesser 

PVE-contamination is a desirable property, but often PVE-compensation methods are associated with 

increased methodological variation. For the data presented in this study the between subject variability 

for both the ROI volume and BPND estimates was highest using MANSEG1 ROIs followed by MANSEG2. In 

the absence of ground truth data it can not be unequivocally inferred whether the increased variability 

is due to true variability between subjects that is more accurately measured using smaller ROIs or 

whether it is more due to erroneous variability in ROI-delineations. As was discussed before, the 

commonly employed test-retest reliability measure of ICC strongly favors large variability between 

subjects, be it erroneous or true variation. Consequently the ICC measures for manual segmentation 

were superior to those using automated methods, and superior using MANSEG1 ROIs as compared to 

using MANSEG2 ROIs. However, the performance rank order was rather different according to the SEM, 

which is an absolute measure of reliability taking into account the standard deviation of the BPND 

estimates, that is the between subject variability. The SEM was marginally superior using MANSEG2 ROIs 

and more so using the atlas-based automatic ROIs in comparison with MANSEG1. SEM has been 

suggested for measuring the reliability instead of ICC as it is less vulnerable to increased methodological 

variation (see [16] for review). Thus, according to the SEM the more conservative border placement of 

the more experienced operator may have been associated with increased methodological variation 

albeit the impact of PVE was likely smaller. 

Atlas-based methods 

The atlas-based methods showed good overall performance; there were no complete failures and 

general agreement with manual delineation was reasonable. Albeit the ROIs did not match exactly with 

the manual segmentation (see Jaccard and Pearson’s correlation coefficient in Table 3), the BPND 

estimates showed strong correlation in the linear regression analysis (except for CONNMRIF in SMST). 

Thus, for the data presented in this study the atlas-based automatic methods were able to replicate the 

between subject rank order of BPND estimates of the manual ROI-delineation, whereas, the LOA range 
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showed statistically significant differences between the BPND estimates. In the limbic striatum the SB 

atlas ROIs showed small underestimation (FSSEG) or no bias (STRUCTMRIF) while the CB atlas ROIs 

showed overestimation (CONNMRIF) or non-significant bias (CONNPET) as compared to MANSEG1, 

whereas, in the associative and sensorimotor striata the CB atlas ROIs showed systematic 

underestimations as compared to MANSEG1. As was discussed earlier, differences in the associative and 

sensorimotor striata may be mostly attributed to the ROI size rather than gross differences in the ROI 

placement, whereas, there was a clear difference in the limbic striatum ROI placement between SB and 

CB ROIs. That is, the placement of limbic striatum ROI was similar using manual ROI-delineation and SB 

atlas ROIs but the CB atlas ROIs were placed more towards caudal ventral putamen and less towards 

rostral dorsal caudate (see Figure 2 for ROI contours). Thus a visible difference in the LSTR ROI 

placement was demonstrated using CB atlas as compared to structure-based approaches. The data 

presented here can not be used to make inferences whether the SB or CB approach would yield limbic 

striatum ROIs that better delineates the functional organization. However, the data presented in this 

study shows feasibility of the novel CB atlas in automated ROI-analysis, while the analysis made by 

Tziortzi  and  colleagues  [13]  suggests  improved  regional  selectivity  of  CB  ROIs  over  the  SB  ROIs  for  

measuring the dopamine response.  

Impact of Normalization Method in Atlas-based Approach 

The data presented in this study suggests flexibility with regard to the choice of normalization 

procedure. In the current study we employed individual T1W MRI-data as well as PET-data to find a 

mapping from the atlas defining space to the individual space where the ROIs were analyzed. The 

individualizing mappings based on MRI-data were generated using state-of-the-art algorithms 

implemented in SPM8 and FSL5 for non-rigid image matching. Differences between the ROIs from SPM8 

and FSL5 were small (see Table, Supplemental Digital Content 5, for sub-striatal BPND in initial regions). 

Furthermore, the normalizing (inverse of individualizing) mappings from FSL5 MRI-matching were 

exploited to generate an 11C-Raclopride specific PET-template. The PET-template was generated using 

the PET sum-images from the current study, and the PET-based individualizing mappings were estimated 

using an algorithm implemented in SPM8. Albeit the differences were not large, the PET-based 
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individualization of the CB-atlas performed better than MRI-based in the test-retest evaluation. Both the 

within subject variability (TRV(%) see Table 3) and SEM were slightly superior using PET-based mappings. 

