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APOLLONIAN METRIC, UNIFORMITY AND

GROMOV HYPERBOLICITY

YAXIANG LI, MATTI VUORINEN, AND QINGSHAN ZHOU∗

Abstract. The main purpose of this paper is to investigate the
properties of a mapping which is required to be roughly bilipschitz
with respect to the Apollonian metric (roughly Apollonian bilip-
schitz) of its domain. We prove that under these mappings the
uniformity, ϕ-uniformity and δ-hyperbolicity (in the sense of Gro-
mov with respect to quasihyperbolic metric) of proper domains of
Rn are invariant. As applications, we give four equivalent condi-
tions for a quasiconformal mapping which is defined on a uniform
domain to be roughly Apollonian bilipschitz, and we conclude that
ϕ-uniformity is invariant under quasimöbius mappings.

1. Introduction and main results

In geometric function theory, one mainly investigates the interplay
between analytic properties of mappings and geometric properties of
sets and domains. A key question is how to measure the distance
between two points x, y in a proper subdomain G ⊂ Rn . Instead of
using distance functions which measure the position of the points with
respect to each other, such as Euclidean and chordal metrics, it is more
useful to take into account also the position of the points with respect to
the boundary of the domain. Many authors have used this idea to define
metrics of hyperbolic type and to study the geometries defined by these
metrics in domains. Some examples are the quasihyperbolic metric,
Apollonian metric, the distance ratio metric, Seittenranta’s metric, see
[1, 6, 7, 9, 16, 28]. In particular, the quasihyperbolic metric has become
a basic tool in geometric function theory and it has many important
applications [6, 21].

Suppose that we are given a domain G ⊂ Rn and two metrics m1

and m2 on it. It is natural to study whether or not these metrics are
comparable in some sense. It turns out that the comparison properties
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of metrics imply geometric properties of the domain: this idea was used
by Gehring and Osgood [7] to characterise so called uniform domains,
by Gehring and Hag [5] to study quasidisks, by Vuorinen [28] to define
ϕ-uniform domains, by Hästö [8] to study comparison properties of so
called Apollonian metric. Seittenranta [16] defined a Möbius invariant
metric on subdomains of Rn and, comparing this metric to Ferrand’s
metric, defined a Möbius invariant class of domains. In the general
case, we could call domains with such a comparison property (m1, m2)-
uniform domains. Uniform domains and quasidisks form classes of
domains, which have been studied by many authors. In spite of all this
work, there are many pairs of function theoretically interesting metrics
m1, m2, for which practically nothing is known about (m1, m2)-uniform
domains.

One of the key features of hyperbolic type metrics is the Gromov
hyperbolicity property. It is well-known that the Gehring-Osgood j̃-
metric and the quasihyperbolic metric of uniform domains are Gromov
hyperbolic. We note that Hästö in [10] proved that the j̃-metric is
always Gromov hyperbolic, but the j-metric is Gromov hyperbolic if
and only if G has exactly one boundary point. In fact, in Rn, many
results in quasiconformal mappings can be explained through nega-
tive curvature, or “Gromov hyperbolicity”. It would be interesting to
know, what the precise relationship between the higher dimensional
quasiconformal theory and the work of Gromov is. On the other hand,
Gromov hyperbolicity for metric spaces is a coarse notion of negative
curvature which yields a very satisfactory theory. It is natural to con-
sider the properties of coarse maps with respect to the hyperbolic type
metrics and the geometry of domains. In the spirit of this motivation,
we mainly study a class of mappings which are roughly bilipschitz with
respect to the Apollonian metric in Rn.

In fact, the study of Apollonian metric and the so called Apollonian
bilipschitz mapping, (i.e., bilipschitz mapping with respect to Apol-
lonian metric) has been largely motivated and considered by ques-
tions about Apollonian isometries, which in turn was a continuation
of work by Beardon [1], Gehring and Hag [6], Hästö and his collabo-
rators [8, 9, 13, 11]. In order to make this paper more readable, we
review some notations from [28] and [8].

