
Noora Nieminen

Garbling Schemes and Applications

TUCS Dissertations
No 219, March 2017

Garbling Schemes and Applications

Noora Nieminen

To be presented, with the permission of the Faculty of Mathematics and
Statistics of the University of Turku, for public criticism in Tauno
Nurmela Hall (Lecture Hall I) on March 17, 2017, at 12 noon.

University of Turku
Department of Mathematics and Statistics

FI-20014 Turku, Finland

2017

Supervisors

Professor Valtteri Niemi
Department of Computer Science
University of Helsinki
PL 68 (Gustaf Hällströmin katu 2b)
Helsingin yliopisto
Finland

Senior Researcher Tommi Meskanen
Department of Mathematics and Statistics
University of Turku
FI-20014 Turku
Finland

Reviewers

Professor Vladimir Oleshchuk
Department of Information and Communication Technology
University of Agder
Jon Lilletunsvei 9, Grimstad
Norway

Assistant Professor Billy Brumley
Department of Pervasive Computing
Tampere University of Technology
P.O. Box 15400, FI-33720 Tampere
Finland

Opponent

Professor Benny Pinkas
Department of Computer Science
Bar Ilan University
Ramat Gan
Israel

The originality of this thesis has been checked in accordance with the University of Turku quality assurance
system using the Turnitin OriginalityCheck service.

Painosalama Oy, Turku

ISBN 978-952-12-3515-3
ISSN 1239-1883

Abstract

The topic of this thesis is garbling schemes and their applications. A garbling
scheme is a set of algorithms for realizing secure two-party computation.
A party called a client possesses a private algorithm as well as a private
input and would like to compute the algorithm with this input. However,
the client might not have enough computational resources to evaluate the
function with the input on his own. The client outsources the computation
to another party, called an evaluator. Since the client wants to protect the
algorithm and the input, he cannot just send the algorithm and the input
to the evaluator. With a garbling scheme, the client can protect the privacy
of the algorithm, the input and possibly also the privacy of the output.

The increase in network-based applications has arisen concerns about
the privacy of user data. Therefore, privacy-preserving or privacy-enhancing
techniques have gained interest in recent research. Garbling schemes seem
to be an ideal solution for privacy-preserving applications. First of all, se-
cure garbling schemes hide the algorithm and its input. Secondly, garbling
schemes are known to have efficient implementations.

In this thesis, we propose two applications utilizing garbling schemes.
The first application provides privacy-preserving electronic surveillance. The
second application extends electronic surveillance to more versatile monitor-
ing, including also health telemetry. This kind of application would be ideal
for assisted living services.

In this work, we also present theoretical results related to garbling schemes.
We present several new security definitions for garbling schemes which are
of practical use. Traditionally, the same garbled algorithm can be evaluated
once with garbled input. In applications, the same function is often evalu-
ated several times with different inputs. Recently, a solution based on fully
homomorphic encryption provides arbitrarily reusable garbling schemes. The
disadvantage in this approach is that the arbitrary reuse cannot be efficiently
implemented due to the inefficiency of fully homomorphic encryption.

We propose an alternative approach. Instead of arbitrary reusability,
the same garbled algorithm could be used a limited number of times. This
gives us a set of new security classes for garbling schemes. We prove several
relations between new and established security definitions. As a result, we

i

obtain a complex hierarchy which can be represented as a product of three
directed graphs. The three graphs in turn represent the different flavors of
security: the security notion, the security model and the level of reusability.

In addition to defining new security classes, we improve the definition
of side-information function, which has a central role in defining the se-
curity of a garbling scheme. The information allowed to be leaked by the
garbled algorithm and the garbled input depend on the representation of
the algorithm. The established definition of side-information models the
side-information of circuits perfectly but does not model side-information of
Turing machines as well. The established model requires that the length of
the argument, the length of the final result and the length of the function
can be efficiently computable from the side-information function. Moreover,
the side-information depends only on the function. In other words, the
length of the argument, the length of the final result and the length of the
function should only depend on the function. For circuits this is a natural
requirement since the number of input wires tells the size of the argument,
the number of output wires tells the size of the final result and the number
of gates and wires tell the size of the function. On the other hand, the de-
scription of a Turing machine does not set any limitation to the size of the
argument. Therefore, side-information that depends only on the function
cannot provide information about the length of the argument. To tackle this
problem, we extend the model of side-information so that side-information
depends on both the function and the argument. The new model of side-
information allows us to define new security classes. We show that the old
security classes are compatible with the new model of side-information. We
also prove relations between the new security classes.

ii

Tiivistelmä

Tämä väitöskirja käsittelee garblausskeemoja ja niiden sovelluksia. Gar-
blausskeema on työkalu, jota käytetään turvallisen kahden osapuolen lasken-
nan toteuttamiseen. Asiakas pitää hallussaan yksityistä algoritmia ja sen yk-
sityistä syötettä, joilla hän haluaisi suorittaa tietyn laskennan. Asiakkaalla
ei välttämättä ole riittävästi laskentatehoa, minkä vuoksi hän ei pysty suorit-
tamaan laskentaa itse, vaan joutuu ulkoistamaan laskennan toiselle osa-
puolelle, palvelimelle. Koska asiakas tahtoo suojella algoritmiaan ja syötet-
tään, hän ei voi vain lähettää niitä palvelimen laskettavaksi. Asiakas pystyy
suojelemaan syötteensä ja algoritminsa yksityisyyttä käyttämällä garblauss-
keemaa.

Verkkopohjaisten sovellusten kasvu on herättänyt huolta käyttäjien datan
yksityisyyden turvasta. Siksi yksityisyyden säilyttävien tai yksityisyyden
suojaa lisäävien tekniikoiden tutkimus on saanut huomiota. Garblaustekni-
ikan avulla voidaan suojata sekä syöte että algoritmi. Lisäksi garblaukselle
tiedetään olevan useita tehokkaita toteutuksia. Näiden syiden vuoksi gar-
blausskeemat ovat houkutteleva tekniikka käytettäväksi yksityisyyden säi-
lyttävien sovellusten toteutuksessa. Tässä työssä esittelemme kaksi sovel-
lusta, jotka hyödyntävät garblaustekniikkaa. Näistä ensimmäinen on yksity-
isyyden säilyttävä sähköinen seuranta. Toinen sovellus laajentaa seurantaa
monipuolisempaan monitorointiin, kuten terveyden kaukoseurantaan. Tästä
voi olla hyötyä etenkin kotihoidon palveluille.

Tässä työssä esitämme myös teoreettisia tuloksia garblausskeemoihin li-
ittyen. Esitämme garblausskeemoille uusia turvallisuusmääritelmiä, joiden
tarve kumpuaa käytännön sovelluksista. Perinteisen määritelmän mukaan
samaa garblattua algoritmia voi käyttää vain yhdellä garblatulla syötteellä
laskemiseen. Käytännössä kuitenkin samaa algoritmia käytetään usean eri
syötteen evaluoimiseen. Hiljattain on esitetty tähän ongelmaan ratkaisu,
joka perustuu täysin homomorfiseen salaukseen. Tämän ratkaisun ansiosta
samaa garblattua algoritmia voi turvallisesti käyttää mielivaltaisen monta
kertaa. Ratkaisun haittapuoli kuitenkin on, ettei sille ole tiedossa tehokasta
toteutusta, sillä täysin homomorfiseen salaukseen ei ole vielä onnistuttu
löytämään sellaista. Esitämme vaihtoehtoisen näkökulman: sen sijaan, että
samaa garblattua algoritmia voisi käyttää mielivaltaisen monta kertaa, sitä

iii

voikin käyttää vain tietyn, ennalta rajatun määrän kertoja. Tämä näkökul-
man avulla voidaan määritellä lukuisia uusia turvallisuusluokkia. Todis-
tamme useita relaatioita uusien ja vanhojen turvallisuusmääritelmien välillä.
Relaatioiden avulla garblausskeemojen turvallisuusluokille saadaan muodostet-
tua hierarkia, joka koostuu kolmesta komponentista.

Tieto, joka paljastuu garblatusta algoritmista tai garblatusta syötteestä
riippuu siitä, millaisessa muodossa algoritmi on esitetty, kutsutaan sivu-
tiedoksi. Vakiintunut määritelmä mallintaa loogisen piiriin liittyvää sivu-
tietoa täydellisesti, mutta ei yhtä hyvin Turingin koneeseen liittyvää sivu-
tietoa. Tämä johtuu siitä, että jokainen yksittäinen looginen piiri asettaa
syötteensä pituudelle rajan, mutta yksittäisellä Turingin koneella vastaavan-
laista rajoitusta ei ole. Parannamme sivutiedon määritelmää, jolloin tämä
ongelma poistuu. Uudenlaisen sivutiedon avulla voidaan määritellä uusia
turvallisuusluokkia. Osoitamme, että vanhat turvallisuusluokat voidaan
esittää uudenkin sivutiedon avulla. Todistamme myös relaatioita uusien
luokkien välillä.

iv

Acknowledgements

I would like to express my appreciation and thanks to my advisor Professor
Dr. Valtteri Niemi for guiding and supporting me over the years. I would
also like to express my gratitude to my co-advisor Dr. Tommi Meskanen,
who has also been a great mentor and supported me whenever I have needed
it. I would like to thank both of you for encouraging my research and for
allowing me to grow as a research scientist.

I also want to thank Prof. Dr. Niemi and Dr. Meskanen for providing
their expertise in co-authoring the publications on which this thesis based.
Special thanks also belong to Dr. Arto Lepistö, who provided his expertise
in programming to help me to implement an application utilizing garbling.

I am thankful for Professor Vladimir Oleshchuk and Assistant Professor
Billy Brumley for the preliminary examination of my work. It was an honor
for me that Professor Benny Pinkas agreed to act as the opponent. I am
grateful that Professor Juhani Karhumäki has accepted to act as a custos
of my dissertation.

I am grateful for funding provided by the Turku Centre for Computer
Science (TUCS) and the Academy of Finland project Cloud Security Services
(CloSe).

Thanks to the Department of Mathematics and Statistics. I want to
thank my colleagues for providing a nice working environment. Especially I
want to thank Tuire Huuskonen, Lasse Forss and Sonja Vanto for seamless
cooperation in organizing the department exams and solving other admin-
istrative problems. I have also enjoyed the numerous scientific and “not so”
scientific discussions with my roommates Anne Seppänen and Mari Ernvall.

A special thanks to my family. Words cannot express how grateful I am
to my mother, father, grandmother and grandfather for all of the sacrifices
that you have made on my behalf. I would also like to thank my sister and
her family. Thank you for supporting me for everything, and especially I
cannot thank you enough for encouraging me throughout this experience.

v

vi

List of original publications

I T. Meskanen, V. Niemi, and N. Nieminen. Classes of Garbling Schemes.
Infocommunications journal, V(3):8–16, 2013

II T. Meskanen, V. Niemi, and N. Nieminen. Hierarchy for Classes of
Garbling Schemes. Studia Scientiarum Mathematicarium Hungarica,
52(2):1–12, 2015

III T. Meskanen, V. Niemi, and N. Nieminen. Hierarchy for Classes of Pro-
jective Garbling Schemes. In International Conference on Information
and Communications Technologies (ICT 2014), pages 1–8. IEEE, 2014

IV T. Meskanen, V. Niemi, and N. Nieminen. On Reusable Projective Gar-
bling Schemes. In 2014 IEEE International Conference on Computer
and Information Technology (CIT 2014), pages 315–322. IEEE, 2014

V T. Meskanen, V. Niemi, and N. Nieminen. Garbling in Reverse Order.
In The 13th IEEE International Conference on Trust, Security and Pri-
vacy in Computing and Communications (IEEE TrustCom-14), pages
53–60. IEEE, 2014

VI T. Meskanen, V. Niemi, and N. Nieminen. Extended Model of Side-
Information in Garbling. In The 14th IEEE International Conference on
Trust, Security and Privacy in Computing and Communications (IEEE
TrustCom-15), pages 950–957. IEEE, 2015

VII T. Meskanen, V. Niemi, and N. Nieminen. How to Use Garbling for
Privacy Preserving Electronic Surveillance Services. Cyber Security and
Mobility, 4(1):41–64, 2015

VIII N. Nieminen and A. Lepistö. Privacy-Preserving Security Monitoring
for Assisted Living Services. In Proceedings of the 17th International
Symposium on Health Information Management Research (ISHIMR 2015),
pages 189–199. York St. John Universty & University of Sheffield, 2015

vii

viii

Contents

I Summary 1

1 Introduction 1
1.1 Structure of this thesis . 2
1.2 Contributions of the author 3

2 Secure computation 5
2.1 Software protection . 5

2.1.1 Code obfuscation . 7
2.1.2 White-box cryptography 9

2.2 Oblivious transfer . 10
2.2.1 Rabin’s oblivious transfer protocol 11
2.2.2 1-out-of-2 oblivious transfer 11
2.2.3 Private information retrieval 12

2.3 Secure multi-party computation 13
2.3.1 Zero-knowledge proofs 14
2.3.2 Homomorphic encryption 17

3 Garbling techniques 21
3.1 Basic security definitions . 21
3.2 Yao’s garbled circuits . 24

3.2.1 Securing circuit construction 30
3.2.2 Optimizations . 31
3.2.3 Implementations of garbled circuit protocol 34

3.3 Garbling schemes . 36
3.4 Security of garbling schemes 38

3.4.1 Side-information in garbling 40
3.4.2 Formal security definitions 43
3.4.3 Relations between the security classes 44

3.5 Applications of garbling schemes 46
3.5.1 Distributed and cloud computing 47
3.5.2 Internet of Things . 49
3.5.3 eHealth . 50

ix

3.5.4 Assisted living . 50

4 Contributions 53
4.1 Extending earlier results . 53
4.2 Reusability of garbled functions 54
4.3 Projectivity and reusability 56
4.4 Garbling the argument first 57
4.5 Extending the model of side-information 58
4.6 Garbling in privacy-preserving applications 59

5 Conclusions and future work 61

References 63

II Original publications 83

Paper I 85

Paper II 96

Paper III 121

Paper IV 131

Paper V 141

Paper VI 151

Paper VII 161

Paper VIII 187

III Omitted proofs in original publications 201

6 Omitted proofs 203
6.1 Original publication III . 203
6.2 Original publication V . 212
6.3 Original publication VI . 220

x

Part I

Summary

Chapter 1

Introduction

Today, billions of users are connected to the Internet via various devices
like computers, laptops, smartphones and tablets. In addition, devices like
washing machines, cameras and televisions can be connected to computer
networks. Recent innovations of computer networks have increased the com-
putational power and eased everyday tasks in several ways. Unfortunately,
new innovations in the field of computer networks have not been devel-
oped without problems. Security and privacy of network-based solutions
are among the main concerns.

Attempts to hide secret information have been present as long as people
have communicated with each other. Already in the Ancient Rome, Caesar
used a cryptographic method to hide messages. Since then, cryptographic
methods have evolved greatly, from encryption machines into cryptographic
algorithms run on personal computers. The Internet era has brought new
challenges to data protection. The Internet has allowed data to be publicly
retrievable. However, the question of right to retrieve, possess or process
data still remains one of the biggest concerns. It is relatively easy to protect
locally stored data on personal computers. A bigger issue is data stored in
cloud environment: Who owns the data, who is allowed to access the data
and who can only view the data and who can also modify it?

Encryption of data is often used as a method to secure data when it is
stored in potentially malicious environment. However, recent advances in
distributed computing and cloud computing have enabled also outsourcing
computation to potentially untrustworthy parties, which requires further
protection methods. There are different approaches to protecting infor-
mation in such scenario. On one hand, the input data to the computing
algorithm should be protected. There are various cryptographic methods
that enable this. On the other hand, the algorithm itself may require pro-
tection mechanisms. Often, the first aim of an attacker is to understand the
behavior of the system or the software. This can be achieved by monitoring

1

data flow and control flow when various processes in the system are run.
Therefore, it is important to have protection mechanisms which prevent an
attacker from gaining sensitive information about the algorithm or sensitive
parts of it.

During past decades, several proposals for secure computation have been
suggested. There are both theoretical and practical solutions for computa-
tions on encrypted data. Theoretical solutions often provide strong provable
security while being impractical in certain aspects (e.g. fully homomorphic
encryption). On the other hand, practice-oriented solutions may not provide
as strong theoretical security but these solutions may have efficient imple-
mentations that still provide sufficient level of security from the practical
point-of-view. Some theoretical solutions also seem to evolve into practical
solutions (e.g. garbled circuits).

The main topic of interest in this thesis is secure computation between
two or more parties. More specifically, we study garbling schemes which
can be used for securely evaluating a function in a potentially insecure en-
vironment. We provide both theoretical and practical results: we consider
security definitions of garbling schemes and design privacy-preserving appli-
cations based on garbling schemes achieving security under certain security
definitions.

1.1 Structure of this thesis

This thesis consists of three parts. The first part summarizes the thesis by
introducing related research and the contributions of this work. The second
part contains the original publications on which this thesis is based. The
third part is devoted to proofs that have been omitted from the original
publications.

Part I consists of five chapters and the chapters are divided into several
sections. Chapter 1 is an introduction to the topic of this work and explains
the structure of this thesis.

Chapter 2 is a review of different methods used for securing computa-
tions. We start by describing software protection methods, such as code
obfuscation and white-box cryptography. Thereafter, we handle oblivious
transfer which is a central tool for secure multiparty computation. Secure
multiparty computation protocols are the topic of Section 2.3.

In Chapter 3 we focus on a specific secure multiparty protocol, Yao’s
garbled circuits and garbling schemes. Section 3.1 contains the fundamental
security definitions related to secure multiparty computation and related to
garbling. Section 3.2 contains a literature review on the research related to
Yao’s garbled circuits. In Section 3.3, we move to garbling schemes, which

2

are generalizing and formalizing Yao’s garbled circuit protocol. Section 3.4
introduces applications for garbling schemes.

Contributions of this thesis in the field of garbling schemes are presented
in Chapter 4. This thesis contains both theoretical and practical results.
Sections 4.1 – 4.5 are devoted to the theoretical results, whereas section 4.6
introduces proposals for applications using garbling schemes as a privacy-
enhancing tool.

Chapter 5 concludes Part I by presenting the conclusions and suggestions
for future work.

Part II contains the original publications. There are in total 8 publica-
tions on which this thesis is based. The first six papers contain theoretical
results related to garbling schemes while the last two papers deal with ap-
plications of garbling schemes. Three of the original publications have been
published in scientific journals, whereas the rest five have been published in
conference proceedings with referee practice.

Part III is a collection of proofs that have been omitted in the original
publications, because of strict length limitations of conference proceedings.

1.2 Contributions of the author
All eight papers included in this thesis are joint works. The author of this
thesis has contributed to the joint work by writing the first version of each
paper based on the joint ideas with the co-authors. In publication VIII, the
author of this thesis was entirely responsible for the actual writing of the
paper. Arto Lepistö contributed in publication VIII by being responsible
for the programming of garbled circuits and the test environment needed
for the performance evaluation.

3

4

Chapter 2

Secure computation

Software as well as their inputs can be vulnerable to leaking sensitive infor-
mation. In this section we introduce various methods for securing computa-
tion. We begin with software protection methods, which aim at protecting
software code or parts of it. Then we present techniques which aim at pro-
tecting the computation itself as well as the input to the computation.

2.1 Software protection

As the number of personal computers and other computation devices has in-
creased, e-piracy, copying and reselling electronic material (e-books, music,
movies, software, games) illegally, has become a serious issue. Many tech-
nologies have been developed to tackle electronic piracy acts. For example,
Digital Rights Management technologies have been developed especially for
preventing illegal copying of e.g. computer games, music, films and e-books.

Another threat against computer security is reverse-engineering.
Reverse-engineering allows “attackers to understand the behavior of software
and extract proprietary algorithms and data structures (e.g. cryptographic
keys) from it” [148]. Especially, observing control or data flow of software
gives valuable information about the software behavior. Therefore, various
protection methods to prevent reverse-engineering of software are needed.
A widely used solution is to make control and data flow more complex while
the observable behavior is still the same. There are also other approaches
for software protection.

According to van Oorschot [158], there are four main approaches to soft-
ware protection. Code obfuscation is a technique against reverse-engineering.
White-box cryptography protects secret keys against malicious hosts. Pro-
gram integrity is protected by software tamper resistance methods. A pro-
tection against automated attack scripts and widespread malicious programs
is provided by software diversity techniques.

5

Next we give a brief introduction of each of these four protection tech-
niques. Then we discuss code obfuscation and white-box cryptography in
more details in sections 2.1.1 and 2.1.2.

Trying to understand software code is often the first task of an attacker
since it gives valuable information for further attacks. To gain understanding
of a program, one needs to reverse-engineer the software code. Since software
code is often intellectual property, the code needs to be protected against
such reverse-engineering attempts. As mentioned above, code obfuscation
is a method that is designed to protect against reverse-engineering. There
are basically two possible ways of obfuscating code: obfuscate data flow
or control flow. Data flow can be obfuscated by dead code insertion: the
algorithm contains sections which are executed as a part of the original
source code but whose results are never used in any other part of the program
execution. Control flow can be obfuscated by implanting some auxiliary
steps to the code. One of the earliest papers on obfuscation is the one of
Cohen [39] in which obfuscation is suggested as a defense method against
computer viruses. The first theoretical paper on software protection was
from Goldreich and Ostrovsky [73], whose protection of software code was
based on encrypting the code. After that, other ideas were proposed, all of
which base on the idea of transforming the program code into a code which
is functionally equivalent to the original program. The idea of transforming
code was first introduced by Collberg et al. in [40, 41]. We provide more
detailed discussion on code obfuscation in section 2.1.1.

Unfortunately, code obfuscation does not prevent all attempts of reverse-
engineering. For example, code obfuscation does not have method for pro-
tecting against class breaks. A class break is an attack that is developed for
single entity but can easily be extended to break any similar entity. The
first scheme against class breaks was proposed by Anckaert et al. [5].

Another approach in software protection is white-box cryptography,
which aims at protecting secret keys when evaluating a cryptographic soft-
ware. The reason for such a protection method arises from the threat of un-
trusted host environment which is related to malicious host problem: How
should a trusted program be protected from a potentially malicious host.
Malicious hosts are a serious threat in white-box attack context. In such
context, an attacker can freely control the execution platform as well as the
software implementation, analyze the binary code and intercept system calls
among other actions. In white-box context, extracting cryptographic keys
is also a potential threat. White-box cryptography (WBC) is a technology
that aims at protecting cryptographic keys in the white-box attack context.
We will discuss WBC in section 2.1.2.

Attacks against software integrity are usually followed by reverse-
engineering. Software tamper resistance is a method which protects against
such violations of integrity. Fundamentals of software tamper-resistance

6

were provided by Aucsmith [8], who defines software tamper-resistance as
ability to resist observation and modification as well as ability to function
properly in hostile environments. Aucsmith and Graunke [9] also provided
an architecture against tampering, which checks integrity of critical code
segments. Since that, different techniques for tamper-resistance have been
proposed, see e.g. [41, 34, 87, 33].

The fourth technique for code protection is software diversity. The idea
of software diversity is very simple, and it is adapted from the nature: genetic
diversity protects an entire species from becoming extinct by a single virus
or disease. The same idea adapted to the computer world would mean that
diversity of software would provide protection against exploitation vulnera-
bilities and program-based attacks, such as computer viruses. Diversity as
a software protection mechanism was first suggested by Cohen [39]. Trans-
forming a software code into a new, functionally equivalent code is the trick
against reverse-engineering of one software. However, the same technique
can be used for creating several instances of equivalent code, providing a
method for software diversity [158]. Other techniques for software diversity
can be found in [153, 53, 148].

2.1.1 Code obfuscation

One of the first techniques to protect software code was introduced by
Goldreich and Ostrovsky [73]. They introduced the concept of software-
protecting compilers. Their idea relies on the following idea. The program
code is encrypted. A central processing unit (CPU) is able to run the code
if it has the corresponding decryption key. The task of an attacker is to
reconstruct the code from the encrypted code by executing the program
on a random-access machine (RAM) on arbitrary inputs and by possibly
modifying the data between the CPU and the memory.

Definitions of a code obfuscator proposed after this first proposal do not
usually consider encrypted program codes. Next, we provide a definition
of a code obfuscator for pseudo-random functions, following [82]. We start
with a definition of a function ensemble, adapted from [68, p.149] which is
needed for the definition of a code obfuscator. For simplicity we consider
ensembles of length-preserving functions.

Definition 2.1.1 Let ` : N → N. A function ensemble is a sequence F =
{Fn}n∈N of random variables such that the random variable Fn assumes
values in the set of functions that map bit strings of length `(n) to bit strings
of the same length.

A code obfuscator should hide the program code of an algorithm in such a
way that the obfuscated code still has the same functionality as the original
code. The following definition describes a code obfuscator as a machine

7

that transforms the original program code into a functionally equivalent,
obfuscated program code.

Definition 2.1.2 Let F = {Fn}n∈N be a function ensemble. A code obfusca-
tor C for F is a probabilistic polynomial time (PPT) machine which takes
code π(f) of a function f ∈ Fn as input and returns another, functionally
identical code Π(f) as output.

Code obfuscator C is said to be secure against adversary A, if everything
that A gains from having access to code Π(f) can also be gained by a PPT
machine having only black-box access to f . By blackbox-access we mean
that an attacker is allowed to see only the input and output functionality of
the program and is not allowed to have control on the execution platform
or the software implementation. Furthermore, analyzing the binary code or
intercepting system calls is not allowed, unlike in white-box context.

Code obfuscators, according to [83], should have two properties:

1. functionality, which requires that the obfuscated program has the same
functionality as the original

2. virtual black-box property: an adversary having access to the obfus-
cated program can gain same information from the obfuscated program
as it would gain by having a black-box access to the functionality.

These two properties are also explicit in the above definition.
It was long an open question whether code obfuscators exist at all. On

one hand, Chow [38] presented an obfuscation technique whose resistance
relates to a PSPACE-hard problem. Wang states in his PhD thesis [160]
that analyzing transformed programs statically is NP-hard. On the other
hand, Hada [82] showed the first impossibility result which states that there
is no secure obfuscator for a certain class of functions. Another negative
result was given by Barak et al. [11, 12], which states that there is no secure
obfuscator for general classes of functions represented as logical circuits or
Turing machines, when assuming the virtual black-box property.

Also positive results have been reported for special classes of functions.
For example, Lynn [112] showed that a reduction between classes of functions
imply that if one is obfuscatable then so is the other. Another positive
result was reported by Wee [162], who proposed a secure obfuscator for
point functions.

Goldwasser and Kalai [76] provided another negative result. They mod-
ified the definition of virtual black-box property by including an auxiliary
input. Goldwasser and Kalai show that many useful circuits cannot be ob-
fuscated w.r.t. auxiliary input. Barak et al. extended the impossibility
results in [11, 12]. In addition, they proposed an alternative definition for
virtual black-box property: indistinguishability obfuscation. This definition

8

guarantees that obfuscations of two equal-sized, distinct programs which im-
plement identical functionalities are computationally indistinguishable from
each other. The first candidate for indistinguishability obfuscator was pro-
posed by Garg et al. [59]. Recently, Sahai and Waters have proposed a new
technique, punctured programs, to apply indistinguishability obfuscation to-
wards cryptographic problems. Indistinguishability obfuscators have also
had influence on secure multiparty computation [58].

Even though the purpose of code obfuscation is to protect against ad-
versaries performing reverse-engineering, obfuscation can also be used for
malicious purposes. Code obfuscation can, for example, be used as method
to prevent virus detection. A reliable static detection of a particular class of
metamorphic viruses has been shown to be a NP-complete problem [28]. As
an application, Borello and Mé [28] present an obfuscating approach which
is resilient enough to defeat static analysis tools for metamorphic viruses. A
more recent example of obfuscated malware is VirTool:Win32 and its many
variants, including the recent exploit of Adobe Flash vulnerabilities [124].

2.1.2 White-box cryptography

Like any algorithm, also cryptographic algorithms are targets of reverse-
engineering. The aim of attacking cryptographic algorithms is to recover
the cryptographic keys used by the algorithm. Traditionally, the threat
models against encryption schemes are chosen-plaintext attacks and chosen-
ciphertext attacks. In these threat models, the attacker has access only to
the input and output to the cryptographic algorithm but not to the actual
algorithm. This kind of scenario is known as black-box attacker context.
However, it is also a realistic threat that the attacker has control over the
encryption/decryption algorithms, i.e. can access the internal state of these
programs. The scenario in which the attacker has the black-box attacker
capabilities in addition to the aforementioned capabilities is known as white-
box attacker context. White-box cryptography provides solutions against
white-box attackers by protecting the cryptographic keys.

Some of the first known results concerning white-box cryptography are
due to Chow et al. [36, 37]. In these two papers, Chow et al. present a
white-box implementation for symmetric key block ciphers Data Encryption
Standard (DES) and Advanced Encryption Standard (AES). Their imple-
mentation relies on a technique that transforms a cipher into a series of
key-dependent look-up tables. The look-up tables contain the hard-coded
secret key which is protected by randomization techniques.