It can be discussed whether the PET-based normalization would have benefited from that the PET-

template was made using the same data as was used to find the individualizing mappings. The concern is 

however alleviated by the fact that fourteen PET sum-images were averaged in the template formation, 

thus comparable performance could be expected for independent datasets. It has been noted also by 

others that the striatum is a challenging target for MRI-based normalization, and PET-based 

normalization has been suggested instead [34]. 

Direct PET image segmentation 

Direct PET image segmentation algorithm performed well in general but in a single occasion precision of 

the initial striatum extraction was not adequate. Closer analysis of the data revealed visible difference in 

image quality of the outlier scan as compared to the others, attributed to significantly lower radioactive 

dose as compared to average dose (3.3 MBq/kg compared with the group mean±SD of 5.6±1.6 MBq/kg). 

Various parameter combinations were tested to improve the segmentation outcome, however without 

significant improvement. Applying larger kernel size (FWHM>5 mm) in the pre-segmentation smoothing 

step (c.f. Figure 1) would have allowed extraction of the striatum more robustly, but at the cost of 

inaccurate segmentation particularly in the thin structure of rostral caudate nucleus. Therefore, it was 

deemed necessary not to increase the smoothing kernel size in order to maintain the benefit from high-

resolution PET imaging. Otherwise the initial striatum extraction and subsequent clustering performed 

well, but sensitivity of the current method with regard to image noise must be acknowledged. 

Conservative smoothing combined with the MRF-based resolution modeling in the striatum extraction 

yielded small average striatal volume as compared to other automated methods. The average striatal 

volume from PETSEG ROIs was second smallest after MANSEG1 suggesting excellent performance with 

regard to protection against PVE. Unfortunately, for the data presented here the outlier scan ruined the 

overall test-retest performance of PETSEG, but the method showed great potential that might be 

exploited in future studies. For instance, combining (averaging) the BPND images of the same subject (if 

several scans made) would enhance the image SNR considerably and the outcome of direct PET image 
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segmentation would be more reliable. In the current study, however, the purpose was to investigate the 

replicability of the segmentations. A remaining question is whether the direct image clustering is 

sensitive to changes in BPND distribution. It has been shown that differences in the response to 

amphetamine-induced stimulation exist between striatal subregions [9;13], but the direct PET image 

segmentation has not been applied to such data. The study of Egerton and colleagues [4] showed 

potential risk of using direct PET image segmentation in a comparison between baseline and task-

induced stimulation when the ROIs were generated independently. The potential hazard in changing 

uptake distribution assessments is related to changing ROI definitions over sessions and thereby under- 

or overestimation of the activation effect. Thus, it might be advisable to combine the BPND data prior to 

image clustering not only for improved SNR but also for bias-free ROI-analysis. Another remaining 

question is whether the direct PET image clustering yields subregions that are relevant with regard to 

functional organization of the striatum. It is often assumed that brain anatomy follows function, or in 

this case the receptor populations follow function, but the correspondence is seldom one-to-one. The 

data presented in this study showed visible difference in the PETSEG limbic striatum ROIs as compared 

to both SB and CB delineations (see Figure 2 for substriatal contours). Different initializations were 

tested (including manual ROIs) but the clustering outcome was nearly identical, implying that there is a 

strong gradient in the BPND estimates within ventral portions of the rostral caudate and putamen that 

defined the LSTR cluster. The PETSEG LSTR ROIs extended more dorsally within caudatus as compared to 

other methods, and less caudally within putamen as compared to CB ROIs, whereas, the associative and 

sensorimotor striatum ROIs matched well with the CB ROIs (except for the rostral caudatus). It will 

remain for the future studies to show whether and how well the gradients in BPND distribution 

correspond with response to dopamine-stimulation. Furthermore, it might be worthwhile to pursue the 

possibilities of direct PET image clustering in the investigations perplexed by changes in the striatal 

volume per se. It has been shown using 11C-Raclopride that there is an age-related decline in D2-

receptor density on the one hand [35], and decrease of the striatal volume as measured using MRI on 

the other hand [36]. Consequently, interplay between the striatal volume loss and decline of the D2-

receptor binding has been acknowledged as a potential confound due to increased PVE [Morris1999]. In 
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the study by Morris and colleagues [37] PVE compensation was employed for the PET data and clearly 

slower decline in D2-receptor density as compared to earlier studies was shown, implying a confound 

due to inadequate PET analysis in some earlier studies [37]. Thus, the direct PET image segmentation 

might be a viable option for improving the PET analysis in aging research. 