We will consider domains (open connected non-empty sets) G in the
Möbius space Rn = Rn ∪ {∞}. The Apollonian metric is defined by

αG(x, y) := log sup
a,b∈∂G

|a, y, x, b| where |a, y, x, b| =
|a− x||b− y|

|a− y||b− x|
,

for x, y ∈ G ( Rn with understanding that if a = ∞ then we set
|a−x|/|a− y| = 1 and similarly for b. It is in fact a metric if ∂G is not
contained in a hyperplane or sphere, as was noted by [1, Theorem 1.1].
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In the paper [6] Gehring and Hag proved that a quasi-disk is invariant
under a quasiconformal mapping which is also Apollonian bilipschitz.
Along this line, Hästö [8] introduced A-uniform domains: A domain
G ( Rn is said to be A-uniform with constant A1 if for some constant
A1 > 0 and for every x, y ∈ G, we have kG(x, y) ≤ A1αG(x, y), where
kG(x, y) is the quasihyperbolic metric (for definition see Subsection 2.2)
between x and y in G. A domain G ( Rn is said to be A-uniform if
it is A-uniform with some constant A1 < ∞. In particular, he proved
the following result:

Theorem 1.1. ([8, Theorem 1.8]) Let G ( Rn be A-uniform and let
f : G → G′ ( Rn be an Apollonian bilipschitz mapping. The following
conditions are equivalent:

(1) G′ is A-uniform;
(2) f is quasiconformal in G.

We note that Hästö in [8, Proposition 6.6] proved that a domain
G is A-uniform if and only if G is L-quasi-isotropic (for definition see
Subsection 2.19) and αG is quasiconvex. So in this paper, we first
complement Theorem 1.1 in the following way.

Theorem 1.2. Let G ( Rn be A-uniform and let f : G→ G′ ( Rn be
an Apollonian bilipschitz mapping. Then the following conditions are
equivalent:

(1) G′ is A-uniform;
(2) G′ is L-quasi-isotropic;
(3) f is quasiconformal in G;
(4) f is quasimöbius in G.

Furthermore, it follows from [8, Example 4.4 and Proposition 6.6]
that the class of A-uniform domains is a proper subset of the class
of uniform domains (see Subsection 2.2 for the definition) and thus
a proper subset of the class of ϕ-uniform domains (for definition see
Subsection 2.2). It is a natural question to consider whether or not
there is an analogous result for uniform or ϕ-uniform domains as stated
in Theorem 1.1. In particular,

are uniform or ϕ-uniform domains preserved by an Apollonian bilip-
schitz mapping which is also quasiconformal?

The main purpose of this paper is to deal with this question and we
obtain that the uniformity, ϕ-uniformity and δ-hyperbolicity (in the
sense of Gromov with respect to quasihyperbolic metric, for definition
see Subsection 2.6) of proper domains of Rn are invariant under roughly
Apollonian bilipschitz mappings (see Subsection 2.11 for the definition)
as follows.

Theorem 1.3. Let G ( Rn be a domain and let f : G → G′ ( Rn be
an (M,C)-roughly Apollonian bilipschitz mapping. Then we have
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(1) If G is c-uniform, then G′ is c1-uniform with c1 depending only
on c, n, C and M ;

(2) If G is ϕ-uniform, then G′ is ϕ′-uniform with ϕ′ depending only
on ϕ, n, C and M ;

(3) If G is δ-hyperbolic, then G′ is δ′-hyperbolic with δ′ depending
only on δ, n, C and M .

We remark that in Theorem 1.3 the quasiconformality for the maps
is not needed. Next, as an application of Theorem 1.3 we shall demon-
strate four equivalence conditions for a quasiconformal mapping which
is defined on a uniform domain to be roughly Apollonian bilipschitz.

Theorem 1.4. Let G ( Rn be a uniform domain and let f : G →
G′ ( Rn be a quasiconformal mapping. Then the following conditions
are equivalent:

(1) f is a roughly Apollonian bilipschitz mapping in G;
(2) G′ is uniform;
(3) f : G→ G′ is a homeomorphism and f |∂G is quasimöbius;
(4) f is quasimöbius in G.