Unfortunately, the two WBC implementations proposed by Chow et
al. [37, 36] have been broken. The weakness of WBC implementation of
DES as well as the WBC implementation of AES is related to the look-up
table approach.

9

The WBC implementation of DES was broken by Goubin [79] and
Wyseur [167]. The main reason for the insecurity of the WBC implementa-
tion of DES is that it is possible to distinguish the Feistel structure of DES
from the look-up table presentation [166].

The WBC implementation of AES was broken by Billet et al. [24]. The
attack uses an algebraic cryptanalysis technique against the strategy of ran-
domizing the look-up tables. Wyseur showed that algebraic attacks can be
used to defeat the whole look-up table based WBC approach [165]. Af-
ter these results, other WBC implementations have been proposed, see e.g.
[111, 125] for more details.

The first theoretical formulation of security of WBC was proposed by
Saxena et al. [147]. They relate code obfuscation to white-box cryptography
by defining white-box property (WBP) of an obfuscator under certain secu-
rity notion. They also provide the following impossibility and possibility
results. There is a set of programs (e.g. encryption and digital signature
schemes) for which certain security notions cannot be satisfied if adversaries
have white-box access to the functionality whereas the same notions can be
achieved when the adversary has black-box access to the functionality. On
the other hand, Saxena et al. show that there is an obfuscator for a sym-
metric encryption scheme for which Chosen Plaintext Attack (CPA) security,
among other security measures, is preserved also in the white-box setting.
The results of Saxena et al. imply a way of transforming a security notion
from black-box context into white-box context, which can also be seen as a
way to turn a secure symmetric encryption scheme into a secure asymmet-
ric encryption scheme. The security notions related to WBC have recently
been extended by Delerablée et al. [46]. For example, they introduce the
concept of white-box compiler which turns a symmetric encryption scheme
into randomized white-box programs.

2.2 Oblivious transfer

This section is devoted to oblivious transfer, which is an important protocol
widely used in other cryptographic protocols. The protocol is run between
two parties: a sender and a receiver. The sender has potentially many pieces
of secret information. The receiver would like to learn this secret informa-
tion. On one hand, the sender wants to reveal only one of the potentially
many pieces of information. On the other hand, the receiver does not want
the sender to learn which pieces of the secret information he has learned. A
protocol that solves this problem is called oblivious transfer.

10

1: The sender sends N , e and me mod N to the receiver.
2: The receiver picks a random x ∈ ZN and sends z = x2 mod N to the

sender.
3: The sender computes the square root y of z and sends it to the receiver.

Figure 2.1: Rabin’s oblivious transfer protocol

2.2.1 Rabin’s oblivious transfer protocol

The first oblivious transfer protocol was proposed by Rabin [139]. This
protocol does not directly share pieces of secret information as described
above. Instead, in this protocol there is only one secret which is revealed to
the receiver with probability 1

2 . Let us now study how Rabin’s OT protocol
works.

The steps of the protocol are shown in fig. 2.1. Before the actual protocol
is started, the sender generates RSA public modulus N = p · q where p and
q are large prime numbers. The sender chooses also e relatively prime to
(p− 1) · (q − 1). The sender encrypts the secret message m as me mod N .

The sender starts the protocol by sending the modulus N , the public
key e and the encrypted message me to the receiver. The receiver chooses a
random element x from ZN and sends z = x2 mod N to the sender. Then
the sender computes a modular square root of z, i.e. tries to find an element
y ∈ ZN such that y2 = z mod N . The sender then sends y to the receiver.

Now, the receiver can decrypt me with probability 1
2 . First of all, there

is an overwhelming probability that gcd(x,N) = 1, which implies that there
are four square roots of x2 mod N . If the square root computed at step
3 is x or −x, then the receiver cannot obtain information about the secret
m. Instead, if y 6= ±x, then the receiver can factorize N by computing
p = gcd(x+ y,N), q = N

p and hence recover m.

2.2.2 1-out-of-2 oblivious transfer

A more sophisticated form of oblivious transfer, 1-out-of-2 oblivious trans-
fer, was proposed by Even, Goldreich and Lempel in [51]. This 1-out-of-2
protocol turns out to be equivalent to Rabin’s protocol [43]. Compared to
Rabin’s OT protocol, there is one fundamental difference. In 1-out-of-2 pro-
tocol the sender has two messages m0 and m1 whereas in Rabin’s protocol
there is only one message. In 1-out-of-2 protocol, the sender stays oblivious
to which of the two messages is sent. In addition, the receiver does not learn
the contents of the other message that he did not receive.

Next, we provide the description of this protocol. 1-out-of-2 protocol
is of great significance from secure multi-party computation point-of-view.
Kilian [96] showed already in 1988 that it is possible to securely evaluate any

11

1: The sender chooses two random values x0, x1 and sends them along with
(e,N) to the receiver.

2: The receiver chooses b ∈ {0, 1} and selects xb based on his choice of b.
3: The receiver then generates a random value k and computes v = (xb+ke)

mod N and sends v to the sender.
4: The sender computes k0 = (v−x0)d mod N and k1 = (v−x1)d mod N .

Then he combines ki with message mi by computing m′i = mi + ki for
i ∈ {0, 1}. After that, he sends m′0 and m′1 to the receiver.

5: The receiver now chooses m′b and computes mb = m′b − k

Figure 2.2: 1-out-of-2 oblivious transfer protocol

PT function using an implementation of OT protocol without any additional
cryptographic primitives. In the next chapter, we discuss a SFE protocol
that is based on 1-out-of-2 oblivious transfer, which provides another reason
to discuss the 1-out-of-2 protocol in more details.

The sender first generates RSA public/private key pair, i.e. (e,N) and
(d,N). Then, both parties follow the protocol presented in fig. 2.2. Note
that on step 4, the sender computes two values k0 and k1, one of which
represents the value k chosen by the receiver. However, the sender does not
know which of the two values represent the correct k. On the other hand,
on step 5, the receiver is able to recover mb because he knows the correct k.

2.2.3 Private information retrieval

There are further generalizations of OT protocols - 1-out-of-n OT and k-out-
of-n OT. The first of these generalizes transferring one of the two messages
into transferring one of n messages to the receiver. In the latter one, some
k messages out of the total n messages are transferred to the receiver. The
1-out-of-n OT generalizations have been introduced by several authors, in-
cluding Aiello, Ishai and Reingold [4], Naor and Pinkas [127] as well as
Laur and Lipmaa [101]. The k-out-of-n OT was proposed by Ishai and
Kushilevitz [90]. This solution is based on 1-out-of-2 OT protocol. More
recently, k-out-of-n OT based on secret sharing schemes have been proposed
by Shankar et al. [150] and Tassa [155].

Oblivious transfer is closely related to private information retrieval
(PIR). PIR allows a user to retrieve an item from a database, let us say
of size n, without revealing which item was retrieved. Therefore, PIR can
be thought of a weaker version of 1-out-of-n OT, which would in addition
require that the user does not learn anything about the n − 1 items in
the database. It is also sometimes said that 1-out-of-n is a symmetric case
of PIR, because of the symmetric nature of hiding information from other
party. This is justified by the result of Di Crescenzo et al. [44]: single-
database PIR implies 1-out-of-n OT.

12

2.3 Secure multi-party computation

In this section we present cryptographic protocols that are used for comput-
ing security-related functionalities by using cryptographic primitives. The
protocols describe how two or more parties should interact in order to achieve
a certain (security) goal. There is a wide variety of cryptographic protocols
designed for a specific task. These protocols include entity authentication,
key agreement, secret sharing methods and multi-party computation, among
many others. The protocols can be combined to obtain further protocols.
As an example, the communications security of modern networks is based on
TLS protocol, containing protocols for entity authentication and key agree-
ment.

Next we focus on secure multi-party protocols (MPC) and secure func-
tion evaluation protocols (SFE). SFE protocols are a special case of MPC
protocols and they are also known as secure two-party protocols. In secure
multi-party computation, several parties aim at computing a functionality
in such way that none of the parties learns more than their own share of
input and the output. More formally, secure multi-party computation is de-
fined as follows. Suppose that there are n parties, each having their private
input data d1, d2, . . . , dn. Parties would like to compute a value of a jointly
agreed functionality f with the private values d1, d2, . . . , dn. Each party
should learn the outcome of the computation f(d1, d2, . . . , dn). In addition,
party i should not be able to learn dj for j 6= i. For example, Alice and Bob
would like to find out which of them earns more money without revealing
their salary to the other party. To solve the problem, Alice and Bob could
use a protocol solving the well-known Yao’s Millionaire Problem [168].

Zero-knowledge proofs, homomorphic encryption and garbled circuits are
just some examples of secure multi-party computation protocols. We discuss
zero-knowledge proofs and homomorphic encryption in brief in this section.
Garbled circuits are covered in details in the next chapter.

The basic properties of secure function evaluation protocols are input
privacy, correctness, fairness and validity [151]. A protocol computing a
public function (chosen and known by all the parties) should not reveal di
to any party j 6= i. However, the output of the function might reveal some
information about the inputs, without violating the input privacy property.
There are two ways to characterize correctness of a secure multi-party pro-
tocol. A protocol is called robust, if honest parties are able to output the
correct result in spite of the fact that any proper subset of the n parties be-
haves in a malicious manner, e.g. by sharing information or deviating from
the protocol. Another approach is to let honest parties abort the protocol
if they find that some of the parties is cheating. This kind of protocol is
called MPC protocol with abort. The fairness property requires that none
of the parties should learn the result of the evaluation if they deny sharing

13

it with the other parties. The validity property in turn requires that the
insecure version of the MPC protocol computes the same output as the se-
cure version, given the same inputs. By secure and insecure version of the
MPC protocol we mean the following. In the insecure version the protocol
run with the real participants. In the secure version of the protocol, the
function is computed by a trusted party.

The idea of MPC was introduced by Yao in [168], where he described
the famous Millionaire’s Problem. Yao’s protocol was the first formally in-
troduced two-party computation protocol. Since that, secure computation
has been generalized to multi-party setting. Moreover, a wide set of proto-
cols computing different functionalities has emerged ever since. In this sec-
tion, we present some of these protocols. First, we introduce zero-knowledge
proofs in which one party tries to convince another party of the validity of
a certain statement without revealing anything beyond the validity of the
assertion. There are two alternative ways of realizing SFE: garbled circuits
and homomorphic encryption. Homomorphic encryption is presented later
in this section whereas garbled circuits are handled in the following chapter.

2.3.1 Zero-knowledge proofs

Zero-knowledge protocols are designed to solve the following scenario. A
party called the prover has a fact whose truth arises suspicions in another
party called the verifier. The prover tries to convince the verifier about the
fact by generating a proof. However, the prover does not want to reveal
the contents of the proof to the verifier. The proof presented by the prover
should still convince the verifier.

Zero-knowledge proofs of knowledge have their origins in interactive proof
systems, first introduced by Goldwasser et al. [78]. In an interactive proof
system, a prover has unlimited resources of time and space, whereas the
verifier is a PPT machine. The prover presents a proof that an element x
belongs to a language L and the verifier checks the correctness of the proof.
The prover and verifier take a polynomial number p(|x|) of interaction steps
before the verifier must decide whether x ∈ L, with only a 1

3 chance of error.
An interactive proof system must fulfill two requirements, which are

completeness and soundness. The completeness of interactive proof system
requires that if x ∈ L then the prover must be able to convince the verifier
to accept a certificate of the proof with probability greater than 2

3 . The
soundness of interactive proof systems requires that if x /∈ L, then the
verifier is not able to convince the verifier with probability exceeding 1

3 . In
other words, the two requirements state that a prover is able to convince the
verifier of true statements with overwhelming probability (which is obtained
by iteration of the protocol), whereas the verifier will reject a proof of a false
statement with overwhelming probability.

14

Every language in NP has an interactive proof system [68, p. 194].
Therefore, the class containing all languages having interactive proof sys-
tems (IP) contains complexity class NP. Also the class of decision prob-
lems solvable by a probabilistic Turing machine in polynomial time and with
a bounded error probability (BPP) is included in IP for a very natural rea-
son (each language in BPP has a polynomial time verifier that determines
the membership without interaction). In addition, Shamir proves that the
class of decision problems solvable by a deterministic Turing machine in
polynomial space (PSPACE) equals to IP [149]. This result implies that
any language in PSPACE has an interactive proof system.

A natural question related to interactive proofs is how much knowledge
should the prover transfer to the verifier in order to get the verifier con-
vinced of the given statement. It turns out that in some cases it is possible
that no knowledge needs to be transferred - these kind of interactive proof
systems are called zero-knowledge interactive proofs. A proof is said to be
zero-knowledge, if any information obtained by efficient computation after
interacting with the prover on input x ∈ L can also be computed from x
without any interaction. Formulated in another way, a verifier learns noth-
ing about the proof but the assertion of the statement. In addition, the
verifier cannot reconstruct the proof after the interaction with the prover.

There are three flavors of zero-knowledge: perfect, statistical and compu-
tational. To define perfect zero-knowledge, let (P, V) be an interactive proof
system with computationally unlimited, probabilistic prover P and polyno-
mially bounded, probabilistic verifier. We use here the definition of [68, p.
201]: P is perfect zero-knowledge, if for every PPT interactive verifier V ∗
there exists a PPT algorithm M∗ such that for every x ∈ L the following
random variables are identically distributed

• 〈P, V ∗〉 (x), which is the output of the verifier V ∗ after interacting with
prover P

• M∗(x) the output of machine M on input x

The concepts of statistical and computational zero-knowledge relax the
requirement of the two distributions being identical. In the case of statistical
zero-knowledge, there is a statistically negligible1 difference between the
distributions (in terms of the length of x). Computational zero-knowledge
in turn requires that the aforementioned distributions are computationally
indistinguishable: there is no efficient algorithm to distinguish between two
distributions2.

The most commonly used definition of zero-knowledge is auxiliary-input
zero-knowledge. This definition takes into account the information that the

1Negligibility is formally defined in section 3.1
2Computational indistinguishability is formally defined in section 3.1.

15

adversary might have prior to entering interaction with the prover and which
can improve the chances of the verifier to gain unwanted knowledge from the
prover. The traditional definition proposed by Goldwasser, Micali and Rack-
off in [78] was improved by Goldreich et al. in [72], after which auxiliary-
input zero-knowledge became the more commonly used definition.

Zero-knowledge proofs were introduced by Goldwasser, Micali and Rack-
off in the same paper [78] where they introduced the IP hierarchy. Goldreich
et al. [71] showed that all languages in NP have a zero-knowledge proof by
assuming unbreakable encryption. Their proof shows how to create a zero-
knowledge interactive proof system for the graph coloring problem with
three colors, which is an NP-complete problem (so any other problem in
NP is efficiently reducible to this problem). In a different paper, Goldreich
et al. [21] show that anything that can be proved by an interactive proof
system can be proved by a zero-knowledge proof, assuming only existence
of one-way functions.

There is also a variant of zero-knowledge proofs that does not require in-
teraction between the prover and the verifier - non-interactive proofs (NIZK)
introduced by Blum et al. [26]. A NIZK proof system, for input x ∈ L, with
witness w, consists of three algorithms: Key Generator, prover and verifier.
The first of these algorithms generates a reference string σ used by both the
prover and the verifier. Prover algorithm generates the proof π based on
the reference string, x and the witness w. Verifier either accepts or rejects
the proof by using σ, x and π as its inputs. Non-interactive zero-knowledge
proofs are used for digital signatures and message authentication [15] as well
as voting [80], among many other applications.

Zero-knowledge proofs can be composed in three ways: sequential, par-
allel and concurrent. In sequential composition, the protocol is invoked
polynomially many times, where the next protocol is invoked after the pre-
vious has terminated. It was shown in [68] that the protocol in [78] is not
closed under sequential composition, whereas the auxiliary-input ZK pro-
tocol is [70]. In parallel composition, polynomially many instances of ZK
protocol are invoked at the same time and the protocols proceed at the same
pace. According to [67, 49], there exist zero-knowledge protocols for NP
that are closed under parallel composition. In general, zero-knowledge is not
closed under parallel composition. Concurrent composition is a generaliza-
tion of the other two types of composition. In the concurrent composition,
polynomially many zero-knowledge proofs can be invoked at arbitrary times
and proceed at arbitrary pace. There are two models for concurrent composi-
tion: purely asynchronous model and asynchronous model with timing. The
traditional way of defining zero-knowledge proofs yielded the first known im-
possibility results in purely asynchronous model, even in the auxiliary-input
model of zero-knowledge proofs [69, 32].

16

Until 2001, all zero-knowledge proofs relied on black-box simulation. A
proof is called zero-knowledge, if for every verifier strategy V ∗ there exists
a simulator that uses algorithm V ∗ as random oracle (i.e. as a black-box).
However, Barak showed that the algorithm V ∗ can be used by the simulator
also in non-black-box manner [10], which broke some of the impossibility
results related to concurrent purely asynchronous zero-knowledge. Barak’s
non-black-box technique is also closely connected to code obfuscation.

Zero-knowledge proofs are also connected to MPC and SFE protocols.
In presence of an adversary who deviates from the protocol, there is a need
for a mechanism which ascertains that the cheating party has not gained un-
wanted information by cheating. The earliest solutions used zero-knowledge
proofs as a countermeasure. However, due to ineffectiveness of constructing
zero-knowledge proofs, other methods were introduced.

2.3.2 Homomorphic encryption

In this section, we focus on homomorphic encryption. The aim of homomor-
phic encryption is to perform computations on encrypted data. Performing
computations on encrypted data is advantageous. For example, it is more
secure to outsource computation to a party if the input or the algorithm is
not revealed to the party.

There are three types of homomorphic encryption: group homomorphic
encryption, somewhat homomorphic encryption and fully homomorphic en-
cryption. Briefly, the three types of homomorphic encryptions differ in the
following way. Group homomorphic encryption enables arbitrary computa-
tions based on only one binary group operation. Somewhat homomorphic
encryption enables arbitrary computations with one binary group operation
and limited number of computations with another binary group operation.
Fully homomorphic encryption in turn enables arbitrary number of computa-
tions with two different binary operations in the set, enabling computations
on arbitrary functions.

Next, we briefly discuss each three types of homomorphic encryption.
To do this, we need some definitions. We start by defining what is a group
homomorphism.

Definition 2.3.3 Let G be a group with binary operation · and let G′ be
another group with binary operation ◦. A group homomorphism from (G, ·)
to (G, ◦) is a function h : G → G′ such that for all elements x1, x2 ∈ G it
holds that

h(x1 · x2) = h(x1) ◦ h(x2).

The history of computing on encrypted data traces back to 1978, when
Rivest et al. [142] introduced the term privacy homomorphism which could

17

do the task. By privacy homomorphism we mean an encryption function
E : (G, ·)→ (G′, ◦) which is a group homomorphism satisfying

E(x1, pk) ◦ E(x2, pk) = E(x1 · x2, pk),

where pk is the public key used for encrypting group elements x1 and x2.
It was shown by Brickell and Yacobi [30] that all other privacy homo-

morphisms presented in [142] but RSA were insecure. Unpadded RSA was
the first example of a group homomorphic encryption. The homomorphic
property of unpadded RSA is shown below:

E(x1 · x2, e) = (x1 · x2)e = xe1 · xe2 = E(x1, e) · E(x2, e) mod n.

Another example of a multiplicative homomorphic encryption scheme is
ElGamal cryptosystem [50]. In ElGamal cryptosystem, the encryption of x
is E(x) = (gr, x · hr), where g is a generator in a cyclic group G of order q,
h = gsk (sk denotes the secret key) and r is a randomly chosen value from
the set {0, 1, . . . q − 1}. The public key is pk = (G, q, g, h) The homomorphic
property of ElGamal is then

E(x1, pk)E(x2, pk) = (gr1 , x1 · hr1)(gr2 , x2 · hr2)
= (gr1+r2 , (x1 · x2) · hr1+r2) = E(x1 · x2, pk).

There are also several additive homomorphic encryption functions, like
the ones proposed by Goldwasser-Micali [77], Benaloh [22](which is an ex-
tension of Goldwasser-Micali cryptosystem allowing blocks of bits to be
encrypted) and Paillier [135] cryptosystems. Let us consider Goldwasser-
Micali cryptosystem as an example of an additive homomorphic encryption.
In Goldwasser-Micali cryptosystem, the public key x is a quadratic non-
residue modulo n, where n is a composition of two prime numbers p and q.
The encryption of a bit b is E(b, x) = xb · r2 mod n where r is a random
value in {0, 1, . . . n− 1}. The homomorphic property in (Z2,⊕), where ⊕ is
the binary operation corresponding to logical exclusive-OR, is then

E(b1, x) · E(b2, x) = xb1r2
1 · xb2r2

2

= xb1+b2(r1r2)2 = E(b1 ⊕ b2, x) mod n.

Other well-known homomorphic encryptions can be found in [126, 133,
45, 91].

After finding several secure homomorphic encryptions, a natural ques-
tion was asked: is it possible to find an encryption scheme that would be
homomorphic on both additive and multiplicative operations. This was an
open question until Gentry [63] presented the first construction of a fully-
homomorphic encryption in 2009. Before that, there were several attempts

18

to find even somewhat homomorphic encryption schemes, which allow arbi-
trarily many computations of one operation and limited number of computa-
tions of the other operation. Boneh-Goh-Nissim [27] was the first somewhat
homomorphic encryption scheme, based on bilinear pairings of elliptic curve
groups. Boneh-Goh-Nissim allows arbitrary number of additions but only
one multiplication. Also other somewhat homomorphic encryptions have
been proposed [146, 114, 66].

The major breakthrough in the research of homomorphic encryption was
the discovery of the first fully-homomorphic encryption scheme which allows
arbitrarily many additions and multiplications. Gentry’s construction [63]
uses ideal lattices and is based on the hardness of learning with errors (LWE)
problem (see [141]). Gentry’s idea is to transform a somewhat homomor-
phic encryption scheme into a bootstrappable scheme. This bootstrappable
scheme can then be transformed into fully-homomorphic scheme. Bootsrap-
ping is a method used for reducing the noise of LWE-based ciphertexts.
Unfortunately, bootstrapping technique is quite costly and increases the
computational overhead. In [61], some methods to overcome this issue are
presented, either by removing the need of bootstrapping (by using quantum
error correction) or by eliminating the noise overall (Nuida’s pure noise-free
FHE using non-abelian groups [131]).

The first working implementation of Gentry’s fully-homomorphic scheme
was presented in [64]. Recently, another implementation based on AES
block cipher was provided for a more recent fully-homomorphic scheme.
This scheme uses approximately 40 minutes to evaluate a block [65]. At
the present, fully-homomorphic encryption schemes are still considered to
be impractical.

An attractive alternative for fully-homomorphic encryption is Yao’s gar-
bled circuits and other garbling techniques. The most important reason is
the fact that garbled circuits have efficient implementations: for instance,
JustGarble [94] garbles and evaluates an AES128 circuit with 36 500 gates
in roughly 0.1 milliseconds, compared to the 40 minutes/block if FHE were
used [65].

Garbling schemes, of which garbled circuits are a special case, are the
main topic of this work. We extend the security notions for practical pur-
poses and study the relations of the various security notions. We also in-
troduce two scenarios in which garbling schemes can be naturally used in a
context combining Internet-of-Things technologies with cloud services.

19

20

Chapter 3

Garbling techniques

In previous chapter we introduced several ways of protecting algorithms
against various threats. Code-obfuscation is designed to protect algorithms
from reverse-engineering. White-box cryptography protects the private keys
when executing cryptographic algorithms. These two methods protect the
code of the algorithm (i.e. the functionality to be computed). Secure mul-
tiparty protocols in turn aim at protecting the private inputs of the parties
willing to evaluate a publicly chosen functionality, without a need for a
trusted party. We presented zero-knowledge proofs and homomorphic en-
cryption as examples of MPC protocols in the previous section. In the strict
sense, zero-knowledge proofs are not used for securely evaluating a func-
tion. Instead, one party generates a proof which is verified by another party
in the zero-knowledge protocol. Homomorphic encryption comes closer to
the topic of interest - homomorphic encryption can be used for evaluating
algorithms on encrypted data.

Unfortunately, there are no efficient implementations known for FHE. In
this chapter we introduce an alternative cryptographic primitive for secure
function evaluation which can be efficient and can be used for protecting
both the algorithm (function) and its input (argument). We start with
the well-known two-party protocol, garbled circuits, first introduced by Yao
in [168, 169]. Then we present related research concentrating on implemen-
tations and optimizations of garbled circuit protocol. Garbling technique
can also be applied to functions represented in computation models other
than circuits. This idea leads to a generalization of garbled circuits, called
garbling schemes.

3.1 Basic security definitions

We start this section by presenting basic definitions and notations. We first
need the concepts of negligibility and computational indistinguishability.

21

Then we discuss security definitions used for garbling protocols, especially
those related to garbled circuits.

Definition 3.1.4 Let µ(c) be a function µ : N → R. Function µ is a
negligible function, if for any positive integer c there exists an integer Nc

such that for all x > Nc

|µ(x)| < 1
xc
.

The following definition formalizes the concept of two probability dis-
tributions "looking the same". To tell two distributions apart, we use a
computationally bounded algorithm called a distinguisher. The notation
x← X means that an element from distribution X is assigned to variable x.
In this context, notation A(x) = 1 is used for denoting that the distinguisher
algorithm A is evaluated with input x and it outputs a decision bit A(x) with
value 1.

In the definition below, we use the concept of non-uniform probabilistic
polynomial-time algorithm. Informally, a non-uniform probabilistic polyno-
mial time algorithm is a Turing machine which is allowed to seek advice
before it outputs its decision. Using other words, a non-uniform Turing ma-
chine takes two inputs: an input of length n and an advice of length polyno-
mial in n. Traditional Turing machines are uniform in the sense that they
work on all inputs of arbitrary lengths. Supplying an advice whose length
depends on the length of the input makes the Turing machine non-uniform,
since the machine uses different instructions for different input lengths.

Definition 3.1.5 Let E = {Ek}k∈N and D = {Dk}k∈N be two distribution
ensembles, indexed by security parameter k. Ensembles E and D are compu-
tationally indistinguishable if for any non-uniform probabilistic polynomial-
time (nuPPT) algorithm A, the quantity δ(k) defined below is a negligible
function in k.

δ(k) =
∣∣∣∣ Pr
x←Dk

[A(x) = 1]− Pr
x←Ek

[A(x) = 1]
∣∣∣∣

Computational indistinguishability of E and D is denoted by E ≈ D.

In the above definition, the quantity δ(k) can be considered as the suc-
cess probability that a nuPPT distinguisher is capable of distinguishing
the distribution ensemble E from distribution ensemble D. Ensemble E is
computationally indistinguishable from D, if the success probability δ(k) is
negligible in k.

Next we discuss security definitions used with secure multi-party compu-
tation and with garbled circuits. Traditionally, the adversarial models used
in secure multi-party computation are based on the full simulation ideal/
real-model paradigm [107]. This paradigm has two adversaries: a real-model
adversary and an ideal-model adversary. In the ideal-model, the protocol

22

Figure 3.1: A game consists of codes for INITIALIZE, FINALIZE and other
named procedures. An adversary playing the game is also treated as code
which can interact with the other named procedures.

is run with a trusted party. The trusted party computes the function and
sends the outputs to the original parties. In the real-model, there is no
trusted party. The protocol is run with the original parties. A protocol is
said to be secure, if the result of a real execution of f is computationally
indistinguishable from the result of an ideal execution, where f is computed
by the trusted party.

There are also different models for adversaries. A semi-honest adversary
follows the protocol but he also controls one of the protocol parties in order
to gain more information than intended by the protocol specification. A
malicious adversary can deviate from the protocol and run any efficient
strategy to carry out his attack. A covert adversary is a model between semi-
honest and malicious adversarial models. A covert adversary cheats always
when there is no fear of getting caught. In this context, cheating means
that the adversary is able to do something that is impossible in the ideal
model. The fear of getting caught is regulated by a concept called deterrence
factor, a value between 0 and 1. Deterrence factor tells the probability that
the honest parties detect any attempt to cheat by a real adversary. For more
formal definitions of different adversarial models, see [84, Chapter 2].

A traditional way to formalize security of cryptographic protocols is to
use the ideal/real paradigm which we have already described above. There
is also an alternative way of formalizing security for cryptographic protocols.
This approach is called code-based game-playing. Code-based game-playing
proof is any proof in which adversary’s interaction with its environment
is conceptualized as a certain type of game [20]. Following the terminol-
ogy presented in [20], a game is a collection of procedures (or procedure
codes). This collection of procedures may contain three types of procedures:
INITIALIZE, FINALIZE and other named procedures. The word “may” is
used, since all the procedures in a game are optional.