Choice between ROI-methods in the striatum 

As was discussed earlier, the outcome from manual ROI-delineations was possibly less contaminated by 

PVE as compared to the atlas-based methods and to some degree compared to direct PET image 

segmentation, but likely at the cost of higher methodological variation. In addition, there was significant 

inter-operator variability that would effectively prevent multi-operator ROI-delineation in high-

resolution 11C-Raclopride studies. Albeit the intra-operator variability was not directly measured in the 

current study the elevated between-subject variability suggests variation in manual ROI-delineations 

within operator. Be it true or erroneous, a slightly elevated variation of BPND was observed also between 

repetitions using manual ROIs. Test-retest within-subject variability is commonly thought to reflect the 

relative (BPND) change that can be detected using a given method. On the other hand, small within-

subject variability can be obtained without high specificity, curbing the sensitivity of the assessment. 

Thus, it is important to consider the interplay of the within- and between-subject variability in the 

method performance evaluation. For the data presented here the macro-parameter MD(%) (see Table 

3) was calculated on the basis of SEM to designate the per cent change in individual BPND estimates that 

can be regarded as true change. Thus, smaller MD(%) could be interpreted as improved sensitivity. For 

the data presented here the average MD(%) was close to 10% in combined regions for all methods 

except PETSEG (15%), with smallest average using CB-atlas and PET-based normalization (see Table 3), 

thus implying that at individual level the sensitivity of other methods except PETSEG were very similar, 

albeit the impact of PVE was likely different. Furthermore, in group-level analysis the BPND between-

subject variability (standard deviation of BPND estimates over subjects) is often used in the statistical 

power calculations in place of true cohort variability. That is, the BPND SD and mean BPND (see Table 3) 

are commonly employed in the sample size calculations. We used G*Power (version 3.1.9.2, Universität 

Kiel,  Germany)  to  calculate  the  effect  size  on  the  basis  of  mean  and  SD  of  BPND in  Table  3,  and  
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subsequently the total sample size for detection of 10% decrease in group mean BPND with one-tailed 

paired t-test (with =0.05, and power=0.95). For the data presented here the sample size was 8-10 

subjects using CONNPET, while for the manual segmentation the minimum sample sizes were 13-25 

(MANSEG1) and 9-23 (MANSEG2) subjects. Thus, the CB-atlas method showed superior sensitivity over 

manual ROI-delineation at both the individual- and group-level analysis. However the data presented 

here does not provide direct validation of the methods, the relative improved consistency shown here 

for the CB-atlas method suggests potential benefit over manual ROI-delineation. 

As was discussed earlier the PET-based normalization might have offered some improvement in the 

atlas-individualization as compared to more commonly employed MRI-based normalization. Striatum is 

a demanding target for MRI-based normalization due to mixture of gray and white matter cells (thus the 

name striatum) and PET-based normalization has been acknowledged as a viable alternative [34]. In the 

current study, however, the PET data was acquired using a high-resolution PET scanner and the PET-

template was generated using the same dataset, rendering the generalization of the current results 

rather difficult. That is, poor spatial resolution of the PET data from conventional scanners might 

hamper the PET-based normalization to a degree that would favor the usage of high-resolution MRI-

based normalization instead. On the other hand, the source and target data in PET-normalization were 

pre-smoothed using a 4 mm (FWHM) kernel size that can be regarded as a means of resolution matching 

(c.f.  [38]).  The  11C-Raclopride-template generated in the current study can be requested from the 

corresponding author, in case its applicability with data from other scanners needs to be tested, or 

otherwise interested. In certain circumstances also the direct PET image segmentation algorithm may be 

an appealing alternative, although validity of the (BPND) gradient-based clustering may require further 

validation. Implementation of the direct PET image clustering algorithm (in Matlab) can be requested 

from the corresponding author. 

Reference Region ROI Generation 

In addition to the striatal segmentation the cerebellar ROI-delineation was evaluated in the current 

study because of its broad usage in the analysis of 11C-Raclopride-PET and reference-tissue-based 

modeling (see Table, Supplemental Digital Content 2, for cerebellar test-retest characteristics). 
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Currently, the manual ROI-delineation can be considered as a gold standard for its widespread usage, 

but as for the striatal ROI-drawing there can be substantial differences between operators’ opinions. On 

the other hand, differences in the ROI-delineations per se may have lesser significance within the 

cerebellum where the 11C-Raclopride uptake is non-specific, but the noise-characteristics of the 

reference-tissue-TAC become likely more important due to the model fitting process. Manual ROI-

delineation employs T1W MRI-data in the search of cerebellar cortex border typically from transaxial 

images, frequently with the help of fused PET data to avoid blood-rich territories such as veins.  The 

process of manual cerebellar cortex delineation is laborious and it is therefore often limited to very few 

transaxial slices resulting in small ROIs and noisy TACs. Thus, robust automated method for cerebellar 