Moreover, one can obtain the following invariance of ϕ-uniformity of
domains in Rn under quasimöbius mappings. Recently, Hästö, Klén,
Sahoo and Vuorinen [12] studied the geometric properties of ϕ-uniform
domains in Rn. They proved that ϕ-uniform domains are preserved
under quasiconformal mappings of Rn. We restate this result in a
stronger form which is more practical to check as follows.

Theorem 1.5. Let G ( Rn be a ϕ-uniform domain and let f : G →
G′ ( Rn be a θ-quasimöbius homeomorphism. Then G′ is ϕ′-uniform
with ϕ′ depending only on ϕ, θ and n.

The rest of this paper is organized as follows. In Section 2, we recall
some definitions and preliminary results. Section 3 is devoted to the
proofs of our main results.

2. Preliminaries

2.1. Notation.We denote by Rn the Euclidean n-space and by Rn =
Rn ∪ {∞} the one point compactification of Rn, G and G′ are proper
domains in Rn.

2.2. Uniform domains. In 1979, uniform domains were introduced
by Martio and Sarvas [15]. A domain G ( Rn is called uniform pro-
vided there exists a constant c with the property that each pair of
points x, y ∈ G can be joined by a rectifiable curve γ in G satisfying

(1) ℓ(γ) ≤ c |x− y|, and
(2) min{ℓ(γ[x, z]), ℓ(γ[z, y])} ≤ c dG(z) for all z ∈ γ,

where dG(z) = dist(z, ∂G), ℓ(γ) denotes the arc length of γ, γ[x, z] the
part of γ between x and z.
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There is an important characterization of uniform domains in terms
of an inequality for j-metric

jG(x, y) = log
(
1 +

|x− y|

min{dG(x), dG(y)}

)

and the quasi-hyperbolic metric

kG(x, y) = inf

∫

γ

|dx|

dG(x)
,

where the infimum is taken over all rectifiable curves joining x and y
in G.

Theorem 2.3. ([7, Theorem 1]) A domain G ⊂ Rn is uniform if and
only if there exist constants c and d such that for all x, y ∈ G

kG(x, y) ≤ cjG(x, y) + d.

This form of the definition for uniform domains is due to Gehring and
Osgood [7] and subsequently, it was shown by Vuorinen [29, 2.50(2)]
that the additive constant can be chosen to be zero. This observation
leads to the definition of ϕ-uniform domains introduced in [29]. Let
ϕ : [0,∞) → [0,∞) be a homeomorphism. A domain G ( Rn is called
ϕ-uniform if for all x, y in G

kG(x, y) ≤ ϕ(rG(x, y)) where rG(x, y) =
|x− y|

min{dG(x), dG(y)}
.

In order to give a simple criterion for ϕ-uniform domains, consider
domains G satisfying the following property [29, Examples 2.50 (1)]:
there exists a constant C ≥ 1 such that each pair of points x, y ∈ G
can be joined by a rectifiable path γ ∈ G with ℓ(γ) ≤ C |x − y| and
min{dG(x), dG(y)} ≤ C d(γ, ∂G). Then G is ϕ-uniform with ϕ(t) =
C2t. In particular, every convex domain is ϕ-uniform with ϕ(t) = t.
However, in general, convex domains need not be uniform.

2.4. Natural domains. Suppose that ∅ 6= A ⊂ G ( Rn. We write

rG(A) = sup{rG(x, y) : x ∈ A, y ∈ A}.

Clearly,
d(A)

2d(A, ∂G)
≤ rG(A) ≤

d(A)

d(A, ∂G)
,

where d(A) denotes the diameter of set A and d(A, ∂G) is the distance
from set A to the boundary ∂G.

Let ψ : [0,∞) → [0,∞) be an increasing function. A domain G ( Rn

is called ψ-natural if

kG(A) ≤ ψ(rG(A))

for every nonempty connected set A ⊂ G with rG(A) < ∞, where
kG(A) denotes the quasihyperbolic diameter of set A.
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We note that a ϕ-uniform domain is ϕ-natural, and every convex
domain is ψ-natural with ψ(t) = t (see, [20, Theorems 2.8 and 2.9]). In
fact, the next result from [27] shows that the class of natural domains
is fairly large. Note that the growth of the function ψn(t) in Lemma
2.5 is ≈ tn .