The entity playing a game is called adversary. When the game is run with
an adversary, first the INITIALIZE procedure is called. It possibly provides
an input to the adversary, who in turn may invoke other procedures before
the FINALIZE procedure. The game ends when the adversary gives an input

23

to FINALIZE procedure which then creates a string that tells the outcome
of the game typically consisting of one bit of information: whether the
adversary has won the game or not. This description of code-based games
is quite informal and gives only the intuition behind the concept. Figure 3.1
serves as an illustration of a code-based game. For a more formal description,
we refer to [20].

In this work, we use the code-based game-playing approach instead of
semi-honest/malicious adversarial models. We share the ideology of [20, 18]
that the code-based game playing approach makes proofs more unified by
their structure. Moreover, it is easier to verify the correctness of proofs using
the code-based game-playing approach. In addition, code-based games make
comparing the different security notions for garbling schemes easier.

3.2 Yao’s garbled circuits

Yao presented the idea of secure function evaluation in two seminal pa-
pers [168, 169]. However, Yao neither used the term “garbled circuit” nor
provided an implementable protocol in these papers. The protocol was for-
mally documented later by other researches [70, 14]. Several applications
have utilized garbled circuits, even though a formal proof of security has
been missing. The first proof was provided by Lindell and Pinkas in pres-
ence of semi-honest adversaries [106]. Later, the protocol has been improved
and optimized to be secure also in presence of malicious adversaries. We will
discuss these results later in this section.

Next, we provide an informal description of Yao’s garbled circuit pro-
tocol. Then we discuss the details of the protocol that are related to an
efficient and secure implementation of such a protocol.

1: Bob generates a logical circuit presentation Cc of function f which
takes input iB from Bob and input iA from Alice

2: Bob creates garbled circuit Cg
3: Bob sends Cg and the garbled input IB to Alice
4: Alice uses 1-out-of-2 oblivious transfer to get the garbled values

IA from Bob
5: Alice evaluates the garbled circuit Cg with garbled inputs IA and

IB and outputs the result.

Figure 3.2: Informal description of Yao’s garbled circuit protocol

Constructing the garbled circuit includes the following steps. For each
gate g in the circuit, the truth table is first transformed into garbled truth
table by generating six keys kαi , two for each three wires in the gate. Here
α represents the two possibilities 0 and 1 for the value of the wire i. The

24

six keys are generated randomly and independently using a separate key
generation algorithm. The next step is to generate an encrypted truth table.
The steps to create an encrypted truth table based on the original truth table
are shown in fig. 3.3. Finally, the encrypted rows e00

g , e01
g , e10

g and e11
g of the

truth table are shuffled using a random permutation. The resulting values
e0
g, e1

g, e2
g and e3

g now form the garbled truth table for gate g. Permuting the
rows of the encrypted truth table ensures that Alice does not know which
row in the garbled table corresponds to which row in the original truth table.
For a circuit C, each gate is treated in a similar manner. As a result, we
obtain a garbled circuit, denoted by G(C). Notice that also a NOT gate,
which has only one incoming wire, can be implemented as a gate taking two
incoming wires: a XOR gate with constant 1 as one of the incoming wires.

Truth table for gate g
w1 w2 w3
0 0 g(0, 0)
0 1 g(0, 1)
1 0 g(1, 0)
1 1 g(1, 1)

Keys for encrypted truth table

w1 w2 w3

k0
1 k0

2 k
g(0,0)
3

k0
1 k1

2 k
g(0,1)
3

k1
1 k0

2 k
g(1,0)
3

k1
1 k1

2 k
g(1,1)
3

Encrypted truth table

e00
g = Enk0

1
(Enk0

2
(kg(0,0)

3))

e01
g = Enk0

1
(Enk1

2
(kg(0,1)

3))

e10
g = Enk1

1
(Enk0

2
(kg(1,0)

3))

e11
g = Enk1

1
(Enk1

2
(kg(1,1)

3))

Garbled truth table (an example)

e0
g = e01

g = Enk0
1
(Enk1

2
(kg(0,1)

3))

e1
g = e11

g = Enk1
1
(Enk1

2
(kg(1,1)

3))

e2
g = e00

g = Enk0
1
(Enk0

2
(kg(0,0)

3))

e3
g = e10

g = Enk1
1
(Enk0

2
(kg(1,0)

3))

Figure 3.3: Transforming a truth table into a garbled truth table.

Bob’s garbled input to the garbled circuit are the keys for the wires that
correspond to his input in the original circuit. Alice knows her input but
not the keys for them. Without the keys, Alice cannot correctly evaluate
the garbled circuit. In order to get the keys from Bob, Alice and Bob use
1-out-of-2 oblivious transfer. Suppose that Alice wants to find key kbi for
her input wire i which is assigned with bit b. Bob knows both k0

i and k1
i but

does not reveal both of them. Moreover, Bob should not learn which of the
two keys Alice is requesting; otherwise he would learn Alice’s input. The
two keys k0

i and k1
i are Bob’s secret messages in the protocol. The 1-out-of-2

protocol is run as explained in fig. 2.2. In the protocol, Alice chooses the
challenge based on the bit b which guarantees that she learns kbi in the end
of the protocol.

25

Alice and Bob need to run 1-out-of-2 OT protocol as many times as
is the length of Alice’s input. If Alice’s input consists of n bits, then the
OT protocol needs to be run n times before Alice can start evaluating the
garbled circuit with the given inputs.

Alice evaluates a garbled gate by decrypting the four elements in the
garbled truth table using the keys for the two incoming wires. Only one of
the four options should return a correct decrypted value; the others should
return⊥, a symbol used for failure. This requires a special kind of encryption
algorithm which provides also authentication: when wrong keys are used
then the authentication part in the decryption process fails.

In summary, Alice does not learn any intermediate values, only the keys
representing the intermediate values. Similarly, the output consists of keys
corresponding to the outgoing wires in the circuit but Alice does not know
which bits the keys represent.

In the final step, Alice shares the result, the keys for the outgoing wires,
with Bob. Now Bob needs to reveal the final result of the evaluation by
revealing whether the keys Alice sent represent bit 0 or 1. It is possible that
Bob is behaving maliciously and refuses to reveal the decrypted result to
Alice. In the protocol, there is no mechanism to prevent Bob from deviat-
ing from the protocol in the end. Also Alice can refuse to reveal the keys
for Bob but then neither learns the outcome because only Bob knows the
correspondence between a key and the bit value.

Let us next give an example to demonstrate how Yao’s garbled circuit
protocol works. For simplicity, we consider a circuit with only three logic
gates and one output bit representing a result of a certain decision problem.

Example 1 Alice and Bob need to choose one out of four candidates who
should get a grant. The candidates are numbered from 0 to 3. Alice and
Bob need to determine whether they chose the same candidate but if this
is not the case then Alice must not learn Bob’s choice and vice versa. To
achieve this goal, Alice and Bob agree on using garbled circuit protocol.

Let the input from Alice be iA and the input from Bob be iB. The
function f(iA, iB) computes whether the choice of Alice coincides with the
choice of Bob, i.e. whether iA = iB. Let us assume that Alice has chosen
candidate 2 whereas Bob has chosen candidate 1. The function f should
return f(2, 1) = 0 which means that the choices differ.

Step 1: Bob generates a logical circuit presentation for function f , taking
input iA from Alice and iB from himself. The inputs iA and iB are encoded
as two-bit strings. For example, 10 represents Alice’s choice 2 and 01 rep-
resents Bob’s choice 1. Let xAyA be the two-bit representation for iA and
let xByB be the representation for iB, respectively. The function f now can
be presented as a circuit C as shown in fig. 3.4. The circuit takes input
xAxByAyB and outputs one bit. The equality of the first bits, xA = xB, is

26

checked with a XOR gate and the equality of the second bits, yA = yB, is
checked with another XOR gate. Finally, a NOR gate is used for determining
whether the first bits and the second bits were equal. The output bit 1
yields a positive result (the choices are the same) and output bit 0 yields a
negative result (the choices differ).

w1

w2

w3

w4

w7

w5

w6

Figure 3.4: The circuit for testing the equality consists of two XOR gates
and one NOR gate.

Let us first justify why the given circuit correctly evaluates the function
f . With the input 10 from Alice and 01 from Bob, the circuit is evaluated
with input 1001. The first XOR gate returns 1 since the bits are different.
Also the second XOR gate returns 1 for the same reason. Finally, the NOR
gate returns 0, because NOR(1, 1) = 0. As another example, let the input
from Alice be 10 and let the output from Bob be 10 as well. Now the circuit
takes input 1100. Both XOR gates output 0. Now, the NOR gate outputs 1,
which is correct since both Alice and Bob chose the same candidate 2. The
14 other cases can be checked in a similar manner.

Step 2: Bob creates garbled circuit G(C) for the circuit in fig. 3.4. He starts
by generating two keys, k0

i and k1
i ,for each wire i ∈ [1, 7], as shown in fig. 3.5.

g1
k0

1, k1
1

k0
2, k1

2
k0

5, k1
5

g2
k0

3, k1
3

k0
4, k1

4
k0

6, k1
6

g3
k0

5, k1
5

k0
6, k1

6
k0

7, k1
7

Figure 3.5: Each wire wi is associated with two keys, k0
i and k1

i .

Then Bob creates encrypted truth tables for all three gates. These en-
crypted truth tables are shown in fig. 3.6. Bob creates four ciphertexts for
each gate g1, g2 and g3. He uses the keys k0

1, k
1
1, k

0
2, k

1
2 associated with the

input wires to encrypt the key for the gate g1’s output wire w5. In a similar
manner he encrypts output wires k6 and k7 using the associated keys for the
input wires of the appropriate gates.

Then Bob shuffles the rows of each encrypted truth table by using a
random permutation. For example, after applying a random permutation
the garbled truth tables may appear as in fig. 3.7.

27

e00
g1 = Enk0

1
(Enk0

2
(k0

5))

e01
g1 = Enk0

1
(Enk1

2
(k1

5))

e10
g1 = Enk1

1
(Enk0

2
(k1

5))

e11
g1 = Enk1

1
(Enk1

2
(k0

5)).

e00
g2 = Enk0

3
(Enk0

4
(k0

6))

e01
g2 = Enk0

3
(Enk1

4
(k1

6))

e10
g2 = Enk1

3
(Enk0

4
(k1

6))

e11
g2 = Enk1

3
(Enk1

4
(k0

6)).

e00
g3 = Enk0

5
(Enk0

6
(k1

7))

e01
g3 = Enk0

5
(Enk1

6
(k0

7))

e10
g3 = Enk1

5
(Enk0

6
(k0

7))

e11
g3 = Enk1

5
(Enk1

6
(k0

7)).

Figure 3.6: The encrypted truth tables for gates g1, g2 and g3.

e0
g1 = e00

g1

e1
g1 = e01

g1

e2
g1 = e11

g1

e3
g1 = e10

g1 .

e0
g2 = e10

g2

e1
g2 = e00

g2

e2
g2 = e11

g2

e3
g2 = e01

g2 .

e0
g3 = e00

g3

e1
g3 = e10

g3

e2
g3 = e01

g3

e3
g3 = e11

g3 .

Figure 3.7: Garbled truth tables for gates g1, g2 and g3. The permutations
used in this example were obtained by using a random sequence generator
at random.org.

Bob has now generated three garbled truth tables
{
e0
g1 , e

1
g1 , e

2
g1 , e

3
g1

}
,{

e0
g2 , e

1
g2 , e

2
g2 , e

3
g2

}
and

{
e0
g3 , e

1
g3 , e

2
g3 , e

3
g3

}
which now form the garbled circuit

G(C).

Step 3: Bob sends the garbled circuit G(C) and his garbled input IB =
(kxB2 , kyB4) to Alice. Recall that Bob’s choice was candidate 1, so his input to
the function is 01. Therefore, the garbled input sent by Bob is IB = (k0

2, k
1
4).

Step 4: To evaluate the circuit, Alice first needs the keys corresponding to
her inputs, i.e. keys kxA1 and kyA3 . She starts a series of 1-out-of-2 oblivious
transfer protocols with Bob to get the needed keys. The keys k0

i and k1
i for

wire wi act as Bob’s secrets. Alice’s choice of b in each round of 1-out-of-2
OT protocol is based on the input values xA and yA.

As an example, consider the case of g1 where Alice needs key k1
1, corre-

sponding to input xA = 1. Bob’s secrets are k0
1 and k1

1. Alice chooses b = 1
in the 1-out-of-2 OT protocol and if the both participants correctly follow
the protocol shown in fig. 2.2 then Alice learns k1

1. In similar way, Alice
receives k0

3 via another run of 1-out-of-2 OT protocol from Bob.

Step 5: Alice starts evaluating the circuit with keys k1
1, k0

2, k0
3 and k1

4. She
first decrypts values e0

g1 , e
1
g1 , e

2
g1 , e

3
g1 with keys k1

1 and k0
2. Only one of the

28

decryption attempts is successful, namely e3
g1 , returning k

1
5. This is the case,

because e3
g1 = e10

g1 = Enk1
1
(Enk0

2
(k0

5)). Other three decryptions yield ⊥. In
similar way, Alice obtains k1

6 by decrypting the values e0
g2 , e

1
g2 , e

2
g2 and e3

g2
with keys k1

3 and k0
4. In this case, the output k1

6 is obtained from decrypting
value e0

g2 whereas the other three decryptions yield ⊥. As the final step,
Alice finds out k0

7 by decrypting values e0
g3 , e

1
g3 , e

2
g3 and e3

g3 with keys k1
5

and k1
6. In this case, k0

7 is obtained from decrypting e3
g3 ; the other three

decryptions again yield ⊥. Then Alice sends k0
7 to Bob, who then reveals

that key k0
7 corresponds to output 0.

The result of garbled evaluation is 0, which means that the choices differ.
This is the correct answer, since the choice of Alice was candidate 2 and the
choice of Bob was candidate 1, which obviously are different choices. This
concludes our example.

Yao’s garbled circuit protocol is valid since the protocol always returns
the correct final output due to the correctness of the existing constructions.
Yao’s garbled circuit protocol also fulfills the requirement for secure func-
tion evaluation. In Yao’s protocol, neither party learns other party’s input.
However, if the function f is chosen badly, the inputs of the parties can be
revealed to the other party, without violating the protocol privacy property.
As an example, if Alice and Bob want to know what is their average age,
then the result of f always leaks the other participant’s age. In the protocol,
there is no mechanism that protects against badly chosen functions. If Alice
and Bob are both following the protocol, both parties always learn the final
outcome of the computation. However, it is possible that Bob refuses to
provide the final outcome of the computation to Alice. This causes a prob-
lem with the fairness of the protocol in the presence of a malicious party
(Bob, who deviates from the protocol).

The first proof of security of Yao’s garbled circuits is due to Lindell and
Pinkas in static semi-honest adversarial model [107]. New techniques are
required to extend Yao’s protocol to malicious adversarial model. Let us
first consider the vulnerable steps of Yao’s protocol that make the protocol
insecure in malicious adversarial model.

The steps in the garbled circuit protocol are all vulnerable to failure or
deviation from the protocol: transforming the function into circuit represen-
tation, constructing the garbled circuit by generating garbled truth tables,
sending garbled values to the second party, oblivious transfer for getting the
input from the second party and evaluating the garbled circuit. A mali-
cious adversary might be any of the two parties. First of all, the garbled
circuit might not be constructed in an appropriate way. Then, the oblivious
transfer step is vulnerable for malicious parties. Thirdly, a malicious party
constructing the circuit might also try to give corrupt values to the other

29

party and in this way gain advantage of getting information from the other
input.

In order to fight the threats above, the protocol needs improvements in
the following three areas: 1-out-of-2 OT against malicious adversaries, as-
suring that the garbled circuit is constructed properly and preventing the
party constructing the circuit from gaining advantage by sending corrupt
values as her input to the other party. There are known solutions to achieve
1-out-of-2 OT against malicious adversaries [19, 127]. There are also two ap-
proaches to secure the circuit construction: zero-knowledge proofs and cut-
and-choose(see the next section for more details) approach. Zero-knowledge
proofs are known to be costlier than the cut-and-choose technique intro-
duced by Lindell and Pinkas [106, 108]. Lindell and Pinkas also solve the
problem of corrupted inputs in [106].

In the next section, we present in more detail various improvements of
garbled circuit implementations which make garbled circuits less vulnerable
against malicious adversaries. Then we discuss circuit and communication
optimizations that improve the efficiency of garbled circuit protocol. After
that, we present some of the known implementations of secure function
evaluation using garbled circuit protocol.

3.2.1 Securing circuit construction

As discussed earlier, the construction of the garbled circuit is a major threat
in garbled circuits protocol with malicious adversaries. One solution is to
use cut-and-choose technique. The first, simple cut-and-choose method was
used in this context in Fairplay [113]. The idea of cut-and-choose is the
following. Bob creates several garbled circuits and sends them all to Alice.
Alice asks Bob to open half of them. If they correspond to the function
agreed by Bob and Alice, then Alice evaluates the rest of the functions with
certain inputs.

By the above technique, Alice can now ascertain that the function is cor-
rect and the garbled circuits are constructed in an appropriate way. How-
ever, there is no mechanism that prevents Bob from changing his input when
the different garbled circuits are evaluated. Lindell and Pinkas solve this
problem by applying the cut-and-choose test both over the circuit and the
inputs [106]. The latter test for inputs is realized by commitments which
cause quite a big overhead if the number of circuits evaluated is large. To
reduce the effect of commitments, Lindell and Pinkas published an improved
version of their protocol in [108].

The above approach applies cut-and-choose method to the entire circuit.
Another approach is to apply cut-and-choose to single gates in the circuit.
This method was introduced by Nielsen and Orlandi in [128]. This method

30

was improved by Frederiksen [55]. These solutions are described in more de-
tails in section 3.2.3. The advantages of Lindell’s cut-and-choose and those
of Nielsen’s and Frederiksen’s cut-and-choose techniques were recently com-
bined in the paper by Huang et al. [88]. The protocol in [88] utilizes multiple
execution setting, where the different garbled circuits can be evaluated in
parallel or sequentially.

A more recent approach for securing the circuit construction is called
cut-and-choose and forge-and-loose. This approach combines cut-and-choose
approach with the more novel forge-and-loose approach suggested indepen-
dently by Lindell [104] and Brandão [29]. According to Brandão [29], the
cut-and-choose method allows Bob to deviate from the protocol by provid-
ing inconsistent input wire keys for the garbled circuits. Alice should have
a chance to abort the protocol if she notices that some of the evaluated cir-
cuits return a different value than the majority of the circuits, yielding that
Bob has deviated from the protocol by changing his inputs. In other words,
Alice can catch cheating Bob but cannot do anything to abort the protocol.
To overcome this problem, Lindell [104] suggest an additional protocol after
the cut-and-choose phase. If there are inconsistencies in the results of the
evaluated circuits, Alice generates a proof of inconsistent output values. If
Alice’s proof is valid, then Bob must give his input to Alice. In this way,
Alice can locally compute the correct value. If Alice’s proof is not valid,
then she does not get Bob’s input. The approach of Brandão is somewhat
similar. In his protocol [29] , Bob must commit to his input keys and the
keys on the output wires by using trapdoor commitments. Alice can recover
Bob’s input by using a trapdoor if two different output keys are achieved
for the same wire in two different garbled circuits.

Both solutions [104, 29] increase the computational overhead of the gar-
bled circuit protocol. The protocol proposed by Frederiksen et al. in [54]
uses the cut-and-choose, forge-and-loose approach but does not use any ad-
ditional secure computation step like Lindell or contain computationally
heavy trapdoor commitments like Brandão. The idea in [54] is that, instead
of giving Bob’s input to Alice, Bob’s input is hashed with a universal hash
function determined by Alice. Alice learns the output of the original func-
tion and the hash digest of Bob’s input. If any of the Bob’s input hash
digests diverge, then Alice can abort safely without leaking her input to
Bob.

3.2.2 Optimizations

The most time and memory consuming phases in Yao’s garbled circuit pro-
tocol are the construction and evaluation of the garbled circuit as well as
the multiple oblivious transfers during the protocol. Different methods to

31

decrease the computational load in the circuit construction have been dis-
covered. There are three main optimizations: point-and-permute, free-XOR
and row-reduction. Next, we shortly introduce each of these circuit opti-
mizations. Then, we briefly discuss how the communication in Yao’s garbled
circuit protocol could be improved.

One of the first optimizations for logical circuits is point-and-permute
technique, presented by Rogaway in [144]. In Yao’s protocol, the circuit eval-
uator must decrypt four ciphertexts from which only one gives the correct
key, yielding three unnecessary decryptions. Point-and-permute technique
uses select bits to reduce unnecessary decryption steps. Each wire is assigned
a randomly chosen select bit, which is independent of the actual truth value
assigned to the wire. Therefore, the select bit can be revealed to the evalu-
ator. Usually, the select bit is appended to the key (associated to the wire)
as the least significant bit. In this way, the select bits can be considered as
pointers to the appropriate ciphertexts, reducing the number of decryptions
from four to only one.

Next we show how point-and-permute technique works for garbled cir-
cuits. The notations are adapted from [35]. Let kbii and kbjj be the randomly
chosen keys for incoming wires i and j and for bits bi, bj ∈ {0, 1}. Let k0

l and
k1
l denote the randomly chosen keys for outgoing wire l. We choose secret

permutation bits for each wire i, j, l at random - these permutation bits are
denoted by πi, πj and πl. Each of the wires i, j and l is assigned with a
select bit. For example, the select bit of wire i having value bi is λi = bi⊕πi.
The garbled truth table now consists of the following ciphertexts:

Enkπii

(
En

k
πj
j

(
k
g(πi,πj)
l ||πl ⊕ g(πi, πj)

))
Enkπii

(
En

k
1⊕πj
j

(
k
g(πi,1⊕πj)
l ||πl ⊕ g(πi, 1⊕ πj)

))
En

k
1⊕πi
i

(
En

k
πj
j

(
k
g(1⊕πi,πj)
l ||πl ⊕ g(1⊕ πi, πj)

))
En

k
1⊕πi
i

(
En

k
1⊕πj
j

(
k
g(1⊕πi,1⊕πj)
l ||πl ⊕ g(1⊕ πi, 1⊕ πj)

))

in this order.
To evaluate this garbled gate, the party evaluating the gate holds values

kbii ||λi and k
bj
j ||λj . The keys corresponding to kbii ||λi and k

bj
j ||λj can now

be used for decrypting the ciphertext at position λi, λj of the above array.
As an example, consider the case where g is an AND gate, b1 = 1, b2 = 0,
π1 = 0 and π2 = 1. Then the select bits of incoming wires 1 and 2 are
λ1 = b1 ⊕ π1 = 1⊕ 0 = 1 and λ2 = b2 ⊕ π2 = 0⊕ 1 = 1.

32

The garbled circuit is now

Enk0
1

(
Enk1

2

(
k0

3||π3 ⊕ 0
))

Enk0
1

(
Enk0

2

(
k0

3||π3 ⊕ 0
))

Enk1
1

(
Enk1

2

(
k1

3||π3 ⊕ 1
))

Enk1
1

(
Enk0

2

(
k0

3||π3 ⊕ 0
))
.

The evaluator now wants to evaluate the circuit with k0
1||1 and k1

2||1.
The evaluator now takes the fourth row of the garbled truth table, which
corresponds to the position λ1 = 1, λ2 = 1 and the keys k1

1 and k0
2. In this

way, the evaluator obtains k0
3||π3, which is correct since AND(1, 0) = 0 and

λ3 = AND(1, 0)⊕ π3 = π3.
The second well-known optimization for circuits is the free-XOR tech-

nique. In Yao’s garbled circuit protocol, each gate is equally costly. Free-
XOR technique proposed by Kolesnikov reduces the cost of XOR-gates in a
simple way [99]. Let wi and wj be two incoming wires for an XOR-gate G,
and let wl be the outgoing wire for this gate. The wire values can be gar-
bled in the following way. Randomly choose k0

i , k
0
j , R ∈ {0, 1}

N . Then set
k0
l = k0

i ⊕k0
j , and ∀s ∈ {i, j, l} set k1

s = k0
s ⊕R. It can be easily verified that

the garbled output is obtained by simply XORing the garbled inputs. Using
this method, there is no need to randomly choose all labels for the wires
in XOR gates. For XOR-rich circuits, the savings can be quite large. The
security of free-XOR relies on a cryptographic hash function, which is mod-
eled as a random oracle [99, 35]. A recent variant, flexible-OR introduced
by Kolesnikov et al. in [98], utilizes the free-XOR approach to optimize also
non-XOR gates. They claim that their flexible-XOR approach makes the
garbled circuit even 30% smaller.

The third optimization technique is called row-reduction and it is based
on point-and-permute technique. The basic idea of row-reduction technique
was already proposed by Rogaway, but it was improved by Pinkas et al.
in [137]. The following simple solution reduces the size of the garbled truth
tables by 25%. Instead of assigning two random values to the output wire of
a gate, one of the output wires is defined as a function of garbled values of
the two input wires that give this output. Using other words, if a and b are
two input bits to gate G, we define the garbled value of G(a, b) as a function
of the garbled values of a and b. The function can be chosen in such a way
that the first ciphertext of a gate is a constant, and therefore it does not
need to be stored (and hence the 25% reduction in the size). The solution
utilizes a key derivation function, which is assumed to be correlation robust

33

(for definition, see [137, p. 256]). This assumption supports the use of free-
XOR approach. Pinkas et al. also propose another row-reduction method,
which provides a 50% reduction but does not support free-XOR technique
anymore.

Also other optimizations for garbled circuits have been proposed.
Kolesnikov and Kumaresan [97] optimize the communication complexity of
secure two-party function evaluation by using information-theoretic garbled
circuits and a specific oblivious transfer protocol. Information-theoretic gar-
bled circuits are constructed by using a specific secret sharing scheme. The
secrets are the output wire keys, and the constructor produces four secret
shares, one for each of the wire keys of each input wire. This approach
provides significant reductions especially for shallow circuits. A recent opti-
mization of Zahur et al. [170] introduce a technique called half-gate, where
AND-gates require only two ciphertexts instead of the traditional four. Their
half-gate method provides 33% reduction in size for many circuits.

3.2.3 Implementations of garbled circuit protocol

One of the first attempts to create a practical implementation of Yao’s
garbled circuit protocol, Fairplay, was presented in [113]. Fairplay has some
mechanisms against malicious parties. It introduced a simple cut-and-choose
mechanism against cheating in the garbled circuit construction phase. Bob
sends m garbled circuits to Alice, who randomly chooses one of them. Bob
then exposes the secrets of the m−1 circuits not chosen by Alice. Alice then
verifies that these m− 1 circuits represent the original function f . Fairplay
provides a chance of 1 − 1

m to detect corrupt circuits. However, Fairplay
does not have a mechanism to protect against corrupt inputs.

Fairplay was tested against four functions, bitwise AND, "the billionaire’s
problem", keyed database search and the median function. The most com-
plex circuit computed with this system contained 4383 gates, taking 320
bits as input. The execution time for this circuit was measured to be on the
order of seconds. This result showed for the first time that garbled circuits
are more than of theoretical interest.

The next remarkable implementation of garbled circuit protocol was
Large Efficient Garbled-circuit Optimization(LEGO) presented by Nielsen
and Orlandi [128]. LEGO improves the tolerance against active adversaries.
The basic idea is that both parties participate in the construction of the
garbled circuit. Bob prepares and sends a set of garbled NAND gates to Al-
ice. Alice checks a fraction of them in order to guarantee an overwhelming
probability that there are very few bad gates among the non-checked gates.
Alice permutes the NAND gates and appends them to garbled circuit using a
fault-tolerant circuit design. This assures that Alice is still able to compute
the desired function even though there might be a few random faulty gates

34

in the circuit. After doing this, Alice evaluates the circuit as in the original
garbled circuit protocol.

The difference between Fairplay and LEGO is that in the Fairplay proto-
col, the cut-and-choose method was applied to the entire circuit. In LEGO
protocol, cut-and-choose was applied at the gate level, speeding up the pro-
tocol. However, the LEGO protocol was considered too complex to imple-
ment and use. In addition, it was not compatible with the known opti-
mizations (free-XOR, row reduction, point-and-permute) for Yao’s garbled
circuit. These shortcomings were removed in miniLEGO protocol introduced
by Frederiksen et al. in [55].

Bellare et al. presented another implementation of Yao’s garbled cir-
cuits in [16]. The system JustGarble (see [94]) implements three garbling
algorithms, all of which use different circuit optimization techniques. The
first of the garbling algorithms uses the point-and-permute technique. The
second garbling algorithm augments the first algorithm by free-XOR tech-
nique. The third garbling algorithm augments the second algorithm by row
reduction technique.

Bellare et al. also presented results of a timing test for their implemented
JustGarble system. In JustGarble system a circuit with 15.5 million gates is
garbled and evaluated in less than a second. As a comparison to JustGarble,
it took approximately 10 seconds to garble and evaluate a 4400-gate circuit
in Fairplay system. The speed of JustGarble library bases on the use of
AES-NI, which is a set of CPU instructions for encryption/decryption and
for the AES key expansion.