ROI-delineation would be highly beneficial for improved reference-tissue-based modeling. Algorithms 

implemented in the FreeSurfer software have become a popular choice in automated ROI-generation, 

but in a recent study by Schain and colleagues [39] the cerebellar FreeSurfer ROI was deemed 

suboptimal for reference-tissue-based modeling. In their study the comparison was however made only 

to manual segmentation and not using method-independent measure such as the test-retest 

characteristics in the current study. Furthermore, their suggestion was that the performance of the 

auto-ROI generation would be ligand-dependent [39]. For the data presented here the average 

cerebellar  FreeSurfer  ROI  covered  over  ten-fold  larger  volume  as  compared  to  MANSEG1,  and  

approximately six-fold larger volume as compared to atlas-based ROIs (see Table, Supplemental Digital 

Content 2, for cerebellar ROI characteristics). The atlas-based ROIs were deliberately limited to a specific 

cerebellar subregion explaining the vast difference with FreeSurfer ROIs. Albeit the ROI volumes varied 

extensively the outcome of full pharmacokinetic modeling with arterial input (distribution volume) 

showed strong correlation between the methods (see Table, Supplemental Digital Content 2, for 

cerebellar ROI characteristics), implying small role of the ROI delineation in the quantitation of non-

specific uptake TAC. However, the repeatability of the outcome was superior using the larger ROIs of 

automated methods as compared to those from manual segmentation (see Table, Supplemental Digital 

Content 2, for TRV(%)), suggesting a benefit from improved SNR. In the current study we did not notice 

any bias from additional spill-out signal originating from blood-rich areas using the automated methods, 
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likely due to different characteristics of 11C-Raclopride uptake as compared to ligands tested by Schain 

and colleagues [39].  

Conclusions 

The data presented in this study supports implementation of fully automated ROI-generation for 11C-

Raclopride-PET analysis. It was demonstrated that ROIs generated using connectivity-based atlas 

individualization can yield BPND estimates in substriatal domains that highly correlate with those 

obtained using manual ROIs. Furthermore, the ROIs generated automatically from CB atlas showed 

superior test-retest characteristics for both within- and between-subject variability, and consequently 

enhanced sensitivity for BPND alterations both at individual- and group-level as compared to manual 

ROIs. In addition, automated reference-region ROI generation was superior to that by manual ROI-

delineation according to improved test-retest characteristics. 

The CB substriatal atlas and cerebellar atlas individualization were successful using either MRI- or PET-

based normalization. The PET-based normalization was slightly superior to that by MRI-normalization in 

the striatum possibly partly due to high-resolution of the PET-data presented here. However, the data 

presented here supports experimentation with fully PET-based automated ROI-generation using other 

scanners as well. While the direct PET image clustering algorithm showed great potential it should be 

applied with caution – robustness of the current implementation was questioned here by a failure to 

segment a single poor quality image. If the image quality can be guaranteed through for instance BPND 

averaging the direct PET image segmentation might provide an interesting alternative. 

It will remain for the future studies to show whether the CB definition of the striatal subdomains, or 

those based on direct PET image segmentation can provide similar or possibly improved ROI-

delineations with regard to true functional organization of the striatum, as compared to those obtained 

using conventional manual ROI-drawing. Furthermore, similar comparison is in place using different 

subject groups that might show larger variability in the striatal anatomy. The data presented here is 

representative for young healthy male subjects and the performance may be slightly different for 

subjects with anomalies or for instance enlarged ventricles.  
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Table 1: Summary of the manual and automatic ROI methods for the sub-striatal segmentation 

examined in this study. 

Table 2: Initial striatal subregions provided by each method and combinations.  

Table 3: Regional (combined regions) BPND, test-retest repeatability and reliability values of BPND and 

ROI-volumes and agreement with MANSEG1. 