Lemma 2.5. ([27, Corollary 2.18]) Every proper domain in Rn is ψn-
natural with ψn depending only on n.

It should be noted that Lemma 2.5 is only valid in the finite dimen-
sional case. In an infinite dimensional Hilbert space, the broken tube
construction in [26, 2.3] provides an example of a domain, which is not
natural.

2.6. Gromov hyperbolic domains. A geodesic metric space X is
called δ-hyperbolic, δ ≥ 0, if for all triples of geodesics [x, y], [y, z], [z, x]
in X every point in [x, y] is within distance δ from [y, z] ∪ [z, x]. The
property is often expressed by saying that geodesic triangles in X are
δ-thin. In general, we say that a space is Gromov hyperbolic if it is
δ-hyperbolic for some δ.

We shall use the term Gromov hyperbolic domain (δ-hyperbolic) for
those proper domains in Rn that are Gromov hyperbolic in the quasi-
hyperbolic metric.

Example 2.7. The real line is 0-hyperbolic. A classical example of
a hyperbolic space is the Poincaré half space xn > 0 in Rn with the

hyperbolic metric defined by the element of length |dx|
xn

. This space is

δ-hyperbolic with δ = log 3 [3]. More generally, uniform domains in Rn

with the quasihyperbolic metric are hyperbolic [2, Theorem 1.11].
Some examples of nonhyperbolic domains are: (1) G = R2 \ {ne1 :

n ∈ Z}; (2) G = {x ∈ R3 : 0 < x3 < 1} [24, 2.11].

2.8. Quasimöbius mapping. Let X and Y be metric spaces. A
quadruple in a space X is an ordered sequence Q = (a, b, c, d) of four
distinct points in X . The cross ratio of Q is defined to be the number

τ(Q) = |a, b, c, d| =
|a− c|

|a− d|
·
|b− d|

|b− c|
.

Observe that the definition is extended in the well known manner to
the case where one of the points is ∞. For example,

|a, b, c,∞| =
|a− c|

|b− c|
.

If X0 ⊂ Ẋ = X ∪ {∞} and if f : X0 → Ẏ = Y ∪ {∞} is an
injective map, the image of a quadruple Q in X0 is the quadruple
fQ = (fa, fb, fc, fd).
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Definition 2.9. Let θ : [0,∞) → [0,∞) be a homeomorphism. An
embedding f : X0 → Ẏ is said to be θ-quasimöbius, or briefly θ-QM ,
if the inequality τ(f(Q)) ≤ θ(τ(Q)) holds for each quadruple in X0.
In particular, if θ(t) = Cmax{tλ, t1/λ}, then we say that f is power
quasimöbius.

2.10. Remark. ([22]) We remark that the inverse map f−1 of a θ-QM
is θ′-QM with θ′(t) = θ−1(t−1)−1 for t > 0. If f : A → Ẏ is θ1-QM

and g : f(A) → Ż is θ2-QM, then the composition g ◦ f is θ-QM with
θ(t) = θ2(θ1(t)). If f is θ-QM with θ(t) = t, then we say that f is a
Möbius map. In particular, the inversion u defined by u(x) = x

|x|2
is

Möbius in an inner product space.

2.11. Roughly bilipschitz mappings and quasiconformal map-

pings.

A homeomorphism f : (G,mG) → (G′, mG′) is said to be an M-
roughly C-bilipschitz in the m metric, if M ≥ 1, C ≥ 0, and

mG(x, y)− C

M
≤ mG′(f(x), f(y)) ≤ MmG(x, y) + C

for all x, y ∈ G. A homeomorphism f : G → G′ is said to be an
(M,C)-roughly Apollonian bilipschitz, if it is M-roughly C-bilipschitz
in the Apollonian metric. This means that f is a homeomorphism such
that

αG(x, y)− C

M
≤ αG′(f(x), f(y)) ≤MαG(x, y) + C

for all x, y ∈ G. Similarly, we say that a homeomorphism f is C-
coarselyM-quasihyperbolic, abbreviated (M,C)-CQH if it isM-roughly
C-bilipschitz in the quasihyperbolic metric. This means that f is a
homeomorphism such that

kG(x, y)− C

M
≤ kG′(f(x), f(y)) ≤MkG(x, y) + C

for all x, y ∈ G.