A recent improved implementation of garbled circuit protocol is Tiny-
Garble [152], presented by Songhori et al. TinyGarble uses sequential circuit
description of garbled circuits, which improves the circuit compactness. The
improved circuit-compactness has a major advantage: the memory footprint
of the garbling operation fits in the processor cache, which reduces the num-
ber of CPU cycles. Songhori et al. also show that TinyGarble allows new
garbled objects to be implemented. They implement a new standard hash
function called SHA-3 which was introduced by Bertoni et al. in [23] and
standardized by NIST in 2015 [132]. In addition, they implement a garbled
processor based on TinyGarble.

All these implementations rely on rather strong cryptographic assump-
tions. As an example, AES is assumed to be secure for related keys. The jus-
tification for making strong assumptions is that assuming them, fast garbling
can be achieved. Recently, Geuron et al. have posed the question whether
such strong assumptions for fast garbling are really necessary. Gueron et al.
provide new methods for garbling whose security assume only pseudorandom
functions [81].

35

3.3 Garbling schemes

The previous section shows that garbled circuits have been of great interest
in recent research. Both theoretical and practical results show that gar-
bled circuits are a powerful cryptographic tool which can be used in several
contexts for secure function evaluation. However, garbled circuits also have
their disadvantages. One of these is the presentation of the function as a
logical circuit. Complex functions should be transformed into circuits before
garbling. This can be time and space consuming. Partly due to this issue,
garbling technique has been applied also to other computation models such
as Turing machines and random-access machines. Garbled Turing machines
were proposed by Goldwasser et al. in [74]. Their construction assumes ex-
istence of fully-homomorphic encryption schemes. Garbled random-access
machines have been constructed in several papers [110, 62, 2].

Even though circuits, TMs and RAMs are very different as computa-
tion models, the process of garbling them consists of similar steps. First,
a garbled representation of the function should be constructed. Then, the
argument to the function should be garbled. Then follows the garbled eval-
uation, providing the garbled outcome of the computation. The garbled
computation result should then be ungarbled to get the actual result of the
computation. All these steps can be modeled as separate algorithms, which
together form a set of algorithms, called a garbling scheme.

More formally, a garbling scheme is a 5-tuple of algorithms, G =
(Gb, En, Ev, De, ev). The last component in this tuple, ev, is the original
evaluation algorithm that computes y = f(x) when f and x are given as
inputs. The garbling algorithm Gb is used to compute the garbled function
F = Gb(1k, f) based on the security parameter k. The second component
is an encryption algorithm which is used to compute the garbled argument
X = En(e, x). The third component in the tuple is the garbled evalua-
tion algorithm Ev which in turn computes the garbled evaluation result
Y = Ev(F,X). The fourth component De is a decryption function which
returns the final evaluation result y = De(d, Y) = ev(f, x). Figure 3.8 illus-
trates how a garbling scheme works.

The definition of a garbling scheme does not set any assumptions re-
garding the function or the argument. However, sometimes it is required
that the argument is fed bit by bit to the function. As an example of such
application, consider one-time programs [75]. The bit-by-bit property sets
additional requirements for the security definitions of garbling schemes. This
requirement is captured by the concept of projectivity. Below is the formal
definition of what is meant by a projective garbling scheme.

Definition 3.3.6 Let G = (Gb, En, De, Ev, ev) be a garbling scheme which is
used to evaluate function f . Let x = x1 . . . xn ∈ {0, 1}n and x′ = x′1 . . . x

′
n ∈

36

f

1k

x
y

Gb
En

Ev De

ev

e

F

X

Y

d

Figure 3.8: Idea behind garbling. The diagram shows that the final value
obtained via garbling must coincide with the final value obtained by direct
evaluation, i.e. ev(f, x) = y = De(d, Y) where F is the garbled function, Y =
Ev(F,X) is the garbled value and X = En(e, x)) is the garbled argument.

{0, 1}n be any two arguments for f . Let En be a non-deterministic algorithm
and let r denote the explicit randomness value used in computation of En. We
say that garbling scheme G is projective if the two garbled arguments X =
En(e, x, r) and X ′ = En(e, x′, r) can be presented in form X = (X1, . . . , Xn),
X ′ = (X ′1, . . . , X ′n) in such way that the following condition holds: xi = x′i
iff Xi = X ′i.

Next we give an example of a garbling scheme which is projective in the
sense stated in above definition.

Example 2 The projectivity is a property related to the garbling of the
argument, i.e. the encryption algorithm En of the garbling scheme. In this
example, we provide an encryption algorithm that has the projectivity prop-
erty. For constructing the encryption algorithm En, we use 128-bit AES. Let
e be an encryption key generated by the garbling algorithm for encrypting
arguments with En. The randomness value r is constructed as follows. It
consists of n bit strings, all of length 127, i.e. r = r1 . . . rn where n is the
length of the argument x and ri ∈ {0, 1}127 for all i ∈ {1, . . . , n}. All the
127-bit values ri are chosen at random.

The encryption algorithm En takes e, x and r as input. The resulting
garbled argument of x is constructed as follows:

En(e, x, r) = EnAES(x1||r1, e) . . . EnAES(xn||rn, e)

Let us show why this encryption algorithm now guarantees the projec-
tivity of the garbling scheme. Let x = x1 . . . xn and x′ = x′1 . . . x

′
n be two

arguments of length n. Let X and X ′ be the garbled arguments corre-
sponding to these two arguments x and x′. Both arguments are encrypted
with the same key e and by using the same randomness value r. Now, the
garbled arguments X = En(e, x, r) and X ′ = En(e, x′, r) can both be repre-
sented in form X = X1 . . . Xn and X ′ = X ′1 . . . X

′
n: Xi = EnAES(xi||ri, e) and

X ′i = EnAES(x′i||ri, e). If xi = x′i, then the input to the AES algorithm is the

37

same for both xi and x′i, so the garbled bits Xi and X ′i are also identical
because Xi = AES(xi||ri, e) = AES(x′i||ri, e) = X ′i. Conversely, if Xi = X ′i,
then we have that xi = x′i. This is shown as follows. When we decrypt Xi

with AES we get xi||ri and when we decrypt X ′i with AES we get xi||ri. These
decryptions must be equal, because the encryption was performed using the
same key with the AES algorithm. Now, since xi||ri = x′i||ri we must have
that xi = x′i. This now completes the example.

3.4 Security of garbling schemes

This section provides security definitions of garbling schemes. There are
three concepts that characterize the security of a garbling scheme: security
notion, security model and level of adaptivity. Next we briefly describe each
of these three concepts. The descriptions are informal and intuitive. For
more formal treatment of security notions, see [18, 17] and Publications
I–V.

Security notions: The security notion indicates how much information
about the final result y is allowed to be leaked to the evaluator. There are
three security notions, privacy (prv), obliviousness (obv) and matchability-
only (mao). In the privacy notion, the evaluator is allowed to decrypt the
garbled evaluation result and hence learn the final evaluation result y en-
tirely. In the obliviousness notion, the evaluator is not allowed to decrypt
the garbled evaluation result and therefore is not allowed to learn y. In
the matchability-only notion, the evaluator is not allowed to learn y but is
allowed to learn whether evaluating f0 on x0 gives the same final evaluation
result as evaluating f1 on x1, i.e. whether ev(f0, x0) = ev(f1, x1).

In [18], a fourth notion is also defined - a notion for authenticity. The
authenticity notion gathers the idea that the evaluator cannot produce a
forged garbled evaluation result that would be decrypted into a valid final
evaluation result. In this thesis, authenticity notion does not play as im-
portant role as the three other notions. The reason is that the authenticity
notion has been proven to be very different from the three other notions.
This separation between authenticity notion and other security notions is
discussed in section 3.4.3 in more details. However, authenticity notion is im-
portant from practical point-of-view. For example, the application proposed
in Publication VII requires a garbling scheme that achieves authenticity.

Security models: In the simulation-based security model, the task of the
adversary is to distinguish whether the garbled function F and the garbled
argument X are computed by real garbling algorithms Gb, En or by a proba-
bilistic polynomial-time simulator S that does not have the same information
as algorithms En and Gb. In the indistinguishability-based model, the task

38

of the adversary is to distinguish which one of the argument/function pairs,
(f0, x0) or (f1, x1), has been garbled to (F,X).

Type of adaptivity: Informally, the type of adaptivity tells how a func-
tion f and an argument x can be garbled in different situations: in some
scenarios, it is enough that the function and the argument are both garbled
at one go but in some scenarios it is needed that the function is garbled
before the argument is even fixed. In other words, level of adaptivity tells
in which order and how the function and the argument can be garbled. In
the static model, an adversary fixes both f and x which are garbled at one
go. In the adaptive model, the adversary may first fix function f and, based
on the garbled function F , fix his argument(s). In adaptive notions, there is
an additional parameter `, the reusability parameter. This parameter tells
how many times the same garbled function can be used securely for differ-
ent arguments. Adaptive security for projective garbling schemes is just a
special case of adaptive security. Projective schemes allow the argument to
be determined bit by bit whereas in the case of general adaptivity all bits of
the argument are determined at once. Finally, reverse-order adaptive secu-
rity changes the roles of function f and argument x: in static and adaptive
security models, the function is fixed and garbled only once whereas the
argument may vary and there are several different garblings for the argu-
ment. In reverse-order garbling, the argument is fixed and garbled only once
whereas the function may vary and there are several different garblings for
the function. This model is introduced for practical reasons. For example,
in statistical analysis the data does not change whereas the algorithms used
for the analysis may change. If we used a garbling scheme achieving static
or adaptive security then we should garble the algorithm and the data again
every time the algorithm is changed. In reverse-order model, we get rid of
garbling the data unnecessarily many times.

Next, we briefly describe the security games and skip the exact defi-
nitions. The exact definitions for the security games are provided in the
following publications. The definitions of the classes of statically secure
garbling schemes can be found in [18] and in publication I. The classes of
adaptively secure garbling schemes are found in [17] and in publication II.
Adaptively secure projective garbling schemes are covered in publications III
and IV and reverse-order adaptively secure garbling schemes are studied in
publication V.

All security games start with procedure INITIALIZE, in which the chal-
lenge bit is chosen uniformly at random. All the games end in procedure
FINALIZE, in which adversary’s answer (consisting of one bit) is checked
against the challenge bit (which is the correct answer in the game). In be-
tween the adversary may query other named procedures. In static security
games, there is only one additional procedure GARBLE. In simulation-based

39

model, the challenge bit is used for determining whether the actual gar-
bling algorithm or the simulator is used for creating the garbled function F
and the garbled argument X . In indistinguishability model, the challenge
bit determines which one of the two function-argument pairs, (f0, x0) or
(f1, x1), is garbled. In various adaptive security games, there are separate
procedures for garbling the argument (GARBLE_ARG) and for garbling the
function (GARBLE_FUNC).

3.4.1 Side-information in garbling

All security games are parameterized by two concepts. First one is the secu-
rity parameter k ∈ N, which is a part of the input to the garbling algorithm
Gb. Another parameter points to the crucial concept of a side-information,
denoted by Φ. Informally speaking, the concept of side-information captures
the information that is allowed to be leaked during the garbled evaluation.
More formally, side-information function is a mapping from bit strings to
bit strings. In the case of logical circuits, side-information function maps
function f deterministically into Φ(f). Side-information function for cir-
cuits always leaks at least the length of input x of circuit f , the length of
the output y of circuit f and the size of circuit f . Using other words, |x|,
|y| and |f | are efficiently computable from side-information Φ(f).

The concept of side-information provides another point-of-view to the
leaked information, compared with the security notions privacy, oblivious-
ness and matchability-only. The security notions tell which level of privacy
a garbling scheme provides for f , x and y. For example, a garbling scheme
achieving privacy guarantees the privacy of f and x but not the privacy
of the final result y whereas a garbling scheme achieving obliviousness pro-
vides privacy to f , x and y. The concept of side-information in turn tells
how much it is acceptable to learn about f , x and y by following the gar-
bled evaluation and by analyzing the garbled function F and the garbled
argument X.

There are three common, intuitive side-information functions for circuits:
Φsize(f), Φtopo(f) and Φcirc(f). Φsize leaks only size-related information, i.e.
|x|, |y| and the number of gates in f . Φtopo leaks in addition the topology
of the circuit, i.e. how different gates are connected to each other but not
the type of the gates. Φcirc leaks the entire circuit.

In the next example we demonstrate what the three different side-
information functions are for the circuit which we used in example 3.4.
We adapt the notation of circuits from [18]. According to [18], a cir-
cuit f is a 6-tuple f = (m,n, q, A,B,G). The first element m tells the
number of input wires. The second element n denotes the number of
output wires. The third element q denotes the number of gates in the
circuit f . The set of inputs is Inputs = {1, . . . ,m}. The set of all

40

wires in the circuit is Wires = {1, . . . ,m+ q}. The set of output wires
is Outputs = {m+ q − n+ 1, . . . ,m+ q}. Finally, the set of gates is
Gates = {m+ 1, . . . ,m+ q}. The labeling of the gates can be justified
by the following observations: There is a unique outgoing wire from each
gate. Every outgoing wire comes from a unique gate. Therefore, the labeling
of outgoing wires is unique and hence the labeling of the gates is unique as
well. Note that the same does not hold for incoming wires: a wire might be
an ingoing wire to several different gates.

Using these sets, we can define three components A, B and G in the
6-tuple (m,n, q, A,B,G). The element A is a function that identifies the
first incoming wire of a gate, i.e. A : Gates→ Wires\Outputs. The element
B is a function that identifies the second incoming wire of a gate, i.e. B :
Gates→ Wires\Outputs. Finally, the element G is a function that tells the
functionality of each gate, i.e. G : Gates× {0, 1}2 → {0, 1}.

Example 3 Let us consider the following circuit C:

51
2

63
4

7 7

5

6

The circuit takes four bits as input and outputs one bit of information,
so m = 4 and n = 1. There are three gates, i.e. q = 3. The sets Inputs,
Wires, Outputs and Gates are as follows:

Inputs = {1, 2, 3, 4}
Wires = {1, 2, 3, 4, 5, 6, 7}
Outputs = {7}
Gates = {5, 6, 7} .

The functions AC , BC and GC for circuit C are defined in fig. 3.9.
Now, the circuit presented above is represented as a 6-tuple fC =

(4, 1, 3, AC , BC , GC).
First consider the side-information function Φsize(fC). This side-

information function is defined as Φsize(f) = (m,n, q) which in this case
is Φsize(fC) = (4, 1, 3). In other words, the side-information Φsize(fC) leaks
that the circuit f has 4 input wires, 1 output wire and 3 gates.

Then consider the side-information function Φtopo(f). This side-
information function reveals the topology of the circuit, in addition to the
size-related information. By definition in [18], the side-information Φtopo(f)

41

AC(5) = 1
AC(6) = 3
AC(7) = 5

BC(5) = 2
BC(6) = 4
BC(7) = 6

GC(5, (0, 0)) = 0
GC(5, (0, 1)) = 1
GC(5, (1, 0)) = 1
GC(5, (1, 1)) = 0

GC(6, (0, 0)) = 0
GC(6, (0, 1)) = 1
GC(6, (1, 0)) = 1
GC(6, (1, 1)) = 0

GC(7, (0, 0)) = 1
GC(7, (0, 1)) = 0
GC(7, (1, 0)) = 0
GC(7, (1, 1)) = 0

Figure 3.9: Functions AC , BC and GC for circuit C.

leaks (m,n, q, A,B) which in this case is Φtopo(fC) = (4, 1, 3, AC , BC). Func-
tions AC and BC reveal how the wires are connected to the gates. However,
these two functions A and B do not leak anything about the functional-
ity of the gates. Figure fig. 3.10 illustrates the information leaked by the
side-information function Φtopo(fC).

1

2

3

4

7

5

7

6

5

6

Figure 3.10: Side-information function Φtopo leaks the topology of circuit
from example 3.4. The functionality of the three gates is not leaked.

The third side-information function, Φcirc(f), leaks the functionality of
each gate in addition to the size-related information and the topology of f .
In other words, side-information function Φcirc reveals the entire circuit, i.e.
Φcirc(fC) = fC = (m,n, q, AC , BC , GC).

Garbling schemes are not only applicable for logical circuits. In publi-
cation VI we point out that the currently used model of side-information
depending only on function f is not appropriate for Turing machines. There-
fore, the model of side-information is extended so that it depends on the
function f , the argument x as well as the encryption and decryption keys e,
d. This extension is covered in more details in section 4.5.

42

3.4.2 Formal security definitions

Next we provide formal definitions of security of a garbling scheme. We use
the following conventions in the definitions. We use notation XxxYyyZzz
for the code-based security games. Xxx denotes the security notion: Prv
corresponds to privacy notion, Obv corresponds to obliviousness notion and
Mao corresponds to matchability-only notion. Xxx could also be used for
denoting the class of garbling schemes achieving authenticity (Aut). How-
ever, in this work we do not consider authenticity notion, so the notion Aut
is omitted. Letters Yyy correspond to the security model: Sim denotes the
simulation-based security game, Ind denotes the indistinguishability-based
game. The logic in simulation-based and indistinguishability-based secu-
rity classes is fundamentally different. In simulation-based model, security
games also depend on the choice of an additional procedure, a simulator S.
Intuitively, the task of a simulator is to mimic the actual garbling algorithms
Gb and En. The letters Zzz give the level of adaptivity: Stat corresponds to
the static security game, Adap` corresponds to adaptive security games with
` times reusability of the same garbled function, Padap` corresponds to the
adaptive security games for projective garbling schemes having the reusabil-
ity level `, Radap` corresponds to reverse-order adaptive security games with
reusability level `. A garbling scheme is said to be xxx.yyy.zzz secure over
a side-information function Φ if an arbitrary adversary has a negligible ad-
vantage with respect to the security parameter in the corresponding security
game XxxYyyZzz.

We first define advantage of an adversary which conceptualizes the ad-
versary’s ability to win the code-based game XxxYyyZzz played with cer-
tain side-information function against a garbling scheme. The ability to
win the game XxxYyyZzz in turn tells how good the chance is to break the
xxx.yyy.zzz type of security in the garbling scheme. There is a separate
definition for all the games depending on the choice of the Xxx, Yyy and
Zzz.

Definition 3.4.7 Let adversary A be playing code-based game XxxYyyZzz
against garbling scheme G where Xxx ∈ {Prv, Obv, Mao}, Yyy ∈ {Sim, Ind}
and Zzz ∈ {Stat, Adap`, Padap`, Radap`}. The advantage of adversary
A in game XxxYyyZzz is defined over the security parameter k and side-
information function Φ as follows

Advxxx.yyy.zzz,ΦG (A, k) = 2 · Pr [A wins]− 1.

The probability Pr [A wins] refers to the probability that adversary A cor-
rectly predicts the challenge bit. Note that in the simulation-based security
games the advantage also depends on the simulator S. In this case we use
notation Advxxx.yyy.zzz,Φ,SG (A, k).

43

Definition 3.4.8 Let Xxx ∈ {Prv, Obv, Mao} and Zzz ∈
{Stat, Adap`, Padap`, Radap`}. A garbling scheme G is XxxIndZzz
secure over Φ if for any PT adversary A the advantage of the adversary A
in game XxxSimZzz is negligible over k.

Definition 3.4.9 Let Xxx ∈ {Prv, Obv, Mao} and Zzz ∈
{Stat, Adap`, Padap`, Radap`}. A garbling scheme G is XxxSimZzz
secure over Φ if for any PT adversary A there is a PT simulator S such
that the advantage of the adversary A in game XxxSimZzz is negligible over
k.

All garbling schemes achieving certain type of security are said
to belong to the same security class. The security class of all
xxx.yyy.zzz secure garbling schemes over side-information Φ is denoted
by GS(xxx.yyy.zzz,Φ). Here xxx ∈ {prv, obv, mao}, yyy ∈ {sim, ind}
and zzz ∈ {stat, adap`,padap`, radap`}. In other words, the xxx-part
of the notation refers to the security notation (privacy, obliviousness,
matchability-only), the yyy-part refers to the security model (simulation-
based, indisinguishability-based) and the zzz-part refers to the level of adap-
tivity.

In the following section we present some of established relations between
the security classes which were introduced by Bellare et al. in [18]. The
results in publications I-V extend the relations and propose a hierarchical
presentation for the relations between the security classes. The extensions
and the hierarchy are discussed in more detail in the next chapter.

3.4.3 Relations between the security classes

Bellare et al. have proven the relations shown in fig. 3.11 for static se-
curity classes. The diagram shows that simulation-based security implies
indistinguishability-based security. In other words, any garbling scheme
which achieves simulation-based privacy (or obliviousness, respectively)
achieves also indistinguishability-based privacy (or obliviousness, respec-
tively). The converse statement does not hold, unless the side-information
function has some additional properties. In fig. 3.11, the inclusion of
simulation-based security classes into indistinguishability-based security
classes is shown using black, solid arrows. All known non-inclusions are
shown as red lines having a slash.

Indistinguishability-based security implies simulation-based security
only for efficiently invertible side-information functions. We say that side-
information function Φ is efficiently invertible, if there is an efficient al-
gorithm which takes side-information Φ(f) as input and outputs a func-
tion f ′ such that the side-information is the same for both functions, i.e.

44

Φ(f ′) = Φ(f). The three side-information functions Φsize, Φtopo and Φcirc
from section 3.4.1 are efficiently invertible.

We can also consider efficient invertibility for the pair (Φ, ev). We say
that (Φ, ev) is efficiently invertible, if there is an efficient algorithm which
takes Φ(f) and y = ev(f, x) as input and outputs (f ′, x′) such that Φ(f ′) =
Φ(f) and ev(f ′, x′) = y = ev(f, x). In [18] it is shown that (Φtopo, evcirc)
and (Φsize, evcirc) are efficiently invertible, whereas (Φcirc, evcirc) is not. Here,
evcirc denotes the usual evaluation algorithm for circuits. For justifying why
(Φcirc, evcirc) is not efficiently invertible, consider a function f which is a
one-way function.

There are also other non-inclusions shown in fig. 3.11. These non-
inclusions illustrate the fact that authenticity as a security notion is dif-
ferent from the security notions of privacy and obliviousness. On one hand,
it holds for all side-information functions that neither simulation-based pri-
vacy nor simulation-based obliviousness implies authenticity. On the other
hand, authenticity implies neither indistinguishability-based privacy nor
indistinguishability-based obliviousness. These two results show that the
separation between authenticity and the two other notions is quite strong.

Bellare et al. show in [17] that the same inclusions hold for adaptively
secure garbling schemes. Bellare et al. use two different definitions for adap-
tivity: coarse-grained and fine-grained. In coarse-grained adaptivity, the
function is fixed and garbled before the argument. Fine-grained adaptivity
has this same property but now the argument can be fixed and garbled bit
by bit instead of garbling it at one go. In our terminology, garbling schemes
achieving coarse-grained adaptivity are called adaptively secure. We say
that a projective garbling scheme is adaptively secure if it achieves fine-
grained adaptivity. The results in [17] show that a garbling scheme that
achieves coarse-grained adaptivity for some security notion in simulation-
based model then the garbling scheme achieves coarse-grained adaptivity
for the same security notion in indistinguishability-based model. The same
holds for fine-grained adaptivity. Furthermore, Bellare et al. show that fine-
grained security implies coarse-grained security.

The separation between obliviousness/privacy and authenticity is not
only theoretical. Recently, Frederiksen et al. have been able to design gar-
bling schemes for circuits that achieve authenticity but not privacy or obliv-
iousness. This shows that the separation between authenticity notion and
the two other notions appears also in practice [56].

In publications I-V, we introduce several extensions concerning security
notions and their relations. In the next chapter we will discuss all these
extensions in more details.

45

obv.ind

obv.sim

prv.ind

prv.sim aut

\\ \

\

\

Figure 3.11: Relations between the classes of garbling schemes. The figure
is adapted from [18, p.786].

3.5 Applications of garbling schemes

Garbled circuits have been widely used in various applications. They have
been applied e.g. for constructing zero-knowledge proofs [25, 95] to achieve
oblivious outsourcing as well as to achieve verifiable computation [60]. In
addition to applications on theory, garbled circuits, or garbling schemes
more generally, have also several practical applications. In this section, we
briefly introduce different applications in which garbling could be used for
privacy-enhancing and privacy-preserving applications.

Cloud computing and distributed computing are emerging techniques in
personal and corporate use. Privacy sensitive personal data and corporate
data can be utilized in various ways. As an example, an Internet user
may be profiled based on his browsing behavior and the profile information
may be used for targeted advertising or a corporate may perform industrial
espionage in order to acquire intellectual property from a rival company.
To protect against misuse of data, both cloud computing and distributed
computing applications require techniques for privacy preservation which
protect the privacy-sensitive data.

Another emerging paradigm is the Internet of Things (IoT), a network
of low-resource devices that share a common task, e.g. surveillance or mon-
itoring. IoT devices may generate large amounts of data, requiring a large-
capacity storage and heavy computations to analyze the data. Therefore,
the data is first transferred to a destination having greater resources for
computation and storage. An emerging trend is to store and analyze data
in cloud environment. However, cloud environments might not be secure
enough in order to store privacy-sensitive data collected by the IoT sensors.
To tackle this issue, privacy-preserving techniques are needed to protect the
privacy of the data.

46

Contexts in which garbling is needed

• Cloud computing • Distributed computing

Applications requiring privacy-preserving techniques

• Statistical analysis

• Data mining

• Machine learning

• Database query

• Search engines

• Remote monitoring

– Surveillance/monitoring

– Health monitoring

• Computer intrusion detection
and virus protection

Figure 3.12: Potential applications of garbling schemes

The fig. 3.12 presents the common contexts where garbling can be applied
and applications requiring methods for privacy preservation. As mentioned
above, privacy-sensitive data can be used both in cloud computing as well as
in distributed computing. The applications that may take privacy-sensitive
information as input are also shown in fig. 3.12. Statistical analysis, data
mining and machine learning are used for finding and utilizing patterns
in data. Database queries and search engines are used for finding specific
information among entries in a database. Remote monitoring in turn can
be applied in various contexts, including security surveillance services and
health services.

In the following sections, we discuss the contexts and applications for
garbling schemes in more details. We begin with cloud computing and dis-
tributed computing. Then we discuss the Internet of Things paradigm. In
the last two sections we consider how garbling could be used for eHealth
and for assisted living services. eHealth is a healthcare practice supported
by electronic processes and communication whereas the aim of assisted liv-
ing services is to supervise or assist disabled people with activities of daily
living.

3.5.1 Distributed and cloud computing

Modern computation aims to be ubiquitous - computing is made to appear
anytime and everywhere on any device, not only on specific computers.
Distributed computing, cloud computing and the Internet of Things are
some of the research fields which touch ubiquitous computing. Privacy is
one of the biggest obstacles to the success of ubiquitous computing [86].

47

Multiparty computation protocols can be considered as a solution. Mul-
tiparty computation protocols are designed to be used in a situation where
a group of parties jointly want to compute a functionality. Therefore,
multi-party computation suits well in distributed computation scenario where
a heavy computational task is distributed between several parties con-
trolled by one central server. This approach has been used in projects like
SETI@Home [6], Folding@Home [136] and Mersenne Prime Search [89].

Data mining is an example where distributed computing may be uti-
lized. There are several ways to present the privacy-preserving data mining
problem [48]. Lindell and Pinkas [105] consider a scenario in which two
parties want jointly perform data mining actions on the union of their two
databases without exposing their databases to the other party or any third
party. Agrawal and Srikant [3] consider a scenario in which one party is
allowed to perform data mining actions on a private database owned by
another party without having access to the database. Lindell and Pinkas
use secure multi-party computation approach to solve the problem whereas
Agrawal and Srikant use data perturbation methods (which are not in the
scope of this work).

Another potential application area for secure multi-party computation
protocols like garbling schemes is cloud computing. According to NIST [115],
“cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources”. Var-
ious cloud services are thought to fall in some of three known categories:
Infrastructure as a Service (IaaS), Software as a Service (SaaS) and Plat-
form as a Service (PaaS). In brief, IaaS provides virtual machines or storage
from a provider on demand being able to autonomously adapt the capacity
to varying workload over time. Google Compute Engine, Microsoft Azure
and Amazon EC2/S3 are examples of IaaS. SaaS provides applications that
can be run on cloud via the Internet. Google and Microsoft offer office soft-
ware (e.g. Google Docs and Office 365) that can be used via web browser.
PaaS in turn is used for applications while providing cloud components to
software. It allows customers to simultaneously develop, run and manage
applications at the same cloud-based environment. Examples of PaaS are
e.g. Google App Engine, Microsoft Azure and Amazon Web Services Elastic
Beanstalk.

Cloud services are increasingly popular even though there still are is-
sues with their security and especially privacy [92, 154]. Depending on the
service, different cryptographic tools are needed to guarantee the various se-
curity aspects related to cloud services. For data storage, important aspects
of security include e.g. proofs of retrievability and provable data posses-
sion [140, Chapter 5]. In this work, we are interested in processing data in
a potentially insecure environment like clouds, so we do not handle these
concepts in more details.