Figure 1: Illustration of the data preprocessing and the region-of-interest (ROI) methods. Part A 

illustrates how the dynamic PET-data and the MRI-data were preprocessed to standardize the data for 

subsequent ROI-extraction. Firstly, the PET-frames were coregistered to a single reference frame and 

sum-image of all frames was formed, after which all frames were coregistered to the sum-image and the 

sum-image was recalculated. Secondly, the individual T1-MRI-image was coregistered to the sum-image, 

followed by coregistration to MNI-template. Finally, the dynamic-PET and MRI-data were resliced into 

MNI-template matrix- and voxel-size according to the above transformations. Part B illustrates how the 

ROIs were generated using atlas indivualization approach. Atlas-based methods employed various 

mappings from standard space (atlas-space) to individual-space, and various atlases (see Table 1). Part C 

illustrates how the ROIs were generated using manual segmentation. Manual segmentation was made 

to the MRI+sum-PET fused image, according to anatomical guidelines in coronal slices. Lower panel 

illustrates the manually delineated contours in 3D. Part D illustrates how the ROIs were extracted using 

automatic segmentation. Automatic PET image clustering proceeded in four steps: 1) striatum extraction 

2) edge-preserving smoothing 3) spatial initialization 4) k-means clustering.  

Figure 2: Approximate contours of limbic striatum (blue), associative striatum (red) and sensorimotor 

striatum (black) Columns from left to right represent coronal, sagittal and transaxial projections, 

respectively. Rows from top to bottom represent manual segmentation (MANSEG1), automatic PET 

image clustering (PETSEG), connectivity atlas individualization using FSL-MRI (CONNMRIF), SPM8-MRI 

(CONNMRIS),  or SPM8-PET (CONNPET) normalization, and structural atlas individualization using FSL-

MRI (STRUCTMRIF) normalzation  or Freesurfer (FSSEG) segmentation results, respectively. The sagittal 
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and transaxial projections represent combination from multiple cutting-planes, to show all structures at 

once. 

 



Method Source Summary Atlas/guidelines

Two-step direct 
segmentation:
1) striatum extraction 
using MRF
2) clustering using k-
means

Connectivity-based atlas 
individualization/FSL 
(CONNMRIF)

MRI

Connectivity atlas 
individualization based 
on FSL MRI 
normalization

Connectivity-based atlas 
individualization with SPM8 
and MRI (CONNMRIS)

MRI

Connectivity atlas 
individualization based 
on SPM8 MRI 
normalization

Connectivity atlas 
individualization with SPM8 
and PET (CONNPET)

PET

Connectivity atlas 
individualization based 
on SPM8 PET 
normalization

PET+MRI
Manual ROI delineation 
on fused PET+MRI

No atlas. Guidelines in 
(Mawlawi et al., 2003) 
were applied

Automatic striatum 
clustering (PETSEG)

PET
No atlas. Initialization of 
k-means clustering based 
on location.

Manual segmentation 
(MANSEG1/2)

MRI
Atlas-based 
segmentation provided 
in FreeSurfer

Structure-based atlas 
individualization with FSL 
(STRUCTMRIF)

MRI

Structural atlas 
individualization based 
on FSL MRI 
normalization

DTI tractography analysis 
between cortical regions 
and striatum provided 7 
substructures (Tziortzi et 
al., 2014)

Probabilistic structural 
atlas (Fischl et al., 2002)

Segmentation of MNI152 
template (Tziortzi et al., 
2011)

Structure-based atlas 
individualization with 
FreeSurfer (FSSEG)



Method

Region

Limbic striatum (LSTR) VST NACC/VST LSTR

Associative striatum (ASTR) CAUA+PUTA - EXE

Sensorimotor striatum (SMST) CAUP+PUTP - CAM+ROM+PAR+TEM+OCC

Caudate (CAU) CAUA+CAUP CAU -

Putamen (PUT) PUTA+PUTP PUT -

Anterior caudate (CAUA) CAUA - -

Posterior caudate (CAUP) CAUP - -

Anterior putamen (PUTA) PUTA - -

Posterior putamen (PUTP) PUTP - -

Ventral striatum (VST) VST VST (FSL) -

Nucleus accumbens (NACC) - NACC (FS) -

Executive cortex ter. (EXE) - - EXE

Caudal motor cortex ter. (CAM) - - CAM

Rostral motor cortex ter. (ROM) - - ROM

Parietal cortex ter. (PAR) - - PAR

Temporal cortex ter. (TEM) - - TEM

Occipital cortex ter. (OCC) - - OCC

MANSEG1, 
MANSEG2, 
PETSEG*

FSSEG, 
STRUCTMRIF*

CONNMRIF, CONNMRIS, 
CONNPET*

* MANSEG1/2=manual segmentation, PETSEG=automatic PET image clustering, FSSEG=FreeSurfer 
segmentation, STRUCTMRIF=structural atlas segmentation in FSL, CONNMRIF/MRIS/PET=connectivity-based 
atlas individualized using FSL-MRI, SPM-MRI or SPM-PET image normalization.