The basic theory of quasiconformal mappings in Rn, n ≥ 2 is given
in Väisälä’s book [18]. There are plenty of mutually equivalent defini-
tions for quasiconformality in Rn. In this paper we adopt the following
simplified version of the metric definition. Let n ≥ 2, let G and G′ be
domains in Rn, and let f : G → G′ be a homeomorphism. For x ∈ G,
The linear dilatation of f at x ∈ G is defined by

Hf (x) := lim sup
r→0

sup{|f(x)− f(y)| : |x− y| = r}

inf{|f(x)− f(z)| : |x− z| = r}
.

For 1 ≤ K < ∞, we say that f : G → G′ is K-quasiconformal if
Hf(x) ≤ K for all x ∈ G, and that f is quasiconformal if it is K-
quasiconformal for some K.

For a K-quasiconformal mapping we have the following property.
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Lemma 2.12. ([7, Theorem 3]) For n ≥ 2, K ≥ 1, there exist con-
stants c and µ depending only on n and K with the following property.
If G,G′ ⊂ Rn and f : G → G′ is a K-quasiconformal mapping, then
for all x, y ∈ G,

kG′(f(x), f(y)) ≤ cmax{kG(x, y), (kG(x, y))
µ}.

The next result deals with the case when the mapping is defined in
Rn .

Lemma 2.13. ([12, Lemma 2.3]) For n ≥ 2, K ≥ 1, there exist con-
stants c and µ depending only on n and K with the following property.
If f : Rn → Rn is a K-quasiconformal mapping, G,G′ ⊂ Rn are do-
mains, and fG = G′, then for all x, y ∈ G,

jG′(f(x), f(y)) ≤ cmax{jG(x, y), (jG(x, y))
µ}.

2.14. Remark. Let G1 and G2 be proper domains of Rn. We know
from Lemma 2.5 that Gi (i = 1, 2) is ψi-natural with ψi depending
only on n. Suppose that f : G1 → G2 is a K-quasiconformal mapping
of Rn which maps G1 onto G2, then we see from Lemmas 2.12 and 2.13
that G2 is ψ2-natural with ψ2 = ψ2(ψ1, n,K).

Moreover, we see from Lemma 2.12 and [19, Theorem 4.14] that a
quasiconformal mapping is CQH, which we state as follows.

Lemma 2.15. ([7, Theorem 3] and [19, Theorem 4.14]) For n ≥ 2,
K ≥ 1, there exist constants M ≥ 1, C > 0 such that if G,G′ ⊂ Rn

and f : G→ G′ is K-quasiconformal, then f is (M,C)-CQH.

2.16. Remark. Let G be a proper domain of Rn. We consider the
Apollonian metric αG, Seittenranta’s metric δG which is defined as
([16])

δG(x, y) = log(1 + sup
a,b∈∂G

|a, x, b, y|),

the metric hG,c (c ≥ 2) which is defined as ([4])

hG,c(x, y) = log(1 + c
|x− y|√
dG(x)dG(y)

)

and jG metric. We see from [16, Theorems 3.4 and 3.11] and [4, Lemma
4.4] that the inequalities

(2.17) jG ≤ δG ≤ 2jG,

(2.18) αG ≤ δG ≤ log(eαG + 2) ≤ αG + log 3

and
c

2(1 + c)
jG ≤ hG,c ≤ cjG

hold for every proper domain G of Rn. Hence, the identity map id :
(G,m1) → (G,m2) is roughly bilipschitz, wherem1, m2 ∈ {αG, jG, δG, hG,c}.
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2.19. Quasi-isotropic. The concept of quasi-isotropy which is a
kind of local comparison property was introduced by Hästö in [8], and
was the focus of [9]. Let G ( Rn. We recall that a metric space (G, d)
is L-quasi-isotropic (L ≥ 1) [8] if

lim sup
r→0

sup{d(x, z) : |x− z| = r}

inf{d(x, y) : |x− y| = r}
≤ L

for every x ∈ G, where |x− z| means the Euclidean distance of x and
z. In this paper, we say a domain G is L-quasi-isotropic if (G,αG) is
L-quasi-isotropic.