48

Processing data on cloud in privacy-preserving way requires that the
cloud does not learn the private-sensitive data which it processes. In some
cases, there is no need to hide the algorithm used for the computation. A
solution for this kind of scenario is to perform computations on encrypted
data. To achieve this, homomorphic encryption can be used as a solution.
In some cases, also the algorithm needs to be kept private, especially if
it contains components that are considered to be intellectual property. In
this scenario, garbling technique can be applied, since garbling schemes are
designed to hide both the input and the algorithm.

3.5.2 Internet of Things

The Internet of Things is a paradigm that aims at creating an environment
of networked devices communicating over the Internet and serving to accom-
plish a joint task. As an example of an IoT application, consider anti-theft
system with motion detecting sensors. The sensors at different locations
interact with each other in order to detect unauthorized motion and prevent
intruders. Many other applications of IoT can be found in [7, 159].

There are several threats that may prevent the success of IoT based
applications. The threats are mainly targeted at infrastructure, protocol and
network security, data security and privacy, identity management, trust and
governance as well as at fault tolerance [145]. Also tamper-resistance and
other physical security aspects are important when considering the possible
threats against IoT applications [159].

Trust and privacy are important aspects when considering security of
IoT applications. According to Weber [161], the IoT technology used by
private enterprises must have resilience to attacks, they must authenticate
the retrieved address and object information, they must have an access con-
trol and ensure client privacy. However, there are numerous scenarios which
endanger the security, trust or privacy of the IoT applications [100]. As a
demonstrative example, a failed implementation of IoT related technology
in a supermarket may violate the client privacy by enabling "the mining of
medical data, invasive targeted advertising, and loss of autonomy through
marketing profiles or personal affect monitoring" [163].

On the contrary, there are also successful implementations of privacy-
preserving applications utilizing IoT paradigm. Many of these implemen-
tations are related to electronic surveillance [57, 134] or remote monitoring
as an eHealth application [1]. In this work, we also consider applications
for privacy-preserving electronic surveillance (publication VII) and remote
monitoring for assisted living services (publication VIII).

49

3.5.3 eHealth

eHealth encompasses a wide variety of services, including electronic health
records, clinical decision support, healthcare information systems, mHealth
and telemedicine. Services which handle and transfer health related infor-
mation require privacy-preservation techniques since health related data are
considered highly privacy-sensitive. Therefore, eHealth applications must
be carefully designed and implemented. Appropriate implementation guar-
antees that patients’ privacy is not easily compromised.

Securing eHealth services requires focusing on both server and client plat-
forms. Many of the current eHealth solutions focus on network security or
access control policies, leaving the client platform vulnerable to attacks [109].
Despite the various threats against eHealth services, network-based solutions
seem to give great benefits not only for eHealth service providers but also
for patients [157].

One of the central tasks in eHealth is to develop user-friendly and effi-
cient privacy-preserving applications. Several such applications have already
been proposed and implemented. As an example, Layouni et al. introduce
a protocol that allows telemonitoring for eHealth but only at patients’ ap-
proval [102]. A system for remote ECG analysis has been proposed by Barni
et al. in [13]. Automated emergency healthcare process utilizing cloud ser-
vices has also been studied recently [93, 138].

All the systems mentioned above are designed for health institutions
collecting health data from patients. Also systems intended for the use by
patients and customers have been proposed. This kind of services are often
provided in mobile environment, where patients and customers can access
health services and information using their mobile phones, tablet computers
and other mobile devices. These types of health services supported by mobile
devices are known as mHealth services. Different cloud-assisted mHealth
services are presented e.g. in [130, 47, 85]. Achieving privacy-preserving data
storage, privacy-preserving data retrieval and auditability against misusing
health data are among the main challenges for mHealth applications. A
system achieving these three properties has recently been developed by Tong
et al. in [156].

3.5.4 Assisted living

Smart environments and ambient assisted living are two paradigms which
aim at supporting people in their daily living activities. Smart environment
can be described as a small world consisting of small devices which are
designed to make inhabitants’ lives more comfortable [42]. Ambient assisted
living shares the same aim but ambient assisted living services provides more
personalized and more adaptive services to achieve interoperability, security

50

and accuracy [116]. Assisted living services are targeted at people with
disabilities whereas smart environments do not have such a specific target
group.

Since assisted living services handle health related data by storing and
evaluating the data, protecting the privacy of the customer is in central role.
Protection of privacy is particularly crucial for network-aided solutions. An
example of such a solution is telemonitoring. A patient wears body sensors
which measure, for example, the heart beat rate and blood pressure. The
sensors are connected to the Internet for sending the data from the sensors to
further analysis and storage [52]. Other examples of network-based assisted
living solutions include AlarmNet [164] and iSenior [143].

It is also important that the health data is evaluated in a secure man-
ner. This requires a protocol that does not compromise the data integrity
and privacy. Several protocols have been proposed to achieve this goal. For
example, Brickell et al. [31] use branching programs as the model for diag-
nostics tool. Lin et al. have improved the protocol: some of the decryption
related computation load is moved to the cloud [103]. In publication VIII
we propose a health monitoring system based on garbling schemes.

51

52

Chapter 4

Contributions

This thesis consists of eight journal and conference publications. Six of these
publications, publications I-VI, contain theoretical results related to garbling
schemes. These publications extend the results of [17, 18, 74]. The other two
publications, publications VII and VIII, deal with applications of garbling
schemes concentrating on privacy-preserving security services. Figure 4.1
show how the eight publications are related. We now briefly discuss the
results and contributions of each publication.

4.1 Extending earlier results

Publication I extends the results of the seminal work of Bellare et al. [18] in
several ways. The first results show the role of side-information in garbling.
We show in publication I that the class of garbling schemes which are secure
under a certain security notion and security model does not decrease when
the side-information function is allowed to leak more information. As an
example, the side-information function Φtopo leaks more information than
Φsize. Therefore, according to the previously mentioned result, for certain
security notions and models, there are at least as many garbling schemes
that are secure over Φtopo as there are secure garbling schemes over Φsize.

The next generalization presented in publication I is related to the non-
inclusions between the security classes of garbling schemes. Bellare et al. as-
sume a certain type of side-information function (Φtopo) when they prove the
separation between simulation-based obliviousness and indistinguishability-
based privacy as well as the separation between the authenticity notion
and the notions privacy and obliviousness in the indistinguishability-based
model. We remove the assumption of specific side-information function and
prove that the separations hold for any side-information function.

53

Publication I
extending static
security notions

introducing a hierarchy

Publication II
introducing reusabil-

ity parameter
extending the hierarchy

Publications III, IV
reusability for projec-
tive garbling schemes

Publication V
new security no-

tion (reverse-order)

Publication VI
extending

side-information

Publication VII
Applying garbling for
electronic surveillance

Publication VIII
Applying garbling in
assisted living scenario

Applications

Theoretical results

Figure 4.1: A roadmap to the articles included in this thesis.

We also show in publication I that, under certain assumptions, any
garbling scheme achieves static indistinguishability-based privacy. In addi-
tion, we introduce corresponding assumptions so that any garbling scheme
achieves static simulation-based privacy.

In addition to the generalizations mentioned above, we introduce new
security notions for garbling schemes. These notions are named mod.ind,
mod.sim, mod.ind2 and mod.sim2 in publication I. Out of these four no-
tions, the new notions mod.ind and mod.sim seem to be of practical use.
The notions mod.ind and mod.sim are useful, for instance, when the out-
come of computations should be kept secret while the comparison (e.g. the
equality) of outcomes would still be possible. Instead, the classes mod.ind2
and mod.sim2 are shown to be practically always empty due to too hard
security requirements set for a garbling scheme. In later publications, we
omit the security classes mod.ind2 and mod.sim2 due to this impracticality.
In the publications hereafter, we replace the name mod by matchability-only
(mao).

4.2 Reusability of garbled functions

The definitions of Bellare et al. [18, 17] as well as those in publication I
support only one-time use of the same garbled function. This is undesir-
able from practical point-of-view: every time the same function should be
evaluated with an argument, the garbled function must be computed again.

54

Goldwasser et al. introduced a way to construct reusable garbled circuits
in [74]. Their solution is based on fully-homomorphic encryption, for which
no efficient implementations are known. On the other hand, the solution
allows the same function to be used arbitrarily many times.

Inspired by the two problems mentioned above, it is an interesting ques-
tion whether there are garbling schemes that support at least some level
of reusability but would still be practical (efficient in time and space con-
sumption). To take the first steps towards the answer, we need new security
definitions that capture the idea of "some level of reusability". In publica-
tion II, we introduce a new parameter, the reusability parameter ` ∈ N,
which tells how many times the same garbled function can be used for gar-
bled evaluation of f . In other words, instead of arbitrary reuse of the same
garbled function F = Gb(f, 1k), F could be re-used a limited number of
times. There are applications for which this type of limited reusability
would be as practical as having a chance for arbitrary reuse of the same
garbled function.

Publication II provides several results related to the new classes of
reusable garbling schemes. We show that the relations of security notions
and security models are the same for every fixed value of `. The relations
are also exactly the same as for the static security classes. In addition, the
classes of reusable, adaptively secure garbling schemes form an infinite chain
with respect to the reusability parameter `. The infiniteness is achieved by
two results. A security class with threshold value `+ 1 is properly included
in the corresponding class with threshold value `, unless both classes are
empty. Secondly, a security class allowing the same garbling to be used ar-
bitrarily many times is properly included in the corresponding security class
with any threshold value ` ∈ N (unless both are empty). Since there seem to
be candidates in the class of arbitrary reusability (e.g. [74]), all the classes
from reusability level ` = 1 to arbitrary reusability are non-empty and the
class with a greater reusability parameter is properly included into the class
with a smaller reusability parameter.

We introduce a more comprehensive way of illustrating the relations
between the classes of garbling schemes in publication II. We present the
hierarchy as a Cartesian product of directed graphs. By Cartesian product
G1 × G2 we mean the directed graph having vertices in V = V1 × V2. The
directed edges of G1×G2 are found as follows. There is a directed edge from
vertex u = (u1, u2) to v = (v1, v2) in G1 × G2 whenever u1 = v1 and there
is a directed edge from u2 to v2, or u2 = v2 and there is a directed edge
from u1 to v1. In the presentation of the hierarchy for garbling schemes,
the Cartesian product consists of three graphs. The first graph illustrates
the relations between the security notions. The second graph shows the
relations between the security models. The third graph is infinite and shows

55

the relations between the various adaptivity levels determined by the value
of the reusability parameter `.

4.3 Projectivity and reusability

We extend the concept of reusability for projective garbling schemes in pub-
lication III. Projective garbling schemes allow the user to feed the input
in smaller pieces, for example, bit by bit. This feature increases the prac-
ticality of garbling schemes. Therefore, it is natural to extend reusability
to projective garbling schemes and investigate the security notions in this
special case as well.

In publication III we define a new concept of security, bitwise adaptive
security, which generalizes the concept of fine-grained adaptivity in [17]. We
obtain several results for these new classes of garbling schemes. Like in the
general case of adaptivity, the classes of bitwise adaptively secure garbling
schemes form an infinite chain with respect to the reusability parameter `.
In addition, the hierarchy for classes of bitwise adaptively secure garbling
schemes is similar to the hierarchy of adaptively secure garbling schemes.
We also show that a bitwise adaptively secure garbling scheme does not have
to be adaptively secure. However, if restricted to the subset of projective
garbling schemes, then the class of bitwise adaptively secure garbling scheme
is included in the corresponding class of adaptively secure garbling schemes.

Publication III left open some questions related to bitwise adaptive se-
curity. Publication IV provides answers to these questions. The first solved
question is related to the general existence of bitwise adaptively secure
reusable garbling schemes: how long must the garbled argument be so that
the scheme can belong to certain security class? In order to achieve a se-
cure garbling scheme in bitwise adaptive setting, there are certain conditions
which must be fulfilled. One of these requirements is related to the encryp-
tion algorithm En. Namely, we prove in publication IV that the length of
the encrypted version of the argument x must be at least nc log k+n, where
n is the length of x, c a constant and k the security parameter, under the
condition that a projective garbling scheme G achieves adaptive privacy,
obliviousness or matchability-only at reusability level ` = 2.

The second solved open question concerns the relations between the
classes of bitwise adaptively secure reusable garbling schemes. In pub-
lication III it was left open whether there are conditions under which
indistinguishability-based security could imply simulation-based security.
We provide such a condition by introducing a new variant for efficient invert-
ibility of side-information function Φ and evaluation algorithm ev called bit-
and componentwise efficient invertibility of (Φ, ev). The existence of a bit-

56

and componentwise efficient (Φ, ev)-inverter then ascertains, that privacy in
indistinguishability model implies privacy in simulation model.

4.4 Garbling the argument first

In all previous publications, it is assumed that the function f to be eval-
uated is known prior to its argument x. All security notions rely on this
assumption: in all security games, the function is garbled either before or
at the same time as the argument. However, in many practical situations,
the argument is known before an applicable function is determined. More-
over, it might be that the same argument is to be run with several different
functions. Using the established security definitions of a garbling scheme
would yield the following: every time we want to use the same argument for
a different function, we need to compute a new garbled function and a new
garbled argument. To reduce the amount of unnecessary computations, we
propose a new security definition, reverse-order adaptive security. In this
model, first an argument is garbled in the security game, and only after
getting the garbled argument the adversary needs to choose which functions
to garble.

This generalization requires also a slight change in the definition of
a garbling scheme. Instead of treating garbling schemes as 5-tuple of
algorithms (Gb, En, Ev, De, ev), we define a garbling scheme as a 6-tuple
(KeyGen, Ga, En, Ev, De, ev). The only difference in these definitions is that
we split the original function garbling algorithm Gb into two separate algo-
rithms KeyGen and Ga. In previous models, the task of algorithm Gb is to
compute the garbled function as well as the encryption and decryption keys
e and d. In our new model, algorithm KeyGen is used for generating three
keys g, e and d. The additional key g is used for computing the garbled
function, so it is used as an input for algorithm Ga together with the func-
tion f . The other four algorithms are similar in both the new and the old
model. Figure 4.2 illustrates the new model of garbling scheme.

We prove several results regarding this new security notion. First, we
show that adaptivity and reverse-order adaptivity are quite different notions
except for the static security: adaptive security does not imply reverse-order
adaptivity and vice versa for ` ≥ 2. Secondly, we show that, similarly to
adaptive security classes, the hierarchy of reverse-order adaptive security
classes is either infinite or all security classes for ` ∈ N are empty. Thirdly,
for a fixed reusability parameter `, the relations between the models and
notions are exactly the same for both adaptive and reverse-order adaptive
classes.

57

Gb

f

1k
n

m

p

x

KeyGen

y

Ga

En
Ev De

ev

g

e

F

X

Y

d

Figure 4.2: Generalized model of a garbling scheme. Compared to the
definition in [18], the diagram is the same except of the garbling algorithm
Gb, which in our model is split to two separate algorithms KeyGen and Ga.

4.5 Extending the model of side-information

As discussed in section 3.4, side-information function has a central role in
measuring security of a garbling scheme – all security games depend on the
choice of side-information function. Because of this central role of security
definitions, it is crucial that the concept of side-information is appropriately
defined.

The definition used by Bellare et al. in [18, 17] describes side-information
function as a mapping which maps a function f into a bit string. From this
bit string depending only on function f , at least the length of argument x,
the length of final evaluation result y and the length of f must be efficiently
computable. In the case of logical circuits, this is a natural requirement. The
same argument does not hold for e.g. Turing machines: the length of the
input and the length of the output cannot generally be determined by the
Turing machine only, demonstrating the fundamental differences between
circuits and Turing machines.

The issue mentioned above has implications to the definition of side-
information function. The side-information function cannot depend only on
the function f . In publication VI, the model of side-information function
is extended to achieve better compatibility with other computation models
than circuits. In the extended model, the side-information depends on the
encryption key e, the decryption key d, the function f and the argument x.

The extended model also takes different types of attacks into account. In
the established model, the algorithms Gb, En and De were considered to be
run on secure environments. However, it is possible that these algorithms are
targets of various side-channel attacks. This yields that information about
the encryption key e, the decryption key d and computation of ev(f, x) might

58

leak. Therefore, it is natural that the extended model of side-information is
dependent on e, d, f and x.

Extending the model of side-information has also a positive side-effect.
The new model of side-information simplifies the various security definitions
of garbling schemes. In publication VI, we provide the new, simplified game
definitions. We prove that the new definitions are compatible with the
old definitions, when restricting the computation model to logic circuits.
Furthermore, publication VI shows that all the known relations for security
classes are preserved in the new model.

4.6 Garbling in privacy-preserving applications

Original publications VII and VIII suggest two scenarios in which garbling
schemes can be used as a technique to enhance privacy for sensitive informa-
tion. In publication VII we consider how to implement a privacy-preserving
electronic surveillance system. In publication VIII, we extend electronic
surveillance to more holistic monitoring that includes processing health data.
This kind of application could be used e.g. for assisted living services.

In publication VII, we present a novel way of using garbling schemes
to achieve privacy preservation in electronic surveillance and illustrate the
power of garbling with an example scenario. An elderly person living alone
is subscribing to a security service that includes electronic surveillance. The
surveillance data is analyzed by a security company that has outsourced its
data services onto a third-party cloud. Garbling allows the private analysis
of the surveillance data on cloud - the cloud learns neither the surveillance
data nor the analytics tool.

The advantage of our solution is that garbling provides flexibility for the
system. The surveillance analytics tool can be almost anything, from com-
parisons to complex machine learning algorithms. Moreover, the function
f can be changed without the need to reconfigure the whole system, easing
the system maintenance.

The biggest obstacles to implementing the described system is related
to the implementation of efficient garbling schemes. There exist efficient
garbling schemes (see section 4.3) that support one-time use of the garbling
scheme. But regarbling the analytics tool again for every surveillance data
entry is not optimal from practical point-of-view. Reusable garbled circuits
would solve this problem - however efficient garbling schemes supporting
reusable garbled circuits are not yet known.

The example scenario presented in VII is not the only possible applica-
tion for garbling. As another related example, a monitoring system can be
installed in the homes of people using the services for assisted living. The
party monitoring the data should not learn the habits of the person using

59

the system beyond the situations in which the person needs help. In this
scenario, the security company may provide the monitoring services to the
company providing the services for assisted living. This adds complexity to
preserve privacy.

In publication VIII, we took the challenge of designing a privacy pre-
serving monitoring system including both security and health features. Our
example scenario is more complex, including four parties instead of three: a
client, a security company, an assisted living service provider and a third-
party cloud service provider. In this publication, we show how a garbling
scheme can be used among these four parties. In addition, we demonstrate
the efficiency of our solution by implementing a simplistic health assess-
ment function and performing garbled computations on that function. The
outcome of the experiment was that the garbled evaluation of this simple
function is extremely fast, including the garbling phase. Also more complex
functions appeared to be fast enough for an application requiring fast re-
sponse times. As an example, a circuit with 400 000 gates is garbled and
evaluated in less than 250 microseconds and a circuit with roughly 15 million
gates is garbled and evaluated in less than 1 second.

60

Chapter 5

Conclusions and future work

In this thesis, we propose several new security classes for garbling schemes.
We introduce a new security notion, matchability-only, which may be of
practical interest since it provides an intermediate form between privacy and
obliviousness. Furthermore, the amount of secure garbling schemes does not
decrease when the matchability-only security notion is used instead of the
privacy or the obliviousness notion.

Garbled circuits support only single-use of the same garbling. However,
computations are often done with the same function but different arguments.
For garbled circuits, this would mean that computing the garbled circuit
should be done again every time a new evaluation takes place. This generates
lots of unnecessary computations. As a solution, we have introduced an idea
of leveled reusability in form of a reusability parameter. This parameter
characterizes how many times it is secure to use the same garbled function
with different argument queries.

We extended the reusability results to projective garbling schemes, which
are a special case of general garbling schemes. If a garbling scheme is projec-
tive, then it supports garbling the argument in smaller pieces, even bitwise.

Reverse-order garbling is a new form of adaptivity, which flips the roles
of the function and the argument. In many practical situations, the data
stays the same whereas different algorithms are applied to it. As an example,
medical information of a patient stays invariant, whereas different medical
analytics algorithms may be applied to the data. Our new notion extends
the security of garbling schemes also in this direction.

As a result of investigating the security notions and the relations between
the security classes, we obtain a hierarchy which is represented as a directed
graph Cartesian product. The product consists of three components: the
security notion, the security model and the level of adaptivity. The resulting
hierarchy is presented in fig. 5.1.

61

prv

obv
mao × simind ×

stat
=

rstat
adap1 adap2 . . . adap` . . . adap∗

padap1 padap2 . . . padap` . . . padap∗

radap1 radap2 . . . radap` . . . radap∗

modelnotion level of adaptivity

/

/

/

/

/

/

\
× × ×

Figure 5.1: Hierarchy of garbling scheme classes represented as a Cartesian
product of graphs. Lines → show the inclusions between security classes
and lines 9 show that there is no inclusion. Colored vertices give the new
security classes introduced in this work.

We also make a further theoretical remark concerning the fundamen-
tals of the security concepts for garbling schemes. The security of garbling
schemes is parameterized by side-information, which informally captures the
information that is allowed to be leaked during the garbled evaluation. Gar-
bled circuits leak different information compared to e.g. Turing machines.
However, the established definition of garbling schemes relies on a model
that fits circuits but fails to model e.g. Turing machines. We propose a new
model of side-information that takes into account different models of com-
putation in a more appropriate way. We prove that the new model is fully
compatible with the established model when restricted to circuit garbling
schemes.

This thesis also provides proposals for applications of garbling schemes.
We consider the possibility of using garbling schemes for privacy-preserving
electronic surveillance. We extend the idea of surveillance into more holistic
monitoring of a client. In addition to surveillance, the various sensors and
devices collect private health information of the client, in which case the sys-
tem can be used for assisted living services. By implementing a simple, but
still practical health indication function we show that garbling schemes are a
potential solution for applications processing privacy-sensitive information.

The advantage of garbling schemes is that efficient implementations, es-
pecially for circuits, are known. However, garbled circuits have also some
drawbacks. One of the biggest problems for garbling schemes is that the
computational load is not distributed optimally. It is the client’s task to
generate the appropriate representation of the algorithm, generate the keys
for garbling as well as generate the garbled function and the garbled argu-
ment whereas the evaluator only runs the garbled evaluation. An important

62

question for future research is whether there exist methods to distribute the
workload more evenly.

Another topic of future interest is whether there is need for further secu-
rity definitions of garbling schemes. In this work, we have presented some,
but practical applications may require new definitions. Still, some of the
notions presented in this work do not yet have implementation. It would
be interesting to see whether there is an efficient garbling scheme providing
reusability for some ` ∈ N. Currently we know, that efficient solutions are
known in static case as well as for ` = 1. Furthermore, Goldwasser’s reusable
garbled circuits [74] provide a candidate for reusability class enabling arbi-
trary reusability. However, these reusable garbled circuits do not have a
known efficient solution, due to the fact that the construction is based on
FHE for which no efficient solution is known.

If the improvements of garbling schemes become reality, garbling schemes
may gain new application areas, even in cryptographic applications. Then,
garbling schemes would truly achieve the status of being a cryptographic
primitive rather than a mere cryptographic technique.

63

64

Bibliography

[1] H. Abie and I. Balasingham. Risk-based Adaptive Security for Smart
IoT in eHealth. In Proceedings of the 7th International Conference
on Body Area Networks, BodyNets ’12, pages 269–275, ICST, Brus-
sels, Belgium, Belgium, 2012. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering).

[2] A. Afshar, Z. Hu, P. Mohassel, and M. Rosulek. How to Efficiently
Evaluate RAM Programs with Malicious Security. In E. Oswald and
M. Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015,
volume 9056 of Lecture notes in Computer Science, pages 702–729.
Springer Berlin Heidelberg, 2015.

[3] R. Agrawal and R. Srikant. Privacy-preserving Data Mining. SIGMOD
Rec., 29(2):439–450, May 2000.

[4] W. Aiello, Y. Ishai, and O. Reingold. Priced Oblivious Transfer: How
to Sell Digital Goods. In Proceedings of the International Conference
on the Theory and Application of Cryptographic Techniques: Advances
in Cryptology, EUROCRYPT ’01, pages 119–135, London, UK, UK,
2001. Springer-Verlag.

[5] B. Anckaert, B. D. Sutter, and K. D. Bosschere. Software Piracy Pre-
vention Through Diversity. In Proceedings of the 4th ACM Workshop
on Digital Rights Management, DRM ’04, pages 63–71. ACM, 2004.

[6] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer.
SETIhome: An experiment in public-resource computing. Communi-
cations of the ACM, 45(11):333–342, 2009.

[7] L. Atzori, A. Iera, and G. Morabito. The Internet of Things: A Survey.
Computer Networks, 54(15):2787–2805, 2010.

[8] D. Aucsmith. Tamper Resistant Software: An Implementation. In
Proceedings of 1st International Information Hiding Workshop (IHW),
volume 1174 of Lecture notes in Computer Science, pages 317–333.
Springer, 1996.

65

[9] D. Aucsmith and G. Graunke. Tamper Resistant Methods and Ap-
paratus. Patent US 5892899, 1999. year filed 1996; year published
1999.

[10] B. Barak. How to go beyond the black-box simulation barrier. In Pro-
ceedings of the 42nd IEEE Symposium on Foundations of Computer
Science, 2001., pages 106–115, Oct 2001.

[11] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vad-
han, and K. Yang. On the (Im)possibility of Obfuscating Programs.
In J. Kilian, editor, Advances in Cryptology – CRYPTO 2001, vol-
ume 2139 of Lecture notes in Computer Science, pages 1–18. Springer
Berlin Heidelberg, 2001.

[12] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vad-
han, and K. Yang. On the (Im)Possibility of Obfuscating Programs.
Journal of the ACM, 59(2):6:1–6:48, May 2012.

[13] M. Barni, J. Guajardo, and R. Lazzeretti. Privacy preserving evalua-
tion of signal quality with application to ECG analysis. In Information
Forensics and Security (WIFS), 2010 IEEE International Workshop
on, pages 1–6, Dec 2010.

[14] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure
protocols. In Proc. of the 22nd STOC, pages 503–513. ACM, 1990.

[15] M. Bellare and S. Goldwasser. New Paradigms for Digital Signa-
tures and Message Authentication Based on Non-Interactive Zero
Knowledge Proofs. In G. Brassard, editor, Advances in Cryptology
– CRYPTO’89 Proceedings, volume 435 of Lecture notes in Computer
Science, pages 194–211. Springer New York, 1990.

[16] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway. Efficient gar-
bling from a fixed-key blockcipher. In Proc. of Symposium on Security
and Privacy 2013, pages 478–492. IEEE, 2013.

[17] M. Bellare, V. T. Hoang, and P. Rogaway. Adaptively secure garbling
scheme with applications to one-time programs and secure outsourc-
ing. In Proc. of Asiacrypt 2012, volume 7685 of LNCS, pages 134–153.
Springer, 2012.

[18] M. Bellare, V. T. Hoang, and P. Rogaway. Foundations of Garbled
Circuits. In Proc. of ACM Computer and Communications Security
(CCS’12), pages 784–796. ACM, 2012.

66

[19] M. Bellare and S. Micali. Non-Interactive Oblivious Transfer and Ap-
plications. In G. Brassard, editor, Advances in Cryptology – CRYPTO
’89 Proceedings, volume 435 of Lecture notes in Computer Science,
pages 547–557. Springer New York, 1990.

[20] M. Bellare and P. Rogaway. Code-Based Game-Playing Proofs and
the Security of Triple Encryption. Advances in Cryptology – EURO-
CRYPT2006, 4004 of LNCS:409–426, 2006.

[21] M. Ben-Or, O. Goldreich, S. Goldwasser, J. Håstad, J. Kilian, S. Mi-
cali, and P. Rogaway. Everything Provable is Provable in Zero-
Knowledge. In S. Goldwasser, editor, Advances in Cryptology –
CRYPTO’88, volume 403 of Lecture notes in Computer Science, pages
37–56. Springer New York, 1990.

[22] J. Benaloh. Dense Probabilistic Encryption. In Proceedings of the
Workshop on Selected Areas of Cryptography, pages 120–128, 1994.

[23] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. The Road
from Panama to Keccak via RadioGatún. In H. Handschuh, S. Lucks,
B. Preneel, and P. Rogaway, editors, Symmetric Cryptography, number
09031 in Dagstuhl Seminar Proceedings. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, Germany, 2009.

[24] O. Billet, H. Gilbert, and C. Ech-Chatbi. Cryptanalysis of a White
Box AES Implementation. In H. Handschuh and M. A. Hasan, edi-
tors, Selected Areas in Cryptography, volume 3357 of Lecture notes in
Computer Science, pages 227–240. Springer Berlin Heidelberg, 2005.

[25] N. Bitansky and O. Paneth. Point Obfuscation and 3-Round Zero-
Knowledge. In Theory of Cryptography - 9th Theory of Cryptography
Conference, TCC 2012, Taormina, Sicily, Italy, March 19-21, 2012.
Proceedings, pages 190–208, 2012.