Method CoV(%) TRV(%)
Jaccar
d

R Mean±SD CoV(%) Mean±SD Range ICC SEM MD(%) LOA (range) R

MANSEG1 18 3.76±0.55 14.6 4.55±3.19 -1.8-9.1 0.94 0.14 10.2
MANSEG2 16.3 21.1±12.8 0.46 0.26 3.65±0.51 13.9 4.66±5.32 -0.6-15.7 0.9 0.16 12.4 [-0.28,0.06] 0.95
PETSEG 17.7 17.4±17.6 0.16 -0.03 4.49±0.47 10.6 7.28±3.50 -11.6-11.2 0.73 0.24 15.1 [0.46,1.00] 0.87
STRUCTMRIF 8.3 0.33 -0.48 3.62±0.32 8.8 4.36±2.73 -4.9-7.6 0.86 0.12 9.2 [-0.41,0.13] 0.95
CONNMRIF 8.2 0.21 -0.54 4.05±0.41 10.2 4.30±2.50 -6-9.3 0.9 0.13 8.9 [0.09,0.49] 0.96
CONNPET 10.6 2.6±1.7 0.2 -0.34 3.96±0.35 8.9 3.42±1.81 -5.4-5.6 0.92 0.1 7 [-0.04,0.44] 0.95
FSSEG 9.4 0.18 0.08 3.24±0.30 9.2 5.33±5.44 -10.2-15.6 0.74 0.15 13.1 [-0.87,-0.17] 0.81
MANSEG1 14.3 5.07±0.50 9.8 5.42±3.51 -9-9 0.81 0.22 11.9
MANSEG2 14.2 16.3±11.1 0.61 0.7 4.65±0.38 8.1 4.92±3.83 -8.5-9.1 0.74 0.19 11.5 [-0.58,-0.24] 0.96
PETSEG 13.2 7.2±3.5 0.51 0.67 4.98±0.50 10 7.74±5.05 -14.1-12.2 0.63 0.31 17 [-0.22,0.04] 0.97
CONNMRIF 7.2 0.47 0.74 4.53±0.25 5.6 5.26±3.69 -8.8-10 0.41 0.2 12 [-0.84,-0.24] 0.88
CONNPET 9.8 2.2±1.4 0.47 0.73 4.56±0.35 7.7 5.08±3.64 -9.5-9.4 0.71 0.19 11.6 [-0.70,-0.32] 0.96
MANSEG1 21.9 5.47±0.59 10.8 4.34±2.66 -5.8-8.1 0.91 0.18 9
MANSEG2 9.7 43.7±16.6 0.56 0.75 4.82±0.39 8.1 4.84±2.97 -5.8-10 0.78 0.18 10.5 [-0.94,-0.36] 0.91
PETSEG 18.5 16.1±13.3 0.53 0.68 5.20±0.51 9.8 7.01±4.50 -13.6-11.6 0.7 0.28 15 [-0.46,-0.08] 0.95
CONNMRIF 8 0.33 0.19 4.23±0.25 6 5.16±2.47 -8.3-7.1 0.58 0.17 10.9 [-1.86,-0.62] 0.1
CONNPET 8.3 2.2±1.0 0.36 0.18 4.38±0.34 7.8 4.90±2.52 -8.2-6.5 0.78 0.16 10.1 [-1.36,-0.82] 0.98
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* MANSEG1/2=manual segmentation, PETSEG=automatic PET image clustering, FSSEG=Freesurfer segmentation, STRUCTMRIF=structural atlas 
segmentation in FSL, CONNMRIF/MRIS/PET=connectivity atlas segmentation based on FSL-MRI, SPM-MRI or SPM-PET image normalization. BPND 

(mean±s.d. from both scans)=SRTM-based binding potential using PETS reference region TAC. CoV(%)=coefficient of variation. TRV(%)=test-retest 
variability. ICC=intra-class correlation coefficient. SEM=standard error of measurement. MD(%)=minimal detectable change. LOA=limits of agreement 
(relative to MANSEG1). R=Pearson’s correlation coefficient (relative to MANSEG1).

Volume
Agreement 
(Volume)

BPND TRV(%) (BPND) Reliability (BPND) Agreement (BPND)
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