3. The proofs of main results

3.1. Basic lemmas. In this section, we shall give the proofs of our
main results. We first introduce some basic inequalities which are im-
portant to our proofs.

Lemma 3.2. Let G ( Rn be a domain.

(1) ([16, Theorems 3.4 and 3.11]) For all x, y ∈ G,

jG(x, y) ≤ αG(x, y) + log 3;
1

2
αG(x, y) ≤ jG(x, y) ≤ kG(x, y);

(2) ([21, Theorem 3.9]) If |x − y| ≤ dG(x)/2 or kG(x, y) ≤ 1 with
x, y ∈ G, then

|x− y|

2dG(x)
≤ kG(x, y) ≤

2|x− y|

dG(x)
.

(3) If G is a c-uniform domain, then we have

kG(x, y) ≤ c1jG(x, y) ≤ c1(αG(x, y) + log 3),

where c1 = c1(c). Moreover, for the uniform domain G = Rn \
{0} we note that there does not exist any constant c2 ≥ 0 such
that kG(x, y) ≤ c2αG(x, y) holds for all x, y ∈ G.

P. Hästö [8] investigated domains G for which αG(x, y) ≥ KjG(x, y) .
He found a sufficient condition on the domain under which this holds,
in particular this sufficient condition fails for Rn\{0} and requires that
the boundary of the domain is ”thick”.

Lemma 3.3. Let G,G′ ( Rn be domains and let a homeomorphism
f : G→ G′ be an (M,C)-roughly Apollonian bilipschitz mapping. Then
f : G → G′ is an (M ′, C ′)-CQH with (M ′, C ′) depending on M,C and
n only.

Proof. We may assume that there are constants M ≥ 1 and C ≥
0 such that f : G → G′ is (M,C)-roughly Apollonian bilipschitz.
Thanks to [21, Lemma 2.3] and by symmetry, we only need to esti-
mate kG′(f(x), f(y)) for all x, y ∈ G with k(x, y) ≤ 1

8
, because (G, kG)
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and (G′, kG′) are geodesic metric spaces and evidently c-quasi-convex
with c = 1.

Towards this end, first by Lemma 3.2, we have

rG(x, y) =
|x− y|

min{dG(x), dG(y)}
≤ 2kG(x, y) ≤

1

4
,

and so the segment A = [x, y] ⊂ G. Moreover, we have

rG(A) ≤
diam(A)

dist(A, ∂G)
≤

rG(x, y)

1− rG(x, y)
≤ 1/2.

Then for all a, b ∈ A, we get

rG(a, b) ≤ rG(A) ≤ 1/2,

which, together with Lemma 3.2, implies that

αG(a, b) ≤ 2jG(a, b) = 2 log(1 + rG(a, b)) < 2 log 2.

Furthermore, on one hand, since f : G → G′ is (M,C)–roughly Apol-
lonian bilipschitz, we have

αG′(f(a), f(b)) ≤MαG(a, b) + C < 2M log 2 + C,

On the other hand, again by using Lemma 3.2, we obtain

rG′(f(a), f(b)) = ejG′ (f(a),f(b)) − 1 ≤ e2M log 2+C+log 3 − 1 =: L,

so rG′(f(A)) ≤ L. Hence we see from Lemma 2.5 that there is an
increasing function ψn : [0,∞) → [0,∞) such that

kG′(f(x), f(y)) ≤ kG′(f(A)) ≤ ψn(rG′(f(A)) ≤ ψn(L).

The proof is complete. �

Lemma 3.4. Suppose that f : G→ G′ is a θ-quasimöbius homeomor-
phism between two proper domains of Rn, then f is an (M,C)-roughly
Apollonian bilipschitz mapping with M , C depending only on θ.