[26] M. Blum, P. Feldman, and S. Micali. Non-interactive Zero-knowledge
and Its Applications. In Proceedings of the Twentieth Annual ACM
Symposium on Theory of Computing, STOC ’88, pages 103–112, New
York, NY, USA, 1988. ACM.

[27] D. Boneh, E. Goh, and K. Nissim. Evaluating 2-DNF Formulas on
Ciphertexts. In J. Kilian, editor, Theory of Cryptography, volume
3378 of Lecture notes in Computer Science, pages 325–341. Springer
Berlin Heidelberg, 2005.

[28] J. Borello and L. Mé. Code obfuscation techniques for metamorphic
viruses. Journal in Computer Virology, 4(3):211–220, 2008.

67

[29] L. T. Brandão. Secure Two-Party Computation with Reusable Bit-
Commitments, via a Cut-and-Choose with Forge-and-Lose Technique.
In K. Sako and P. Sarkar, editors, Advances in Cryptology - ASI-
ACRYPT 2013, volume 8270 of Lecture notes in Computer Science,
pages 441–463. Springer Berlin Heidelberg, 2013.

[30] E. F. Brickell and Y. Yacobi. On Privacy Homomorphisms (Extended
Abstract). In D. Chaum and W. L. Price, editors, Advances in Cryp-
tology – EUROCRYPT’87, volume 304 of Lecture notes in Computer
Science, pages 117–125. Springer Berlin Heidelberg, 1988.

[31] J. Brickell, D. E. Porter, V. Shmatikov, and E. Witchel. Privacy-
preserving Remote Diagnostics. In Proceedings of the 14th ACM Con-
ference on Computer and Communications Security, CCS ’07, pages
498–507. ACM, 2007.

[32] R. Canetti, J. Kilian, E. Petrank, and A. Rosen. Black-Box Concurrent
Zero-Knowledge Requires (Almost) Logarithmically Many Rounds.
SIAM journal of Computing, 32(1):1–47, Jan. 2003.

[33] H. Chang and M. Atallah. Protecting Software Code by Guards. In
Proceedings of the 1st ACM Workshop on Digital Rights Management
(DRM 2001), volume 2320 of Lecture notes in Computer Science,
pages 160–175. Springer, 2002.

[34] Y. Chen, R. Venkatesan, M. Cary, R. Pang, S. Sinha, and
M. Jakubowski. Oblivious Hashing: A Stealthy Software Integrity
Verification Primitive. In Proceedings of the 5th Information Hiding
Workshop (IHW), volume 2578 of Lecture notes in Computer Science,
pages 400–414. Springer, 2002.

[35] S. G. Choi, J. Katz, R. Kumaresan, and H. Zhou. On the Security
of the "Free-XOR" Technique. In R. Cramer, editor, Theory of Cryp-
tography, volume 7194 of Lecture notes in Computer Science, pages
39–53. Springer Berlin Heidelberg, 2012.

[36] S. Chow, P. Eisen, H. Johnson, and P. C. V. Oorschot. White-
Box Cryptography and an AES Implementation. In K. Nyberg and
H. Heys, editors, Selected Areas in Cryptography, volume 2595 of Lec-
ture notes in Computer Science, pages 250–270. Springer Berlin Hei-
delberg, 2003.

[37] S. Chow, P. Eisen, H. Johnson, and P. C. van Oorschot. A White-
Box DES Implementation for DRM Applications. In J. Feigenbaum,
editor, Digital Rights Management, volume 2696 of Lecture notes in
Computer Science, pages 1–15. Springer Berlin Heidelberg, 2003.

68

[38] S. Chow, Y. Gu, H. Johnson, and V. A. Zakharov. An Approach to
the Obfuscation of Control-Flow of Sequential Computer Programs.
In G. I. Davida and Y. Frankel, editors, Information Security, volume
2200 of Lecture notes in Computer Science, pages 144–155. Springer
Berlin Heidelberg, 2001.

[39] F. B. Cohen. Operating system protection through program evolution.
Computers & Security, 12(6):565 – 584, 1993.

[40] C. Collberg, C. Thomborson, and D. Low. A Taxonomy of Obfuscating
Transformations. Technical report, The University of Auckland, 1997.

[41] C. S. Collberg and C. Thomborson. Watermarking, Tamper-proffing,
and Obfuscation: Tools for Software Protection. IEEE Trans. Softw.
Eng., 28(8):735–746, Aug. 2002.

[42] D. Cook and S. Das. Smart Environments: Technology, Protocols and
Applications (Wiley series on Parallel and Distributed Computing).
Wiley-Interscience, 2004.

[43] C. Crépeau. Equivalence Between Two Flavours of Oblivious Trans-
fers. In C. Pomerance, editor, Advances in Cryptology – CRYPTO’87,
volume 293 of Lecture notes in Computer Science, pages 350–354.
Springer Berlin Heidelberg, 1988.

[44] G. D. Crescenzo, T. T. Malkin, and R. Ostrovsky. Single Database
Private Information Retrieval Implies Oblivious Transfer. In B. Pre-
neel, editor, Advances in Cryptology – EUROCRYPT 2000, volume
1807 of Lecture notes in Computer Science, pages 122–138. Springer
Berlin Heidelberg, 2000.

[45] I. Damgård and M. Jurik. A Generalisation, a Simplification and
Some Applications of Paillier’s Probabilistic Public-Key System. In
Proceedings of the 4th International Workshop on Practice and Theory
in Public Key Cryptography: Public Key Cryptography, PKC ’01, pages
119–136, London, UK, UK, 2001. Springer-Verlag.

[46] C. Delerablée, T. Lepoint, P. Paillier, and M. Rivain. White-Box
Security Notions for Symmetric Encryption Schemes. In T. Lange,
K. Lauter, and P. Lisoněk, editors, Selected Areas in Cryptography –
SAC 2013, volume 8282 of Lecture notes in Computer Science, pages
247–264. Springer Berlin Heidelberg, 2014.

[47] C. Doukas, T. Pliakas, and I. Maglogiannis. Mobile healthcare infor-
mation management utilizing Cloud Computing and Android OS. In
Engineering in Medicine and Biology Society (EMBC), 2010 Annual
International Conference of the IEEE, pages 1037–1040, Aug 2010.

69

[48] W. Du and M. J. Atallah. Secure Multi-party Computation Problems
and Their Applications: A Review and Open Problems. In Proceedings
of the 2001 Workshop on New Security Paradigms, NSPW ’01, pages
13–22. ACM, 2001.

[49] C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-knowledge. Jour-
nal of the ACM, 51(6):851–898, Nov. 2004.

[50] T. ElGamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. IEEE Transactions on Information Theory,
31(4):469–472, Jul 1985.

[51] S. Even, O. Goldreich, and A. Lempel. A Randomized Protocol for
Signing Contracts. Commun. ACM, 28(6):637–647, June 1985.

[52] G. Fortino, G. Di Fatta, M. Pathan, and A. Vasilakos. Cloud-assisted
body area networks: state-of-the-art and future challenges. Wireless
Networks, 20(7):1925–1938, 2014.

[53] M. Franz. E unibus pluram: massive-scale software diversity as a
defense mechanism. In Proceedings of the 2010 Workshop on New
Security Paradigms. ACM, 2010.

[54] T. K. Frederiksen, T. P. Jakobsen, and J. B. Nielsen. Faster Mali-
ciously Secure Two-Party Computation Using the GPU. In M. Abdalla
and R. D. Prisco, editors, Security and Cryptography for Networks,
volume 8642 of Lecture notes in Computer Science, pages 358–379.
Springer International Publishing, 2014.

[55] T. K. Frederiksen, T. P. Jakobsen, J. B. Nielsen, P. S. Nordholt, and
C. Orlandi. MiniLEGO: Efficient Secure Two-Party Computation from
General Assumptions. In T. Johansson and P. Q. Nguyen, editors,
Advances in Cryptology – EUROCRYPT 2013, volume 7881 of Lecture
notes in Computer Science, pages 537–556. Springer Berlin Heidelberg,
2013.

[56] T. K. Frederiksen, J. B. Nielsen, and C. Orlandi. Privacy-Free Garbled
Circuits with Applications to Efficient Zero-Knowledge. In E. Oswald
and M. Fischlin, editors, Advances in Cryptology – EUROCRYPT
2015, volume 9057 of Lecture notes in Computer Science, pages 191–
219. Springer Berlin Heidelberg, 2015.

[57] K. B. Frikken and M. J. Atallah. Privacy Preserving Electronic Surveil-
lance. In Proceedings of the 2003 ACM Workshop on Privacy in the
Electronic Society, WPES ’03, pages 45–52, New York, NY, USA,
2003. ACM.

70

[58] S. Garg, C. Gentry, S. Halevi, and R. M. Two-Round Secure MPC
from Indistinguishability Obfuscation. In Y. Lindell, editor, Theory
of Cryptography, volume 8349 of Lecture notes in Computer Science,
pages 74–94. Springer Berlin Heidelberg, 2014.

[59] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters.
Candidate Indistinguishability Obfuscation and Functional Encryp-
tion for all Circuits. In IEEE 54th Annual Symposium on Foundations
of Computer Science (FOCS), 2013, pages 40–49, Oct 2013.

[60] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verfiable com-
puting: Outsourcing computation to untrusted workers. In Proc. of
CRYPTO 2010, volume 6223 of LNCS, pages 465–482. Springer, 2010.

[61] C. Gentry. Computing on the Edge of Chaos: Structure and Random-
ness in Encrypted Computation. Cryptology ePrint Archive, Report
2014/610, 2014. eprint.iacr.org.

[62] C. Gentry, S. Halevi, S. Lu, R. Ostrovsky, M. Raykova, and D. Wichs.
Garbled RAM Revisited. In Proc. of 33rd Eurocrypt, volume 8441 of
LNCS, pages 405–422, 2014.

[63] G. Gentry. Fully Homomorphic Encryption Using Ideal Lattices. In
Proceedings of the Forty-first Annual ACM Symposium on Theory of
Computing, STOC ’09, pages 169–178, New York, NY, USA, 2009.
ACM.

[64] G. Gentry and S. Halevi. Implementing Gentry’s Fully-Homomorphic
Encryption Scheme. In K. G. Paterson, editor, Advances in Cryptol-
ogy – EUROCRYPT’2011, volume 6632 of Lecture notes in Computer
Science, pages 129–148. Springer Berlin Heidelberg, 2011.

[65] G. Gentry, S. Halevi, and N. P. Smart. Homomorphic Evaluation of
the AES Circuit. In R. Safavi-Naini and R. Canetti, editors, Advances
in Cryptology – CRYPTO’2012, volume 7417 of Lecture notes in Com-
puter Science, pages 850–867. Springer Berlin Heidelberg, 2012.

[66] G. Gentry, S. Halevi, and V. Vaikuntanathan. A Simple BGN-Type
Cryptosystem from LWE. In H. Gilbert, editor, Advances in Cryptol-
ogy – EUROCRYPT’2010, volume 6110 of Lecture notes in Computer
Science, pages 506–522. Springer Berlin Heidelberg, 2010.

[67] O. Goldreich. Concurrent Zero-knowledge with Timing, Revisited. In
Proceedings of the Thiry-fourth Annual ACM Symposium on Theory
of Computing, STOC ’02, pages 332–340, New York, NY, USA, 2002.
ACM.

71

[68] O. Goldreich. Foundations of Cryptography: volume 1. Cambridge
University Press, New York, NY, USA, 2006.

[69] O. Goldreich and H. Krawczyk. On the Composition of Zero-
Knowledge Proof Systems. SIAM journal of Computing, 25(1):169–
192, Feb. 1996.

[70] O. Goldreich, S. Micali, and A. Wigderson. How to Play ANY Mental
Game. In Proceedings of the Nineteenth Annual ACM Symposium on
Theory of Computing, STOC ’87, pages 218–229, New York, NY, USA,
1987. ACM.

[71] O. Goldreich, S. Micali, and A. Wigderson. Proofs That Yield Nothing
but Their Validity or All Languages in NP Have Zero-knowledge Proof
Systems. Journal of the ACM, 38(3):690–728, July 1991.

[72] O. Goldreich and Y. Oren. Definitions and properties of zero-
knowledge proof systems. Journal of Cryptology, 7(1):1–32, 1994.

[73] O. Goldreich and R. Ostrovsky. Software Protection and Simulation
on Oblivious RAMs. Journal of the ACM, 43(3):431–473, 1996.

[74] S. Goldwasser, Y. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zel-
dovich. Reusable Garbled Circuits and Succinct Functional Encryp-
tion. In Proc. of the 45th STOC, pages 555–564. ACM, 2013.

[75] S. Goldwasser, Y. Kalai, and G. Rothblum. One-Time Programs. In
Proc. of CRYPTO 2008, volume 5157 of LNCS, pages 39–56. Springer,
2008.

[76] S. Goldwasser and Y. T. Kalai. On the impossibility of obfuscation
with auxiliary input. In 46th Annual IEEE Symposium on Foundations
of Computer Science, 2005. FOCS 2005., pages 553–562, Oct 2005.

[77] S. Goldwasser and S. Micali. Probabilistic Encryption & How to Play
Mental Poker Keeping Secret All Partial Information. In Proceedings
of the Fourteenth Annual ACM Symposium on Theory of Computing,
STOC ’82, pages 365–377, New York, NY, USA, 1982. ACM.

[78] S. Goldwasser, S. S. Micali, and C. Rackoff. The Knowledge Com-
plexity of Interactive Proof-systems. In Proceedings of the Seventeenth
Annual ACM Symposium on Theory of Computing, STOC ’85, pages
291–304, New York, NY, USA, 1985. ACM.

[79] L. Goubin, J. Masereel, and M. Quisquater. Cryptanalysis of White
Box DES Implementations. In C. Adams, A. Miri, and M. Wiener,
editors, Selected Areas in Cryptography, volume 4876 of Lecture notes
in Computer Science, pages 278–295. Springer Berlin Heidelberg, 2007.

72

[80] J. Groth. Non-interactive Zero-Knowledge Arguments for Voting. In
J. Ioannidis, A. Keromytis, and M. Yung, editors, Applied Cryptogra-
phy and Network Security, volume 3531 of Lecture notes in Computer
Science, pages 467–482. Springer Berlin Heidelberg, 2005.

[81] S. Gueron, Y. Lindell, A. Nof, and B. Pinkas. Fast Garbling of Circuits
Under Standard Assumptions. Cryptology ePrint Archive, Report
2015/751, 2015. http://eprint.iacr.org/.

[82] S. Hada. Zero-Knowledge and Code Obfuscation. In T. Okamoto,
editor, Advances in Cryptology – ASIACRYPT 2000, volume 1976 of
Lecture notes in Computer Science, pages 443–457. Springer Berlin
Heidelberg, 2000.

[83] S. Hada. Secure Obfuscation for Encrypted Signatures. In H. Gilbert,
editor, Advances in Cryptology – EUROCRYPT 2010, volume 6110
of Lecture notes in Computer Science, pages 92–112. Springer Berlin
Heidelberg, 2010.

[84] C. Hazay and Y. Lindell. Efficient Secure Two-Party Protocols.
Springer Berlin Heidelberg, 2010.

[85] D. Hoang and L. Chen. Mobile Cloud for Assistive Healthcare (Mo-
CAsH). In Services Computing Conference (APSCC), 2010 IEEE
Asia-Pacific, pages 325–332, Dec 2010.

[86] J. I. Hong and J. A. Landay. An Architecture for Privacy-sensitive
Ubiquitous Computing. In Proceedings of the 2Nd International Con-
ference on Mobile Systems, Applications, and Services, MobiSys ’04,
pages 177–189. ACM, 2004.

[87] B. Horne, L. Matheson, C. Sheehan, and R. Tarjan. Dynamic Self-
Checking Techniques for Improved Tamper Resistance. In Proceedings
of the 1st ACM Workshop on Digital Rights Management (DRM 2001),
volume 2320 of Lecture notes in Computer Science, pages 141–159.
Springer, 2002.

[88] Y. Huang, J. Katz, V. Kolesnikov, R. Kumaresan, and A. J. Maloze-
moff. Amortizing Garbled Circuits. In J. A. Garay and R. Gennaro,
editors, Advances in Cryptology – CRYPTO 2014, volume 8617 of
Lecture notes in Computer Science, pages 458–475. Springer Berlin
Heidelberg, 2014.

[89] M. R. Inc. GIMPS Home. http://www.mersenne.org/. Accessed
June 25, 2014.

73

[90] Y. Ishai and E. Kushilevitz. Private simultaneous messages protocols
with applications. In Proceedings of the Fifth Israeli Symposium on
Theory of Computing and Systems, 1997, pages 174–183, Jun 1997.

[91] Y. Ishai and A. Paskin. Evaluating Branching Programs on Encrypted
Data. In S. P. Vadhan, editor, Theory of Cryptography, volume 4392
of Lecture notes in Computer Science, pages 575–594. Springer Berlin
Heidelberg, 2007.

[92] W. A. Jansen. Cloud Hooks: Security and Privacy Issues in Cloud
Computing. In Proc. of 44th Hawaii International Conference on Sys-
tem Sciences (HICSS), pages 1–10, 2011.

[93] N. Karthikeyan and R. Sukanesh. Cloud Based Emergency Health
Care Information Service in India. Journal of Medical Systems,
36(6):4031–4036, 2012.

[94] S. Keelveedhi. JustGarble. http://cseweb.ucsd.edu/groups/
justgarble/. Accessed: 2014-10-13.

[95] F. Kerschbaum. Oblivious Outsourcing of Garbled Circuit Generation.
In ACM SAC, 2015.

[96] J. Kilian. Founding Crytpography on Oblivious Transfer. In Proceed-
ings of the Twentieth Annual ACM Symposium on Theory of Comput-
ing, STOC ’88, pages 20–31, New York, NY, USA, 1988. ACM.

[97] V. Kolesnikov and R. Kumaresan. Improved Secure Two-Party Com-
putation via Information-Theoretic Garbled Circuits. In I. Visconti
and R. D. Prisco, editors, Security and Cryptography for Networks,
volume 7485 of Lecture notes in Computer Science, pages 205–221.
Springer Berlin Heidelberg, 2012.

[98] V. Kolesnikov, P. Mohassel, and M. Rosulek. FleXOR: Flexible Gar-
bling for XOR Gates That Beats Free-XOR. In J. A. Garay and
R. Gennaro, editors, Advances in Cryptology – CRYPTO 2014, volume
8617 of Lecture notes in Computer Science, pages 440–457. Springer
Berlin Heidelberg, 2014.

[99] V. Kolesnikov and T. Schneider. Improved Garbled Circuit: Free XOR
Gates and Applications. In L. Aceto, I. Damgård, L. A. Goldberg,
M. M. Halldòrsson, A. Ingòlfsdòttir, and I. Walukiewicz, editors, Au-
tomata, Languages and Programming, volume 5126 of Lecture notes in
Computer Science, pages 486–498. Springer Berlin Heidelberg, 2008.

74

[100] D. Kozlov, J. Veijalainen, and Y. Ali. Security and Privacy Threats in
IoT Architectures. In Proceedings of the 7th International Conference
on Body Area Networks, BodyNets ’12, pages 256–262, ICST, Brus-
sels, Belgium, Belgium, 2012. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering).

[101] S. Laur and H. Lipmaa. A New Protocol for Conditional Disclosure of
Secrets and Its Applications. In J. Katz and M. Yung, editors, Applied
Cryptography and Network Security, volume 4521 of Lecture notes in
Computer Science, pages 207–225. Springer Berlin Heidelberg, 2007.

[102] M. Layouni, K. Verslype, M. T. Sandıkkaya, B. De Decker, and
H. Vangheluwe. Privacy-Preserving Telemonitoring for eHealth. In
E. Gudes and J. Vaidya, editors, Data and Applications Security
XXIII, volume 5645 of Lecture notes in Computer Science, pages 95–
110. Springer Berlin Heidelberg, 2009.

[103] H. Lin, J. Shao, C. Zhang, and Y. Fang. CAM: Cloud-Assisted Pri-
vacy Preserving Mobile Health Monitoring. Information Forensics and
Security, IEEE Transactions on, 8(6):985–997, June 2013.

[104] Y. Lindell. Fast Cut-and-Choose Based Protocols for Malicious and
Covert Adversaries. In R. Canetti and J. A. Garay, editors, Advances
in Cryptology – CRYPTO 2013, volume 8043 of Lecture notes in Com-
puter Science, pages 1–17. Springer Berlin Heidelberg, 2013.

[105] Y. Lindell and B. Pinkas. Privacy Preserving Data Mining. In Pro-
ceedings of the 20th Annual International Cryptology Conference on
Advances in Cryptology, CRYPTO ’00, pages 36–54. Springer-Verlag,
2000.

[106] Y. Lindell and B. Pinkas. An Efficient Protocol for Secure Two-Party
Computation in the Presence of Malicious Adversaries. In M. Naor,
editor, Advances in Cryptology - EUROCRYPT 2007, volume 4515
of Lecture notes in Computer Science, pages 52–78. Springer Berlin
Heidelberg, 2007.

[107] Y. Lindell and B. Pinkas. A proof of security of Yao’s protocol for
secure two-party computation. Journal of Cryptology, 22(2):161–188,
2009.

[108] Y. Lindell and B. Pinkas. Secure Two-Party Computation via Cut-
and-Choose Oblivious Transfer. Journal of Cryptology, 25(4):680–722,
2012.

75

[109] H. Löhr, A.-R. Sadeghi, and M. Winandy. Securing the e-Health
Cloud. In Proceedings of the 1st ACM International Health Infor-
matics Symposium, IHI ’10, pages 220–229. ACM, 2010.

[110] S. Lu and R. Ostrovsky. How to Garble RAM Programs. In Proc. of
32nd Eurocrypt, volume 7881 of LNCS, pages 719–734, 2013.

[111] R. Luo, X. Lai, and R. You. A new attempt of white-box AES im-
plementation. In 2014 International Conference on Security, Pattern
Analysis, and Cybernetics (SPAC), pages 423–429, Oct 2014.

[112] B. Lynn, M. Prabhakaran, and A. Sahai. Positive Results and Tech-
niques for Obfuscation. In C. Cachin and J. L. Camenisch, editors,
Advances in Cryptology - EUROCRYPT 2004, volume 3027 of Lecture
notes in Computer Science, pages 20–39. Springer Berlin Heidelberg,
2004.

[113] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay - a secure
two-party computation system. In In USENIX Security Symposium,
pages 287–302, 2004.

[114] C. A. Melchor, P. Gaborit, and J. Herranz. Additively Homomorphic
Encryption with d-Operand Multiplications. In T. Rabin, editor, Ad-
vances in Cryptology – CRYPTO’2010, volume 6223 of Lecture notes
in Computer Science, pages 138–154. Springer Berlin Heidelberg, 2010.

[115] P. Mell and T. Grance. The NIST Definition of Cloud Computing.
Special Publications 800-145, NIST, 2011. available at http://csrc.
nist.gov/publications/nistpubs/800-145/SP800-145.pdf.

[116] M. Memon, S. R. W. C. F. Pedersen, F. H. A. Beevi, and F. O.
Hansen. Ambient Assisted Living Healthcare Frameworks, Platforms,
Standards, and Quality Attributes. Sensors, 14(3):4312–4341, 2014.

[117] T. Meskanen, V. Niemi, and N. Nieminen. Classes of Garbling
Schemes. Infocommunications journal, V(3):8–16, 2013.

[118] T. Meskanen, V. Niemi, and N. Nieminen. Garbling in Reverse Or-
der. In The 13th IEEE International Conference on Trust, Security
and Privacy in Computing and Communications (IEEE TrustCom-
14), pages 53–60. IEEE, 2014.

[119] T. Meskanen, V. Niemi, and N. Nieminen. Hierarchy for Classes of
Projective Garbling Schemes. In International Conference on Informa-
tion and Communications Technologies (ICT 2014), pages 1–8. IEEE,
2014.

76

[120] T. Meskanen, V. Niemi, and N. Nieminen. On Reusable Projective
Garbling Schemes. In 2014 IEEE International Conference on Com-
puter and Information Technology (CIT 2014), pages 315–322. IEEE,
2014.

[121] T. Meskanen, V. Niemi, and N. Nieminen. Extended Model of Side-
Information in Garbling. In The 14th IEEE International Conference
on Trust, Security and Privacy in Computing and Communications
(IEEE TrustCom-15), pages 950–957. IEEE, 2015.

[122] T. Meskanen, V. Niemi, and N. Nieminen. Hierarchy for Classes of
Garbling Schemes. Studia Scientiarum Mathematicarium Hungarica,
52(2):1–12, 2015.

[123] T. Meskanen, V. Niemi, and N. Nieminen. How to Use Garbling for
Privacy Preserving Electronic Surveillance Services. Cyber Security
and Mobility, 4(1):41–64, 2015.

[124] Microsoft c©. VirTool:SWF/Obfuscator.F.
https://www.microsoft.com/security/portal/threat/encyclopedia/
Entry.aspx?Name=VirToolAccessed July 27th, 2015.

[125] Y. D. Mulder. White-Box Cryptography – Analysis of White-Box AES
Implementations. PhD thesis, Katholieke Universiteit Leuven – Fac-
ulty of Engineering Science, 2014.

[126] D. Naccache and J. Stern. A New Public Key Cryptosystem Based
on Higher Residues. In Proceedings of the 5th ACM Conference on
Computer and Communications Security, CCS ’98, pages 59–66, New
York, NY, USA, 1998. ACM.

[127] M. Naor and B. Pinkas. Efficient Oblivious Transfer Protocols. In
Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’01, pages 448–457, Philadelphia, PA, USA, 2001.
Society for Industrial and Applied Mathematics.

[128] J. B. Nielsen and C. Orlandi. LEGO for Two-Party Secure Compu-
tation. In O. Reingold, editor, Theory of Cryptography, volume 5444
of Lecture notes in Computer Science, pages 368–386. Springer Berlin
Heidelberg, 2009.

[129] N. Nieminen and A. Lepistö. Privacy-Preserving Security Monitor-
ing for Assisted Living Services. In Proceedings of the 17th Inter-
national Symposium on Health Information Management Research
(ISHIMR 2015), pages 189–199. York St. John Universty & University
of Sheffield, 2015.

77

[130] M. Nkosi and F. Mekuria. Cloud Computing for Enhanced Mobile
Health Applications. In Cloud Computing Technology and Science
(CloudCom), 2010 IEEE Second International Conference on, pages
629–633, Nov 2010.

[131] K. Nuida. A Simple Framework for Noise-Free Construction
of Fully Homomorphic Encryption from a Special Class of Non-
Commutative Groups. Cryptology ePrint Archive, Report 2014/097,
2014. urleprint.iacr.org.

[132] N. I. of Standards and Technology. FIPS PUB 202: SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions. pub-
NIST, pub-NIST:adr, Aug. 2015. Supersedes FIPS PUB 202 2014
May.

[133] T. Okamoto and S. Uchiyama. A new public-key cryptosystem as
secure as factoring. In K. Nyberg, editor, Advances in Cryptology –
EUROCRYPT’98, volume 1403 of Lecture notes in Computer Science,
pages 308–318. Springer Berlin Heidelberg, 1998.

[134] V. Oleshchuk. Internet of things and privacy preserving technologies.
In 1st International Conference on Wireless Communication, Vehicu-
lar Technology, Information Theory and Aerospace Electronic Systems
Technology, 2009. Wireless VITAE 2009., pages 336–340, 2009.

[135] P. Paillier. Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes. In J. Stern, editor, Advances in Cryptology –
EUROCRYPT’99, volume 1592 of Lecture notes in Computer Science,
pages 223–238. Springer Berlin Heidelberg, 1999.

[136] V. Pande. Foldinghome. http://folding.stanford.edu/. Accessed
June 25, 2014.

[137] B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams. Secure
Two-Party Computation Is Practical. In M. Matsui, editor, Advances
in Cryptology – ASIACRYPT 2009, volume 5912 of Lecture notes in
Computer Science, pages 250–267. Springer Berlin Heidelberg, 2009.

[138] M. Poulymenopoulou, F. Malamateniou, and G. Vassilacopoulos.
Emergency Healthcare Process Automation Using Mobile Comput-
ing and Cloud Services. Journal of Medical Systems, 36(5):3233–3241,
Oct. 2012.

[139] M. O. Rabin. How to exchange secrets with oblivious transfer. Techni-
cal Report TR-81, Aiken Computation Lab, Harvard University, 1981.

78

[140] S. Rass and D. Slamanig. Cryptography for Security and Privacy in
Cloud Computing. Information Security and Privacy. Artech House,
2014.

[141] O. Regev. On Lattices, Learning With Errors, Random Linear Codes,
and Cryptography. In Proc. of the 37th STOC, pages 84–93. ACM,
2005.

[142] R. L. Rivest, L. Adleman, and M. L. Dertouzos. On Data Banks
and Privacy Homomorphisms. Foundations of Secure Computation,
Academia Press, pages 169–179, 1978.