Proof. We first observe from [22, Theorem 3.19] that f has a quasimöbius
extension f : G → G′. To show that f is roughly Apollonian bilips-
chitz, we only need to prove that f is power quasimöbius, that is, there
exist constants C ≥ 1 and λ ≥ 1 depending only on θ such that f is θ1-
QM with θ1(t) = Cmax{tλ, t1/λ}. Indeed, this can be seen as follows.
For any x, y ∈ G and a, b ∈ ∂G, we note that

|a, y, x, b| = |b, y, x, a|−1 and αG(x, y) = log sup
a,b∈∂G

|a, y, x, b|.

Without loss of generality we may assume that |a, y, x, b| ≥ 1. Since f
is θ1-QM with θ1(t) = Cmax{tλ, t1/λ}, we have

log |f(a), f(y), f(x), f(b)| ≤ λ log |a, y, x, b|+logC ≤ λαG(x, y)+logC,

so by the arbitrariness of a, b ∈ ∂G, we get

αG′(f(x), f(y)) ≤ λαG(x, y) + logC.
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Since the inverse map of power quasimöbius is also power quasimöbius,
by symmetry, the assertion follows.

To this end, by auxiliary translations we may assume that 0 ∈ ∂G
and that either f(0) = 0 or f(0) = ∞. Let u be the inversion u(x) =
x

|x|2
. We note from Remark 2.10 that u is Möbius. If f(0) = 0, we

define g : u(G) → u(G′) by g(x) = u ◦ f ◦ u(x). If f(0) = ∞, we
define g : u(G) → G′ by g(x) = f ◦ u(x). In both cases, we have that
g is θ-QM. Since g(x) → ∞ as x → ∞, g is θ-QS, see [22, Theorem
3.10]. Moreover, by [17, Corollary 3,12] we have that g is θ1-QS with
θ1(t) = Cmax{tλ, t1/λ}, where C ≥ 1 and λ ≥ 1 depend only on θ.
Hence, we get that f is θ1-QM with θ1(t) = Cmax{tλ, t1/λ} as desired.

Hence the proof of this Lemma is complete. �

3.5. The proof of Theorem 1.2. (1) ⇒ (2) : This implication follows
from [8, Proposition 6.6].

(2) ⇒ (3) : It follows from the assumption, [8, Corollary 5.4] and [8,
Proposition 6.6] that there is M ≥ 1 such that f is M-bilipschitz with

respect to the quasihyperbolic metrics. Let x0 ∈ G and r ∈ (0, dG(x0)
2M

).
For all x, y ∈ Sn−1(x0, r), we have kG(x, x0) ≤ 1

M
by means of [21,

Theorem 3.9], and so kG′(f(x), f(x0)) ≤ 1. Again by [21, Theorem
3.9], we obtain that

|f(x)− f(x0)|

2dG′(f(x0))
≤ kG′(f(x), f(x0)) ≤

2|f(x)− f(x0)|

dG′(f(x0))
.

Hence we have

lim sup
r→0+

|f(x)− f(x0)|

|f(y)− f(x0)|
≤ lim sup

r→0+

4kG′(f(x), f(x0))

kG′(f(y), f(x0))

≤ lim sup
r→0+

4M2kG(x, x0)

kG(y, x0)
≤ 16M2,

as desired.
(3) ⇒ (1) : This implication follows from Theorem 1.1.
(3) ⇒ (4) : Assume that f is quasiconformal in G, then Theo-

rem 1.1 yields that f(G) is A-uniform. Hence, we get from the fact
“an A-uniform domain is uniform” and [22, Theorem 5.6] that f is
quasimöbius, as desired.

(4) ⇒ (3) : This implication follows from [22, Theorem 5.2].

3.6. The proof of Theorem 1.3. Let f : G→ G′ be roughly Apollo-
nian bilipschitz. Then by Lemma 3.3 we may assume that f is (M,C)-
roughly Apollonian bilipschitz and (M,C)-CQH for some constants
M ≥ 1 and C ≥ 0. Hence, we see from Lemma 3.2 that

(3.7) jG(x, y) ≤ 2MjG′(f(x), f(y)) + C + log 3.

We first prove part (1), that is, if G is uniform, then G′ is uniform.
Suppose that G is c-uniform for some constant c ≥ 1. According to
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Theorem 2.3, there exist positive constants c1 and c2 such that

kG(x, y) ≤ c1jG(x, y) + c2

for all x, y ∈ G. One computes from these facts that

kG′(f(x), f(y)) ≤ MkG(x, y) + C

≤ M [c1jG(x, y) + c2] + C

≤ c1M [MjG′(f(x), f(y)) + C + log 3] + c2M + C.

Again by Theorem 2.3, we immediately see that G′ = f(G) is uniform.
Hence, part (1) holds.

Next, we prove part (2). Assume that G is ϕ-uniform, to prove G′ is
ϕ′-uniform, we only need to find a homeomorphism ϕ′ : [0,∞) → [0,∞)
such that

kG′(f(x), f(y)) ≤ ϕ′(rG′(f(x), f(y)))

for all x, y ∈ G. To this end, we divide the proof into two cases.
Case A. |f(x)− f(y)| ≤ 1

2
min{dG′(f(x)), dG′(f(y))}.

Then by Lemma 3.2 we have

kG′(f(x), f(y)) ≤ 2
|f(x)− f(y)|

dG′(f(x))
≤ 2rG′(f(x), f(y)),

which give the desired ϕ′ with ϕ′(t) = 2t.
Case B. |f(x)− f(y)| > 1

2
min{dG′(f(x)), dG′(f(y))}. Then

jG′(f(x), f(y)) = log(1 +
|f(x)− f(y)|

min{dG′(f(x)), dG′(f(y))}
) > log

3

2
.

Let ϕ1(t) = ϕ(et − 1). Then we see from (3.7) that

kG′(f(x), f(y)) ≤ MkG(x, y) + C ≤Mϕ1(jG(x, y)) + C

≤ Mϕ1(2MjG′(f(x), f(y)) + C + log 3))) + C

≤ Mϕ1

(
(2M +

C + log 3

log 3
2

)jG′(f(x), f(y))

)

+
C

log 3
2

jG′(f(x), f(y)).

By letting ϕ′(t) = Mϕ1

(
(2M + C+log 3

log 3

2

) log(1 + t)
)
+ C

log 3

2

log(1 + t),

we complete the proof in this case.
Combining Case A and Case B, we complete the proof of part (2).
Finally, we come to prove part (3). It follows from Lemma 3.3 and the

fact that a Gromov hyperbolic domain under a CQH homeomorphism
is still Gromov hyperbolic, see [2] (or [25, Theorem 3.18]). �

3.8. Remark. Let G be a proper domain of Rn. We consider the Apol-
lonian metric αG, Seittenranta’s metric δG, the metric hG,c (c ≥ 2) and
jG metric. We see from Remark 2.16 and the proof of Lemma 3.3 that if
we replace the Apollonian metric by mG ∈ {jG, δG, hG,c}, then we have
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the following holds: If f : (G,mG) → (G′, mG′) is an M-roughly C-
bilipschitz mapping, then f : G→ G′ is an (M ′, C ′)-CQH with (M ′, C ′)
depending on M,C and n only. Hence, we easily see that Theorem 1.3
is also true if we replace the Apollonian metric by mG ∈ {jG, δG, hG,c}.

3.9. The proof of Theorem 1.4. The equivalence of (1) ⇒ (2) ⇒
(4) ⇒ (1) are from Theorem 1.3, [22, Theorem 5.6] and Lemma 3.4. It
remains to show (3) ⇔ (4).

The implication (4) ⇒ (3) follows from [22, Theorem 3.19];
(3) ⇒ (4) : this implication follows from [23, Theorem 3.15].

3.10. The proof of Theorem 1.5.The proof follows from Theorem
1.3 and Lemma 3.4.
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[16] P. Seittenranta, Möbius-invariant metrics, Math. Proc. Cambridge Philos.

Soc., 125 (1999), 511–533.



14
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