[143] A. Rodrigues, J. S. Silva, and F. Boavida. iSenior – A Support Sys-
tem for Elderly Citizens. IEEE Transactions on Emerging Topics in
Computing, 1(2):207–217, 2013.

[144] P. Rogaway. The round complexity of secure protocols. PhD thesis,
MIT, 1991.

[145] R. Roman, P. Najera, and J. Lopez. Securing the Internet of Things.
Computer, 44(9):51–58, Sept 2011.

[146] T. Sander, A. Young, and M. Yung. Non-interactive cryptocomputing
for NC1. In Foundations of Computer Science, 1999. 40th Annual
Symposium on, pages 554–566, 1999.

[147] A. Saxena, B. Wyseur, and B. Preneel. Towards Security Notions for
White-Box Cryptography. In P. Samarati, M. Yung, F. Martinelli, and
C. A. Ardagna, editors, Information Security, volume 5735 of Lecture
notes in Computer Science, pages 49–58. Springer Berlin Heidelberg,
2009.

[148] S. Schrittwieser and S. Katzenbeisser. Code Obfuscation against Static
and Dynamic Reverse Engineering. In T. Filler, T. Pevý, S. Craver,
and A. Ker, editors, Information Hiding, volume 6958 of Lecture notes
in Computer Science, pages 270–284. Springer Berlin Heidelberg, 2011.

[149] A. Shamir. IP = PSPACE. Journal of the ACM, 39(4):869–877, Oct.
1992.

[150] B. Shankar, K. Srinathan, and C. P. Rangan. Alternative Protocols for
Generalized Oblivious Transfer. In S. Rao, M. Chatterjee, P. Jayanti,
S. C. Murthy, and S. K. Saha, editors, Distributed Computing and
Networking, volume 4904 of Lecture notes in Computer Science, pages
304–309. Springer Berlin Heidelberg, 2008.

79

[151] P. Snyder. Yaoś Garbled Circuits: Recent Directions and Implemen-
tations. Accessed 2015. Available at www.cs.uic.edu\slash.

[152] E. M. Songhori, S. U. Hussain, A. Sadeghi, T. Schneider, and
F. Koushanfar. TinyGarble: Highly Compressed and Scalable Se-
quential Garbled Circuits. In 36th IEEE Symposium on Security and
Privacy (Oakland), May 2015.

[153] B. D. Sutter, B. Anckaert, J. Geiregat, D. Chanet, and K. D. Boss-
chere. Instruction set limitation in support of software diversity. In
P. J. Lee and H. J. Cheon, editors, Proceedings of ICISC 2008, volume
5461 of Lecture notes in Computer Science, pages 152–165. Springer
Heidelberg, 2009.

[154] H. Takabi, J. B. D. Joshi, and G.-J. Ahn. Security and Privacy Chal-
lenges in Cloud Computing Environments. Security & Privacy, 8:24–
31, 2010.

[155] T. Tassa. Generalized oblivious transfer by secret sharing. Designs,
Codes and Cryptography, 58(1):11–21, 2011.

[156] Y. Tong, J. Sun, S. Chow, and P. Li. Cloud-Assisted Mobile-Access of
Health Data With Privacy and Auditability. IEEE journal of Biomed-
ical and Health Informatics, 18(2):419–429, March 2014.

[157] P. M. Trief, J. Sandberg, R. Izquierdo, P. C. Morin, S. Shea, R. Brit-
tain, E. B. Feldhousen, and R. S. Weinstock. Diabetes Management
Assisted by Telemedicine: Patient Perspectives. Telemedicine and e-
Health, 14(7):647–655, 2008.

[158] P. C. van Oorschot. Revisiting Software Protection. In C. Boyd and
W. Mao, editors, Information Security, volume 2851 of Lecture notes
in Computer Science, pages 1–13. Springer Berlin Heidelberg, 2003.

[159] O. Vermesan, M. Harrison, H. Vogt, K. Kalaboukas, M. Tomasella,
K. Wouters, S. Gusmeroli, and S. Haller. Vision and Challenges for
Realising the Internet of Things. European Commission, Information
Society and Media, 2010.

[160] C. Wang. A security architecture for survivability mechanisms. PhD
thesis, University of Virginia, 2001.

[161] R. H. Weber. Internet of Things – New security and privacy challenges.
Computer Law & Security Review, 26(1):23 – 30, 2010.

[162] H. Wee. On Obfuscating Point Functions. In Proceedings of the Thirty-
seventh Annual ACM Symposium on Theory of Computing, STOC ’05,
pages 523–532. ACM, 2005.

80

[163] J. S. Winter. Surveillance in Ubiquitous Network Societies: Normative
Conflicts Related to the Consumer In-store Supermarket Experience
in the Context of the Internet of Things. Ethics and Information
Technology, 16(1):27–41, 2014.

[164] A. Wood, J. A. Stankovic, G. Virone, L. Selavo, Z. He, Q. Cao,
T. Doan, Y. Wu, L. Fang, and R. Stoleru. Context-aware wireless
sensor networks for assisted living and residential monitoring. Net-
work, IEEE, 22(4):26–33, 2008.

[165] B. Wyseur. White-Box Cryptography. PhD thesis, Katholieke Univer-
siteit Leuven, March 2009.

[166] B. Wyseur. White-Box Cryptography: Hiding Keys in Software. in
http://www.whiteboxcrypto.com/, 2012. Accessed 15th June 2015.

[167] B. Wyseur, W. Michiels, P. Gorissen, and B. Preneel. Cryptanalysis
of White-Box DES Implementations with Arbitrary External Encod-
ings. In C. Adams, A. Miri, and M. Wiener, editors, Selected Areas
in Cryptography, volume 4876 of Lecture notes in Computer Science,
pages 264–277. Springer Berlin Heidelberg, 2007.

[168] A. Yao. Protocols for Secure Computations. In Proc. of 23rd SFCS,
1982, pages 160–164. IEEE, 1982.

[169] A. Yao. How to generate and exchange secrets. In Proc. of 27th FOCS,
1986., pages 162–167. IEEE, 1986.

[170] S. Zahur, M. Rosulek, and D. Evans. Two Halves Make a Whole.
In E. Oswald and M. Fischlin, editors, Advances in Cryptology - EU-
ROCRYPT 2015, volume 9057 of Lecture notes in Computer Science,
pages 220–250. Springer Berlin Heidelberg, 2015.

81

82

Part II

Original publications

I

Paper I

Classes of Garbling Schemes

T. Meskanen and V. Niemi and N. Nieminen (2013). Infocommunications
journal, V(3):8-16

85

86

INFOCOMMUNICATIONS JOURNAL

8 SEPTEMBER 2013 • VOLUME V • NUMBER 3

Classes of Garbling Schemes

87

INFOCOMMUNICATIONS JOURNAL

SEPTEMBER 2013 • VOLUME V • NUMBER 3 9

Classes of Garbling Schemes

88

INFOCOMMUNICATIONS JOURNAL

10 SEPTEMBER 2013 • VOLUME V • NUMBER 3

Classes of Garbling Schemes

89

INFOCOMMUNICATIONS JOURNAL

SEPTEMBER 2013 • VOLUME V • NUMBER 3 11

Classes of Garbling Schemes

90

INFOCOMMUNICATIONS JOURNAL

12 SEPTEMBER 2013 • VOLUME V • NUMBER 3

Classes of Garbling Schemes

91

INFOCOMMUNICATIONS JOURNAL

SEPTEMBER 2013 • VOLUME V • NUMBER 3 13

Classes of Garbling Schemes

92

INFOCOMMUNICATIONS JOURNAL

14 SEPTEMBER 2013 • VOLUME V • NUMBER 3

Classes of Garbling Schemes

93

INFOCOMMUNICATIONS JOURNAL

SEPTEMBER 2013 • VOLUME V • NUMBER 3 15

Classes of Garbling Schemes

94

INFOCOMMUNICATIONS JOURNAL

16 SEPTEMBER 2013 • VOLUME V • NUMBER 3

Classes of Garbling Schemes

95

96

II

Paper II

Hierarchy for Classes of Garbling Schemes

T. Meskanen and V. Niemi and N. Nieminen (2015). Studia Scientiarum
Mathematicarium Hungarica, 52(2):1-12

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

III
Paper III

Hierarchy for Classes of Projective Garbling Schemes

T. Meskanen and V. Niemi and N. Nieminen (2014). In International
Conference on Information and Communications Technologies (ICT 2014),
pages 1-8. IEEE

121

122

123

124

125

126

127

128

129

130

IVPaper IV

On Reusable Projective Garbling Schemes

T. Meskanen and V. Niemi and N. Nieminen (2014). In 2014 IEEE Inter-
national Conference on Computer and Information Technology (CIT 2014),
pages 315-322. IEEE

131

132

133

134

135

136

137

138

139

140

V
Paper V

Garbling in Reverse Order

T. Meskanen and V. Niemi and N. Nieminen (2014). In The 13th IEEE
International Conference on Trust, Security and Privacy in Computing and
Communications (IEEE TrustCom-14), pages 53-60. IEEE

141

142

143

144

145

146

147

148

149

150

VI

Paper VI

Extended Model of Side-Information in Garbling

T. Meskanen and V. Niemi and N. Nieminen (2015). In The 14th IEEE
International Conference on Trust, Security and Privacy in Computing and
Communications (IEEE TrustCom-15), pages 950-957. IEEE

151

152

153

154

155

156

157

158

159

160

VII

Paper VII

How to Use Garbling for Privacy Preserving Elec-
tronic Surveillance Services

T. Meskanen and V. Niemi and N. Nieminen (2015). Cyber Security and
Mobility, 4(1):41-64

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

VIII

Paper VIII

Privacy-Preserving Security Monitoring for Assisted
Living Services

N. Nieminen and A. Lepistö (2015). In Proceedings of the 17th International
Symposium on Health Information Management Research (ISHIMR 2015),
pages 189-199. York St. John Universty & University of Sheffield

187

188

189

190

191

192

193

194

195

196

197

198

199

200

Part III

Omitted proofs in original
publications

Chapter 6

Omitted proofs

In original publications, proofs of some theorems have been omitted. This
chapter contains the omitted proofs of these theorems. These proofs have
been left out from the papers due to strict page limits imposed by the
publication venues. However, the proofs are included in this work for com-
pleteness. Sections in this chapter contain only the proofs, the theorems are
not repeated since they can be found in the original publications.

6.1 Original publication III

Proof of Theorem 2: For the security notions of privacy and
matchability-only, we prove the claim only under the following assumption
(∗). For obliviousness, this additional assumption is not needed.

Assumption (∗) We assume that there exist two functions f0, f1 and two
arguments x0 6= x1 such that Φ(f0) = Φ(f1) and ev(f0, x0) = ev(f1, x1).

For example, if there exists a function f such that the evaluation of f ,
i.e. ev(f, ·), is not injective then the assumption (∗) holds.

There are pathological cases where the assumption (∗) does not hold. For
instance, if both Φ and ev are identity functions then all garbling schemes
are prv.yyy.padap` and mao.yyy.padap` secure. In this case, even a triv-
ial garbling scheme that uses identity functions for garbling is secure (for
indistinguishability).

The same assumption (∗) is needed when proving the following theo-
rems: Theorem 1 and Theorem 2 in publication II, Theorem 1, Theorem 2
and Theorem 4 in publication III, Theorem 3 and Theorem 4 in publica-
tion V and Theorem 5 in publication VI. The assumption is needed for the
privacy and matchability-only notions whereas for the obliviousness notion
the results hold without this additional assumption. If we did not make
the assumption (∗) for privacy and matchability-only security classes, then

203

in some situations all garbling schemes would be secure and the hierarchy
would collapse. On the other hand, all inclusions are proper for garbling
schemes achieving obliviousness, even in the case of pathological evaluation
algorithms.

The inclusion F∗ ⊆ F` clearly holds for any ` ∈ N, so we have the
inclusion

F∗ ⊆
∞⋂
`=1
F`.

If
⋂∞
`=1F` = ∅ holds then we must have that F∗ = ∅ since F∗ is a subset

of
⋂∞
`=1F` = ∅.
Let us assume that

⋂∞
`=1F` is non-empty. Our aim is to prove that there

is a garbling scheme in
⋂∞
`=1F` which does not belong to F∗.

Let G = (Gb, En, Ev, De, ev) be a garbling scheme in
⋂∞
`=1F`. We con-

struct a garbling scheme G′ = (Gb′, En′, Ev′, De, ev) by modifying the algo-
rithms Gb, En and Ev of garbling scheme G as follows.

The modified encrypting algorithm En′ consists of three parts. The first
part contains the original encrypting algorithm En from garbling scheme G.
The second part is a completely independent, symmetric, non-deterministic,
secure encryption scheme Ên that is used to encrypt xi with an independent
key which will be denoted by ê. This independent encryption key ê is gen-
erated by the garbling algorithm Gb′. For the third part, we use a secret
sharing scheme which is also constructed by the garbling algorithm Gb′. The
secret is the encryption key ê which is divided into t shares, where any sub-
set of k shares of the secret is sufficient to reconstruct the key ê. Here, k
represents the security parameter in the garbling scheme G.

The garbled argument bit X ′i is obtained with algorithm En′ as follows:
En′((e, ê, t shares), xi) = (En(e, xi), Ên(ê, xi), s) = (Xi, X̂i, s) where s is a
random share of ê.

The garbling algorithm Gb′ creates (F ′, e′, d′) by using algorithm Gb to
generate (F, e, d). In addition, it has to create ê by taking the security pa-
rameter k into account (the encryption with ê cannot be breakable in polyno-
mial time with respect to k). Moreover, Gb′ creates t shares of ê. The output
of algorithm Gb′ is (F ′, e′, d′) where F ′ = ((F, F̂), e′ = (e, ê, t shares of key ê)
and d′ = d. The components of F ′ consist of the garbled function F (gener-
ated by Gb) and encrypted function F̂ = Ên(ê, f).

The garbled evaluation algorithm Ev′ takes ((F, F̂), (X, X̂, s)) as its in-
puts. Here X = X1 . . . Xn is the fully specified garbled input which is
obtained by using En of garbling scheme G whereas X̂ = X̂1 . . . X̂n is the
fully specified argument encrypted with the independent key ê. Finally,
S = {s1, . . . sn} is the set of n random shares of secret ê. The algorithm omits
the new parts F̂ , X̂, s and computes Y = Ev′((F, F̂), (X, X̂, s)) = Ev(F,X).

204

First we prove that G′ ∈
⋂∞
`=1F`. To do that, we first prove that G′ ∈ F`

for all ` ∈ N from which the claim follows. Consider an arbitrary adversary
playing the game related to class F`. The win probability of the adver-
sary now depends on the parameters ` and k, because these two variables
determine whether the adversary could have enough shares to reconstruct
the second encryption key ê. If k > n · ` then the adversary does not have
enough shares to reconstruct ê, and the advantage in the game will be the
same as the adversary would have with respect to garbling scheme G, i.e.
the advantage is negligible.

Finally, consider the claim G′ /∈ F∗. An adversary playing the game
related to F∗ is allowed to call INPUT procedure arbitrarily many times,
especially more than k times. If the adversary calls INPUT procedure k2 times
then the well-known approximations related to birthday paradox imply that
there is a non-zero probability, not depending on k, to get all the shares.
Consequently, the adversary has a non-zero probability, not depending on
k, to win the game. Let us now show why this is the case.

Here we need the assumption (∗) mentioned in the beginning. Shares
of the encryption key ê do not help unless there are at least two differ-
ent possible inputs. These two can then be told apart once all shares are
available.

When the adversary plays the indistinguishability-based security game,
the adversary chooses f0, f1, x0 and x1 such that the properties of assump-
tion (∗) are satisfied. All the tests in the game are passed with these inputs
and the adversary gets (F, F̂) and (X, X̂). Since there are enough shares
to recover the encryption key ê, the adversary can decrypt F̂ and X̂. The
decryptions of F̂ and X̂ now reveal which of the functions and which of the
corresponding arguments have been used in the garbling. In this case, the
adversary is always able to win the game.

We have assumed that there are elements f0, f1, x0 and x1 which satisfy
the properties of assumption (∗). When the adversary plays a simulation-
based security game, he chooses randomly one of the functions f0, f1 and
the corresponding argument, x0 or x1. It follows that the simulator in the
game does not have a chance to distinguish which of (f0, x0) or (f1, x1) has
been chosen by the adversary. The simulator outputs (F, F̂) and (X, X̂)
in usual way. Since there are enough shares to recover the encryption key
ê, the adversary can decrypt F̂ and X̂. Now, there is at least 50% chance
that the decryptions of F̂ and X̂ are not representing the function and the
argument chosen by the adversary. In this case, the adversary is able to
always win the game.

In both cases, being able to decrypt F̂ and X̂ leads to ability to win the
game. This happens with a positive probability, not depending on the secu-
rity parameter k. This leads to non-negligible advantage of the adversary,

205

implying that the garbling scheme G′ does not belong to F∗. This completes
the proof. �

Proof of Theorem 3: Let us first consider the inclusion F` ⊆ C`. Let G
be a garbling scheme in class F`. We prove that G belongs also to class C`.

Let A be an arbitrary adversary playing the security game against gar-
bling scheme G in class C`. We construct another adversary A′ playing the
corresponding security game related to class F`. Adversary A′ uses A as a
subroutine as follows. The game related to class F` starts with INITIALIZE,
after which A′ should give its input to GARBLE procedure. Instead, it tells
adversary A to start a game related to class C`. Now, adversary A presumes
to play the actual security game related to C`, but the game is actually emu-
lated by A′. Adversary A sends its input for GARBLE procedure (of C` game)
to A′. A′ sends the input from A to its GARBLE in F` game and gets an
output. A′ sends this output to A who now proceeds to INPUT procedure.
A starts sending its arguments, where all the m bits are fully specified, to
A′. Every time A′ gets a fully specified garbled argument of length n, A′
makes n queries to its INPUT by sending A′s argument bit by bit (the order
in which the bits are sent does not matter). A′ sends the fully specified
garbled argument to A after getting all n garbled argument bits. Then A
may make a new INPUT query or proceed to FINALIZE. A′ does the same as
A does. Because A is an adversary playing the game related to C`, A can
make at most ` INPUT queries. Therefore, if A uses all ` allowed queries,
A′ must make n · ` queries to INPUT in the game related to F`, and this is
exactly the maximum number of allowed INPUT queries for adversary A′ in
F` game.

Let us now consider the advantage of both adversaries. The answer
of adversary A′ to FINALIZE procedure in F` game is exactly the same
as the answer of adversary A in C` game. Therefore, the probability that
adversary A′ wins its C` game is the same as the probability that A wins its
F` game. This implies that the advantages of both adversaries are equal.
According to our assumption, G belongs to security class F` and because the
advantage of any adversary playing the game related to class F` is negligible,
the advantage of A′ is negligible. But A has the same advantage in his
game which is now negligible. Moreover, we assumed A to be an arbitrary
adversary which now implies that garbling scheme G belongs to security
class C` as well.

Next consider the claim F` 6= C`. We have to show that there is a garbling
scheme in class C` which does not belong to the class F`. The class C` consists
of all adaptively secure garbling schemes, including garbling schemes which
do not have the projectivity property. On the other hand, all the garbling
schemes in F` are projective. Therefore, a non-projective, adaptively secure

206

garbling scheme belongs to C` but not to F`, which proves the claim F` 6= C`.
�

Proof of Theorem 4: Our aim is to prove that there exists a garbling
scheme which belongs to class F` but does not belong to class C`+1. We
construct a garbling scheme G′ starting from an arbitrary garbling scheme
G = (Gb, En, De, Ev, ev) ∈ F` by modifying algorithms Gb, En and Ev. The
modifications to Gb and Ev are the same as the modifications made in proofs
of Theorem 1 and Theorem 2 in this same publication III.

We modify the encryption algorithm En as follows. The modified algo-
rithm En′ takes (e, ê, x, {s1, s2, . . . , st}) as input and outputs (X, X̂, s). Here,
the key ê is an encryption key from an independent, secure, symmetric, non-
deterministic encryption scheme (Ên, D̂e). We encrypt the argument x with
this independent key. The encrypted argument is denoted by X̂ = Ên(ê, x).
The third component s is a randomly chosen share of the secret, which in
this case is the encryption key ê. The encryption keys e, ê and the shares
of ê are generated by the garbling algorithm Gb.

The independent encryption scheme (Ên, D̂e) is used to encrypt also the
function f . The encryption of f with the independent key ê is denoted by
Ên(ê, f) = F̂ . The garbling algorithm Gb′ first generates the keys e, ê, d and
the shares of ê. Then it constructs the garbled function F and the encrypted
function F̂ . Depending on the security notion, the garbling algorithm Gb′

returns (F, F̂ , d) (privacy) or (F, F̂) (matchability-only, obliviousness).
The encryption of the ith input bit consists of the garbled argument

bit Xi, the encrypted argument bit X̂i = Ên(ê, xi||i||r) and a share chosen
from the t shares of key ê. We denote the garbled argument bit by Xi =
(Xi, X̂i, s). The choice of the share s is performed as follows. Let h be a hash
function that takes two inputs, i and r, and returns an integer j ∈ {1, . . . , t}.
The t shares of ê are indexed from 1 to t, and the value of h(i, r) tells which
of the shares has been chosen. The number of shares needed to reconstruct
ê is n · `+ 1.

Let us now consider the projectivity of the modified scheme G′. Let
x = x1 . . . xn and x′ = x′1 . . . x

′
n be two bit strings of length n. Let X and

X ′ be the garbled arguments for x and x′ in scheme G′. The arguments
x and x′ have been encrypted using the same randomness value r and the
same encryption key e, as is assumed in the definition of projectivity. The
garbled arguments X and X ′ can be presented in form X = X1 . . . Xn and
X ′ = X ′1 . . . X

′
n where Xi = (Xi, X̂i, sh(i,r)) and X ′i = (X ′i, X̂ ′i, sh(i,r)) for all

i ∈ [1, n]. If xi = x′i then we have that Xi = X ′i. This follows from the
following facts. First of all, we have that Xi = X ′i because we assumed that
the garbling scheme G is projective and these two garbled arguments were
constructed using scheme G. Secondly, X̂i = X̂ ′i: the decryptions of X̂i and
X̂ ′i must be equal, since they were both encrypted with the same encryption

207

key ê. Lastly, the shares of of key ê are also equal since the choice of the
share depends only on the index i and the randomness value r which are
the same for arguments xi and x′i. This now shows that our claim holds: if
xi = x′i then Xi = X ′i.

Conversely, if Xi = X ′i then we have that Xi = X ′i, X̂i = X̂ ′i and the
secret shares are equal. Now we must have that xi = x′i. This follows from
the projectivity of G and Xi = X ′i (which were constructed with the scheme
G. This now shows that the projectivity property holds for the garbling
scheme G′.

Now we show that the garbling scheme G′ belongs to class F`. First of
all, the garbling scheme G′ uses the garbling algorithm Gb, En and Ev from
garbling scheme G and garbling scheme G is in F`. We show that the parts
F̂ , X̂ and the shares of ê are not useful in trying to get the garbling scheme
G′ out of the class F`. The number of shares received by the adversary
along with every garbled argument bit is at most n · ` < n · ` + 1. These
n · ` shares are not useful in reconstructing ê and thus the adversary is not
able to recover f or xi’s. To conclude, getting n · ` shares of key ê does not
increase the winning probability of the adversary, so the garbling scheme G′
belongs to class F`.

Next we show that the constructed scheme G′ does not belong to class
C`+1. Every garbled argument bit carries a share of secret, and a fully
specified argument thus reveals n shares of the secret. An adversary playing
the game related to class C`+1 now may get as many as n · (`+ 1) > n · `+ 1
shares of the secret. Thus the adversary is allowed to get enough shares to
reconstruct ê with certain positive probability that does not depend on the
security parameter k. As a consequence, this adversary has a chance (that
does not depend on k) of recovering f and x.

Now we show that, using f and x, the adversary has a non-negligible
advantage in finding the correct challenge bit b and winning the game. We
consider this claim in indistinguishability-based and simulation-based games
separately. Here we make use of the assumption (∗) presented in the proof
of Theorem 2 above.

If the adversary plays indistinguishability-based game then the adversary
chooses two Â¨functions f0, f1 and two arguments x0, x1 satisfying the three
properties of assumption (∗). Because the adversary now has a positive
probability, not depending on the security parameter k, to reconstruct ê
using his secret shares, he has a positive chance to decrypt F̂ and X̂. The
decryption of F̂ reveals which of the two functions, f0 or f1, was garbled
and the decryption of X̂ reveals which of the corresponding arguments was
garbled. In either case the challenge bit b is revealed to the adversary.

In simulation-based game, the adversary chooses either (f0, x0) or
(f1, x1) where f0, f1, x0 and x1 satisfy the three properties of assumption

208

(∗). Let us denote the choice of adversary by (f, x). We will now show that
there is an adversary that has always a chance to win the security game
if the adversary is able to decrypt F̂ or X̂. We consider the privacy, the
obliviousness and the matchability-only notions separately.

In the privacy notion, the simulator gets Φ(f) as input when it gener-
ates (F, F̂ , d) and (Φ(f), y) when it generates (Xi, X̂i, s). Now, since the
adversary has enough shares and is able to reconstruct ê, the adversary has
a chance to decrypt F̂ and X̂. If these were generated by the real garbling
and encryption algorithms, then F̂ is decrypted to f and X̂ is decrypted to
x. We assumed that there are inputs f0, f1, x1 and x2 which satisfy the
properties of assumption (∗). The input (f, x) chosen by the adversary rep-
resents either (f0, x0) or (f1, x1). The simulator is not able to distinguish
which of the two inputs was chosen by the adversary because the inputs
to the simulator are the same in both cases. Therefore, if F̂ and X̂ were
generated by the simulator, then there is a 50% chance that either F̂ is not
decrypted to f or X̂ is not decrypted to x.

In matchability-only notion, the simulator gets the same input as in the
privacy notion. Therefore, the same arguments can be used for showing
that there is an adversary that has a chance to distinguish the simulator-
generated F̂ and X̂ from those generated by the real garbling algorithms
Gb′ and En′.

In the obliviousness notion, the simulator gets only Φ(f) as its input
when it generates the garbled function F ′ = (F, F̂) or the garbled argument
X ′ = (X, X̂, s). In this case, the simulator does not get y as its input. The
simulator’s work of finding X̂ such that X̂ is decrypted to x cannot become
easier when it is not given y as input. We can use the above arguments to
show that there is at least 50% that the simulator generates F ′ and X ′ such
that either the decryption of F̂ is different from f or the decryption of X̂ is
different from x. In either case, the adversary has a chance to find out the
value of the challenge bit.

In all above cases, the adversary gets enough shares of ê, i.e. n · (`+ 1),
the adversary has a positive probability, not depending on k, to decrypt
F̂ and X̂. This implies that the adversary has a chance to find out which
function f and argument x represent the encrypted counterparts F and X.
This in turn reveals, with certain probability (that does not depend on k),
the value of the challenge bit. In this case the adversary always wins the
game. This implies that the adversary has a non-negligible advantage (not
depending on k) in the game.

As a conclusion, learning f and x reveals the challenge bit b. Therefore,
the adversary always has a non-negligible advantage (not depending on k)
in the security game for class C`+1. This shows that G′ /∈ C`+1. �

Proof of Theorem 6:

209

For the first part, let us assume that a garbling scheme G is
prv.ind.padap` secure. Our aim is to prove that G is also mao.ind.padap`
secure.

The only difference between PrvIndPadap` and MaoIndPadap` games
is the GARBLE procedure. In PrvIndPadap` game the adversary gets (F, d)
whereas in MaoIndPadap` game the adversary gets solely F . The INPUT
procedures give the same amount of information for both adversaries, be-
cause the procedures are identical and called equally many times (from 0 to
at most n · ` times).

Therefore, having less information in MaoIndPadap` game cannot in-
crease the adversary’s winning probability compared to the win probabil-
ity in PrvIndPadap` game. This implies that the adversary’s advantage
in game MaoIndPadap` is smaller than or equal to the advantage in game
PrvIndPadap`. Since we assumed that G is prv.ind.padap` secure, adver-
sary’s advantage in game PrvIndPadap` is negligible. This implies that
adversary’s advantage is negligible in game MaoIndPadap` as well, proving
that GS(prv.ind.padap`,Φ) ⊆ GS(mao.ind.padap`,Φ).

For the second part, let us assume that a garbling scheme G is
obv.ind.padap` secure. Our aim is to prove that G is also mao.ind.padap`
secure.

The GARBLE procedures for both games ObvIndPadap` and
MaoIndPadap` are equal, whereas the INPUT procedures differ. If
INPUT procedure is called less than n times on the same argument, then the
adversary in ObvIndPadap` game has the same amount of information as
the adversary in the MaoIndPadap` game. Every time the INPUT is called
n times and one argument becomes fully specified, then the MaoIndPadap`
adversary must pass the evaluation test ev(f0, x0) = ev(f1, x1) which is not
a part of ObvIndPadap` game.

Having to pass the test cannot be easier than not having the test at
all. Therefore, the adversary’s winning probability in game MaoIndPadap`
cannot be greater than in game ObvIndPadap`. This implies that the ad-
versary’s advantage in game MaoIndPadap` is smaller than or equal to the
advantage in game ObvIndPadap`. Since we assumed G to be obv.ind.padap`
secure, the advantage in game ObvIndPadap` is negligible. This implies that
the advantage in game MaoIndPadap` is also negligible, which now proves
that G is mao.ind.padap` secure. �

Proof of Theorem 7: First consider the claim GS(prv.sim.padap`) ⊆
GS(mao.sim.padap`). To prove the claim, let G be a prv.sim.padap` secure
garbling scheme. Our aim is to prove that G is also a mao.sim.padap` secure
garbling scheme.

Let A be an arbitrary adversary playing the game MaoSimPadap`. We
construct an adversary B for game PrvSimPadap`. Adversary B uses A as

210

subroutine in the same manner as in the proof of Theorem 5 in this same
publication III.

Let us consider the two games PrvSimPadap` and MaoSimPadap`. The
only difference in PrvSimPadap` and MaoSimPadap` games is the GARBLE
procedure. In PrvSimPadap` game adversary B gets (F, d) whereas in
MaoSimPadap` game adversary A gets F without d. Therefore, in the game
PrvSimPadap` adversary B is allowed to compute y by using the decryption
key d whereas in MaoSimPadap` adversary A has no d. The INPUT pro-
cedures give the same amount of information for both adversaries, because
the procedures are identical and called equally many times (from 0 to at
most ` times). Hence, adversary B is able to correctly emulate the game
MaoSimPadap` to adversary A, so adversary A may use other strategies
than guessing when it gives its answer bA to adversary B. Since adversary
B uses A’s answer in his game and the correct answer b is the same in both
games, both adversaries have the same winning probability in their games.

This implies that the advantage of adversary A in game MaoSimPadap`
is the same as the advantage of adversary B in the PrvSimPadap` game.
Since we assumed that G is a prv.sim.padap` secure garbling scheme, the
advantage in PrvSimPadap` game is negligible for adversary B. Thus, the
advantage of an arbitrary adversary A in MaoSimPadap` game is negligible.
This proves that GS(PrvSimPadap`) ⊆ GS(MaoSimPadap`).

Then consider the claim GS(obv.sim.padap`) ⊆ GS(mao.sim.padap`). To
prove the claim, let G be a obv.sim.padap` secure garbling scheme. Our aim
is to prove that G is also a mao.sim.padap` secure garbling scheme.

Let A be an arbitrary adversary playing the game MaoSimPadap`. We
construct an adversary B for game ObvSimPadap`. Adversary B uses A
as subroutine in the same manner as in the proof of Theorem 5 in this
publication III.

Let S be the simulator for adversary B in game ObvSimPadap`. The
simulator S is takes (1k,Φ(f)) as input when it is called in GARBLE procedure.
In INPUT procedure, the simulator S takes (i, |Q|). Using simulator S, we
construct a simulator S ′ for adversary Ain game MaoSimPadap`. When the
simulator S ′ is called with input (1k,Φ(f)) in GARBLE procedure in game
MaoSimPadap` then S ′ calls simulator S with the same input (1k,Φ(f)).
When the simulator S ′ is called with input (τ, i, |Q|) in the INPUT procedure
in game MaoSimPadap` then S ′ omits the first part τ in its input and calls
S with input (i, |Q|).

First, the actual game ObvSimPadap` begins with adversary B. Ad-
versary B is asked to provide input, a function f , to the GARBLE proce-
dure. Instead of choosing the input himself, adversary B asks adversary
A to start game MaoSimPadap`. Adversary A presumes to play the ac-
tual MaoSimPadap`, not an emulated game. Therefore, when B asks for

211

a function as input to GARBLE procedure in MaoSimPadap` game, adver-
sary A sends a function f to B. Adversary B then sends the function f to
his GARBLE procedure in game ObvSimPadap`. Based on the challenge bit,
GARBLE procedure in the actual game either uses the garbling algorithm or
the simulator S to generate the garbled function F as output. F is sent to
adversary B who sends it to adversary A.

Then adversary is asked to provide an argument bit as input to INPUT
procedure. Again, B does not choose the argument bit himself; instead he
asks adversaryA to provide an argument bit as input to the INPUT procedure
in the emulated game. Adversary A sends his input (i, c) to adversary B
who sends it to his INPUT procedure. The INPUT procedure in B′s game now
generates garbled argument F by using either the garbling algorithm En or
the simulator S. The INPUT procedure sends F to B who sends it to A.

The above construction shows that adversary B is able to correctly emu-
late the MaoSimPadap` game with simulator S ′ for adversary A. Therefore,
adversary A cannot distinguish whether he plays an actual MaoSimPadap`
game or an emulated MaoSimPadap` game. Adversary A is able to answer
the challenge of game MaoSimPadap`. Adversary B uses A’s answer in his
game. Furthermore, the answer b in both games is the same. Consequently,
both adversaries have the same winning probability in their games and hence
the advantage of both adversaries in their games are also equal.

According to our assumption, G is a ObvSimPadap` secure garbling
scheme: There is a simulator such that the advantage of B is negligible.
Let the simulator S mentioned above be such a simulator. Now, the simula-
tor S ′ constructed above is such that the simulator S ′ makes the advantage
of A the same as the advantage of adversary B. In other words, we have
found a simulator such that the advantage of adversary A is negligible. This
now proves the claim GS(obv.sim.padap`) ⊆ GS(mao.sim.padap`) which con-
cludes the proof. �

6.2 Original publication V

Proof of Theorem 4:
It is fairly obvious that R∗ ⊆ R` for any ` ∈ N because the adversary

playing the game related to R∗ can always make arbitrarily many calls to
GARBLE_ARG procedure, especially exactly ` calls. The claim R∗ ⊆

⋂∞
`=1R`

follows.
The second part of the theorem claims that there is a garbling scheme

that belongs to the intersection
⋂∞
`=1R` but does not belong to the class

R∗, assuming that the intersection is nonempty. To prove this claim, we
start with a garbling scheme G = (KeyGen, Ga, En, De, Ev, ev) ∈

⋂∞
`=1R` and

212

construct another garbling scheme G′ = (KeyGen′, Ga′, En′, De, Ev′, ev) as fol-
lows.

The modified key generation algorithm KeyGen′ takes (1k,m, n, p)as in-
put and outputs (g′, e′, d) where g′ = (g, g2, t shares of key g2) and e′ =
(e, g2). Keys g, e and d are generated by the key generation algorithm
KeyGen of garbling scheme G. The key g2 in is an encryption key from
a completely independent symmetric, non-deterministic encryption scheme.
We use key g2 to encrypt both the argument x and the function f with
encryption algorithm En2. For the third component of g′, we construct a
secret sharing scheme where the key g2 is the secret divided into t shares.
Exactly k shares are needed to reconstruct g2, where k represents the secu-
rity parameter.

The modified garbling algorithm Ga′ takes g′ = (g, g2, t shares), f as
input and computes (F, F2, s) where F = Ga(g, f), F2 = En2(g2, f) and
s is a random share of key g2. The modified encryption algorithm En′

takes ((e, g2), x) as input and outputs (X,X2) where X = En(e, x) and
X2 = En2(g2, x). The modified garbled evaluation function Ev′ takes
((F, F2, s), (X,X2)) as input. The algorithm omits all new parts F2, X2,
s and computes Y = Ev(F,X).

First we prove that G′ ∈
⋂∞
`=1R`. To do that, we first prove that G′ ∈ R`

for all ` ∈ N from which the claim follows. Consider an arbitrary adversary
playing the game related to class R`. The win probability of the adversary
now depends on the parameters ` and k, because these two variables de-
termine whether the adversary could have enough shares to reconstruct the
second encryption key e2. If k > ` then the adversary does not have enough
shares to reconstruct e2. In this case, the advantage in the game will be
the same as in the game related to the original garbling scheme G, i.e. the
advantage is negligible. Parameter k can always be chosen in the way that
k > ` holds, which ascertains that G′ ∈ R`.

We still have to prove the claim G′ /∈ R∗. An adversary playing the game
related to R∗ is allowed to call GARBLE_FUNC procedure arbitrarily many
times, especially more than k times. If the adversary calls GARBLE_FUNC
procedure k2 times then the well-known approximations related to birthday
paradox imply that there is a non-zero probability, not depending from k,
to find key e2 and hence win the game by decrypting F2. Next we show why
this is the case.

The adversary can always choose the functions in the security game
related to class R∗. We consider next the indistinguishability-based and
simulation-based games separately.

If the game is related to indistinguishability-based security notion then
the adversary chooses two functions f0, f1 and two arguments x0, x1 which
satisfy the three properties in assumption (∗). These inputs pass all the
tests in the game and hence the adversary is able to get F2 and X2. In

213

addition, the adversary is able to recover the encryption key e2 using the
shares received together with the garbled functions. In this way, the adver-
sary is able to find out which of the functions or which of the arguments
was garbled because he has a chance to decrypt F2 and X2. In this way the
adversary has a chance to find the value of the challenge bit.

If the game is related to simulation-based security notion then the ad-
versary chooses either (f0, x0) or (x1, f1) where f0, f1, x0, x1 satisfy the
three properties of assumption (∗). Let us denote the choice of the adver-
sary by (f, x). The simulator is not able to distinguish which of (f0, x0) or
(f1, x1) was chosen by the adversary based on its input since both choices
have the same side-information and the result of evaluation is the same for
both choices. Therefore, there is at least 50% chance that the simulator
generates an encrypted function F2 which is decrypted to a function f ′ 6= f
or the simulator generates an encrypted argument X2 which is decrypted
to an argument x′ 6= x. The adversary has now a positive chance, not de-
pending on k, to distinguish whether the garbled argument and the garbled
function were constructed by using the actual garbling algorithms or by us-
ing the simulator, since the adversary has obtained enough shares of key
e2. This implies that the adversary has a non-negligible advantage in the
simulation-based game.

In either case, the adversary has a non-negligible advantage in the game,
which in turn yields that G′ cannot belong to class R∗. This concludes the
proof. �

Proof of Theorem 6: Let us assume that G ∈ GS(xxx.sim.radap`,Φ).
Our goal is to prove that G ∈ GS(xxx.ind.radap`,Φ). Let A be an adversary
playing the XxxIndRadap` game and let us construct an adversary B for
the XxxSimRadap` game. B runs A as a subroutine as explained in the
following.

The game XxxSimRadap` starts with INITIALIZE procedure in which
the challenge bit is chosen uniformly at random. After that, the game tells
the adversary B to start the game. Adversary B in turn challenges A to play
a game XxxIndRadap`. Adversary A presumes that the challenge comes
from a real XxxIndRadap` game, so A prepares its GARBLE_ARG input x0, x1
and sends them to B. If x0 or x1 is not a bit string of length m, then B sends
⊥ to A. B lets c� {0, 1} and sends xc to its GARBLE_ARG regardless of what
was the result of the previous length test for the arguments x0, x1. Up to
this point the games progress similarly in all three cases, but from now on
the progress is slightly different. The progress of the game PrvSimRadap`
is illustrated in fig. 6.1, the other cases follow the same idea.

In game PrvSimRadap`, B gets (X, d) as return. B sends (X, d) to A,
given that both arguments x0 and x1 are appropriate (both are bit strings
of length m). Now A starts sending functions f0, f1 to B. If Φ(f0) 6= Φ(f1),

214

S GAME B A

c� {0, 1}

GARBLE_ARG

if
b = 1

if
b = 0

GARBLE_FUNC

if
b = 1

if
b = 0

FINALIZE
b =? bB

Game starts Game starts

x0, x1

xc

(Xc, d) (Xc, d)

m,n, p

(X, d) (X, d) (X, d)

f0, f1fc

Fc Fc

ev(fc, xc)

F F F

bB bA

Figure 6.1: In the above figure, B is an adversary playing the game
PrvSimRadap` denoted in the diagram by GAME. S is the simulator in this
game. A is an adversary presuming to play game PrvIndRadap`, but ac-
tually adversary B uses A as a subroutine by trying to emulate the actual
game PrvIndRadap`.

{x0, x1} 6⊆ {0, 1}m or ev(f0, x0) 6= ev(f1, x1), B sends ⊥ to A. Regardless of
possibly sending ⊥ to A, B sends f ’s to its own GARBLE_FUNC. Every time,
B gets an F as a return. B forwards F to A if none of the previous tests
failed. This may be repeated at most ` times.

The games MaoSimRadap` and MaoIndRadap` are similar to games
PrvSimRadap` and PrvIndRadap` respectively. The only difference is that
the adversary B does not get decryption key d from GARBLE_ARG procedure
in MaoSimRadap` game or in MaoIndRadap` game.

The games ObvSimRadap` and ObvIndRadap` are similar to games
MaoSimRadap` and MaoIndRadap` respectively. The only difference to
MaoSimRadap` and MaoIndRadap` games is that the test ev(f0, x0) =?

ev(f1, x1) is not performed in GARBLE_FUNC procedure.
In all three cases A returns its answer bA to the challenge by sending

bA to adversary B. Adversary B answers bB = 1 if and only if bA = c and
none of the tests in procedures GARBLE_ARG or GARBLE_FUNC ended in ⊥. B
answers 0 otherwise.

215

Let us now analyze the different outcomes of the game to find out the
win probabilities of both adversaries.

If either argument, x0 or x1 is not a bit string of lengthm, then B answers
0 regardless of A’s answer. This is the correct answer with probability 1

2 .
The next possibility is that both arguments, x0 and x1, are bit strings of

length m but all inputs (x0, x1) given by adversary A yield ⊥ in procedure
GARBLE_FUNC in the it is playing, i.e. either PrvIndAdap`, MaoIndAdap` or
ObvIndAdap`. Also in this case B answers 0 regardless of A’s answer. The
win probability of B is therefore 1

2 .
The third scenario is that both arguments, x0 and x1, are bit strings of

length m and at least one call to GARBLE_FUNC did not end in ⊥. There are
two possibilities for b. First consider case b = 0 when X and F are created
by the simulator S. In this case, A may notice that his (emulated) game has
deviated from the usual description by returning unexpected garbled values.
In this case, adversary A may refuse to return any answer to adversary B
(e.g. by returning ⊥). Then, the adversary B answers 0 in his game which
is the correct answer.

Another option is that A still continues his game despite of the fact that
the game returns unexpected garblings. In this case, A does not receive any
information about X or F , so its answer is no better (and no worse) than
a guess. Right guess still has probability 1

2 . Moreover, B loses its game if
and only if A wins its game. Consider for example the following scenario. If
bA = 0 and c = 0 then bB = 1 because bA = c. It follows that adversary A
wins its game (bA = c), but adversary B loses its game (bB 6= b). The three
other possibilities end up in a similar situation where the other adversary
wins its game if and only if the other loses.

On the other hand, if b = 1 then adversary B is able to emulate the
actual XxxIndRadap` game because F and X are created by the actual
garbling algorithm from either x0, f0 or x1, f1, giving adversary A a chance
to figure out the correct answer bA. Therefore, A has an advantage AdvA
of answering correctly to the challenge in its game. Adversary B wins the
game only if bA = c and A′s inputs pass all the tests made by adversary B.
The win probability of B is now 1

2 + 1
2 ·AdvA.

This case analysis lets us derive the win probability of adversary B
against any PT simulator S as follows.

Pr [B wins] = 1
2 Pr [B wins |b = 1] + 1

2 Pr [B wins |b = 0]

= 1
2

(1
2 + 1

2AdvA
)

+ 1
2 ·

1
2 = 1

2 + 1
4 ·AdvA.

Based on the definition of the advantage of the adversary, we have that

AdvB = 2 · Pr [B wins]− 1.

216

From this we can derive the following identity:

Pr [B wins] = 1
2 ·AdvB + 1

2

Now, using Pr [B wins] = 1
2 + 1

2 ·AdvB and Pr [B wins] = 1
2 + 1

4 ·AdvA,

we obtain AdvA = 2 ·AdvB.
We assumed G to be prv.sim.adap` secure, so there is a simulator S such

that the advantage is negligible for all PT adversaries. Especially, the advan-
tage of adversary B is negligible. Because we have that 2 ·AdvB = AdvA,
the advantage of adversary A is also negligible. Adversary A is an arbi-
trary PT adversary, which lets us conclude that any PT adversary playing
the security game in the indistinguishability-based model has a negligible
advantage, proving that G is prv.sim.adap` secure. �

Proof of Theorem 7: Our aim is to prove that

GS(prv.ind.radap`,Φ) ∪ GS(obv.ind.radap`,Φ) ⊆ GS(mao.ind.radap`,Φ).

To prove the claim, we have to prove that indistinguishability-based pri-
vacy implies indistinguishability-based matchability-only notion and that
indistinguishability-based obliviousness implies indistinguishability-based
matchability-only notion for garbling schemes achieving reverse-order adap-
tive security.

Consider first the inclusion GS(prv.ind.radap`,Φ) ⊆
GS(mao.ind.radap`,Φ). Suppose that G is a prv.ind.radap` secure
garbling scheme over Φ. Let A be an arbitrary adversary playing the game
MaoIndRadap`. We construct another adversary B for game PrvIndRadap`
which uses A as a subroutine as follows.

When adversary B is asked to give his argument to the GARBLE_ARG
procedure in game PrvIndRadap` game the adversary B challenges adver-
sary A to start game MaoIndRadap` and provide an argument for the
GARBLE_ARG procedure in this game. Adversary A presumes to play the
actual MaoIndRadap` game so it sends arguments x0 and x1 to B. Adver-
sary B sends these arguments to the GARBLE_ARG procedure in his game.
The GARBLE_ARG in PrvIndRadap` checks first whether the two arguments
are of the same length. If they are not, then the procedure sends ⊥ to B.
Adversary B then sends ⊥ to A. If the arguments x0 and x1 are of correct
length, then the GARBLE_ARG procedure in game PrvIndRadap` garbles xb
based on the choice of the challenge bit b. The procedure sends (X, d) to
adversary B. Adversary B then sends only X to A, keeping d as its own
information.

Then adversary A starts sending the functions f0 and f1 to adversary
B. Adversary B sends these functions to its GARBLE_FUNC procedure. The

217

GARBLE_FUNC procedure performs the checks {x0, x1} ∈? {0, 1}m, Φ(f0) =?

Φ(f1) and ev(f0, x0) =? ev(f1, x1). If any of these three checks fail, the
GARBLE_FUNC procedure sends ⊥ to B. Adversary B then forwards ⊥ to A.
If none of the checks fail, then GARBLE_FUNC procedure garbles the function
fb based on the choice of the challenge bit and sends F to adversary B.
Adversary B sends F to A.

The queries to GARBLE_FUNC are repeated at most ` times. Then adver-
sary A sends his answer bA to adversary B. Adversary B uses bA as his own
answer and sends it to his FINALIZE procedure in game PrvIndRadap`. Let
us now analyze the different outcomes of the game. The adversary B is able
to correctly emulate game MaoIndRadap` to adversary A. In addition, the
answers of A and B are identical, so both adversaries have the same win-
ning probability to win their own games, implying that the advantages of
both adversaries are equal. Since we assumed that the garbling scheme G is
prv.ind.radap` secure, the advantage of adversary B is negligible. This yields
that the advantage of an arbitrary adversary playing game MaoIndRadap`
is also negligible, which proves the first inclusion in the claim.

Consider then the second inclusion GS(obv.ind.radap`,Φ) ⊆
GS(mao.ind.radap`,Φ). Suppose that G ∈ GS(obv.ind.radap`,Φ). Let
A be an arbitrary adversary playing the game MaoIndRadap`. We
construct an adversary B playing the game ObvIndRadap` which uses
adversary A as his subroutine as follows.

The ObvIndRadap` game starts by the choice of the challenge bit b
in INITIALIZE procedure. Then the ObvIndRadap` game asks adversary
B to give its input arguments x0 and x1 to the GARBLE_ARG procedure.
Instead of choosing the arguments himself, adversary B challenges A to
play MaoIndRadap` game. Since adversary A presumes to play the actual
MaoIndRadap` game, he sends x0 and x1 to B. Adversary B sends (x0, x1)
to GARBLE_ARG procedure in his game.

The procedure checks whether the arguments x0 and x1 are of correct
length. If this is not the case, then the procedure sends ⊥ to B. Adver-
sary B sends ⊥ to A. If the arguments are both of correct length, then
the GARBLE_ARG procedure garbles argument xb based on the choice of the
challenge bit sends X to B. Adversary B sends X to A.

Then adversary A starts sending functions f0 and f1 to B who then
sends them to his GARBLE_FUNC procedure. First, the procedure performs
the checks {x0, x1} ∈? {0, 1}m and Φ(f0) =? Φ(f1). If any of these two
checks fail, the GARBLE_FUNC procedure sends ⊥ to B. Adversary B then
forwards ⊥ to A. If none of the checks fail, then GARBLE_FUNC procedure
garbles the function fb based on the choice of the challenge bit and sends F to
adversary B. Adversary B now computes y0 = ev(f0, x0) and y1 = ev(f1, x1)
and checks whether y0 = y1. If this is not the case, then adversary B sends
⊥ to A. Otherwise, adversary B sends F to A.

218

The queries to GARBLE_FUNC are repeated at most ` times. Then adver-
sary A sends his answer bA to adversary B. Adversary B uses bA as his own
answer and sends it to his FINALIZE procedure in game PrvIndRadap`. Let
us now analyze the different outcomes of the game. The adversary B is able
to correctly emulate game MaoIndRadap` to adversary A. In addition, the
answers of A and B are identical, so both adversaries have the same win-
ning probability to win their own games, implying that the advantages of
both adversaries are equal. Since we assumed that the garbling scheme G is
obv.ind.radap` secure, the advantage of adversary B is negligible. This yields
that the advantage of an arbitrary adversary playing game MaoIndRadap`
is also negligible, which proves the second inclusion in the claim. �

Proof of Theorem 8: Our aim is to prove that GS(prv.sim.radap`) ∪
GS(obv.sim.radap`) ⊆ GS(mao.sim.radap`). To prove the claim, we have to
show that simulation-based privacy implies simulation-based matchability-
only notion and simulation-based obliviousness implies simulation-based
matchability-only notion for garbling schemes achieving reverse-order adap-
tive security.

First, assume that garbling scheme G is prv.sim.radap` secure. Our aim
is to prove that then G is also mao.sim.adap` secure. There is only one differ-
ence in the games PrvSimAdap` and MaoSimAdap`: in game PrvSimAdap`,
GARBLE_ARG returns the decryption key d together with X whereas in game
MaoSimAdap`, only the garbled argument is returned. Omitting the de-
cryption key d from (X, d) does not increase the winning probability of an
adversary playing the MaoSimRadap` game. This proves the first claim.

Then, consider the second claim GS(obv.sim.adap`,Φ) ⊆
GS(mao.sim.adap`,Φ). Suppose that the garbling scheme G is obv.sim.adap`
secure. Intuitively, it is clear that the simulator’s additional input y cannot
make its task of producing a good output (F,X) more difficult in the
MaoSimRadap` game. Let A be an arbitrary adversary playing the
MaoSimRadap` game and let A′ be the corresponding adversary playing
the ObvSimRadap` game. Adversary A′ emulates the behavior of adversary
A as before.

Because G is an obv.sim.radap` secure garbling scheme, there is a sim-
ulator S ′ such that it makes the advantage of A′ negligible. Our aim is to
construct a simulator S for the MaoSimRadap` game that makes the ad-
vantage of A negligible. On input (1k,m, n, p) the simulator S simply calls
S ′ on the same input. On input (Φ(f), y) the simulator S omits y and calls
S ′(Φ(f)) to get F . Now, the advantage of both adversaries is the same be-
cause both simulators and both adversaries behave identically. Since A′ has
a negligible advantage in its ObvSimRadap` game and the advantage of A
in game MaoSimRapad` is the same as the advantage of A′, the advantage
of A is negligible.

219

We can now conclude that we have found a simulator S for an arbitrary
adversary A such that the advantage of A is negligible. This proves the
claim that G is also mao.sim.radap` secure.

Combining the two results above we have proven the original claim
GS(prv.sim.radap`) ∪ GS(obv.sim.radap`) ⊆ mao.sim.radap`. �

6.3 Original publication VI
Proof of Theorem 1: We prove only the equality

GS(prv.sim.stat,Φ)
⋂

GS(evcirc) = GS(SIM.STAT,Ψtot)
⋂

GS(evcirc).

The other cases can be proved in similar manner. For simplicity we use
notation ev instead of evcirc throughout the proof. Let us first assume that
G is prv.sim.stat secure over side-information function Φ. Our aim is to
prove that then G is also SIM.STAT secure over Ψtot such that Ψev(f, x) =
(ev(f, x),Φ(f)), ΨGb(e, d, f) = Ψfunc(f) = Φ(f) and Ψrest(e, d, f, x) = d and
these values are efficiently computable from Ψtot(e, d, f, x).

Let A be an arbitrary adversary playing the SIM.STAT game against G
with side-information function Ψtot. We construct an adversary B for game
prv.sim.stat with side-information function Φ. Adversary B runs A as a
subroutine. This means that adversary B emulates the SIM.STAT game for
adversary A and uses A’s answers in its own prv.sim.stat game.

Because G is a prv.sim.stat secure garbling scheme, for every polynomial-
time adversary there is a simulator such that the advantage of the adversary
is negligible. Let S be such a simulator for adversary B in game prv.sim.stat.
For the game SIM.STAT we construct a simulator S ′ as follows. Simulator
S ′ takes (1k,Ψev(f, x)) as an input and first computes Φ(f) and y = ev(f, x)
from Ψev(f, x). Then the simulator S ′ calls S with input (1k, y,Φ(f)). Sim-
ulator S ′ is used against adversary A in game prv.sim.stat.

The prv.sim.stat game starts with procedure INITIALIZE in which a
value for the challenge bit is chosen uniformly at random. Next, the ad-
versary B is expected to query procedure GARBLE with input (f, x). In-
stead of choosing (f, x) itself, adversary B asks adversary A for input for
the GARBLE procedure in game SIM.STAT. Adversary A presumes to play
real SIM.STAT game so it sends (f, x) to adversary B. Adversary B first
checks whether x ∈ Df , in other words whether x is a bit string of length
m where m is the number of input wires in circuit f . If x /∈ Df then B
sends ⊥ to A and tells that procedure GARBLE is ended. Regardless of the
result of test x ∈? Df , adversary B sends (f, x) to its own GARBLE pro-
cedure. GARBLE procedure first checks whether x ∈ {0, 1}m, i.e. whether
the argument x is a bit string of length m where m is the number of in-
put wires in circuit f . Note that this test is passed whenever the test

220

x ∈? Df in game SIM.STAT is passed. If x /∈ {0, 1}m, then the GARBLE
procedure in game prv.sim.stat is ended with ⊥ which is sent to adver-
sary B. Otherwise, GARBLE prepares (F,X) based on the value of the chal-
lenge bit. If b = 1 then (F,X, d) is generated by the real garbling algo-
rithms Gb and En and if b = 0 then the simulator S generates (F,X, d).
In both cases GARBLE returns (F,X, d) to adversary B. Now, adversary B
computes Ψtot(e, d, f, x) as follows: he first computes Y = Ev(F,X) and
y = De(d, Y), where y = ev(f, x). Then B sets Ψev(f, x) = (y,Φ(f)),
Ψfunc(f) = ΨGb(e, d, f) = Φ(f) and Ψrest(e, d, f, x) = d, which now form
Ψtot(e, d, f, x). Then B sets z = Ψtot(e, d, f, x) and sends (F,X, z) to adver-
sary A. Now, adversary A sends bA to B. Value bA represents A’s candidate
for the value of the challenge bit. Adversary B answers the same as A, i.e.
bB = bA.

Let us now consider the possible outcomes of the game. If x /∈ Df then
adversary A does not receive information about (F,X) or Ψtot(e, d, f, x)
because the query to GARBLE_ARG returns ⊥. But in this case also adversary
B gets ⊥ from its GARBLE procedure (since x is not a bit string of length m).
If x ∈ Df , then adversary B is gets (F,X, d) from its GARBLE procedure and
can use this information to construct z for A. Therefore, adversary B is able
to correctly emulate the SIM.STAT game with the simulator S ′ to adversary
A. Since the answers of both adversaries are the same, the win probability of
adversary A is the same as the win probability of adversary B. This implies
that the advantage of adversary A is equal to the advantage of adversary
B. We assumed that G is prv.sim.stat secure over Φ, meaning that there
is a simulator that makes the advantage of adversary B negligible in game
prv.sim.stat. Let simulator S be such a simulator. But now the simulator
S ′ constructed above makes the advantage of adversary A negligible. Thus,
the garbling scheme G is also SIM.STAT secure. This now completes the
proof of the claim

GS(prv.sim.stat,Φ)
⋂

GS(evcirc) ⊆ GS(SIM.STAT,Ψtot)
⋂

GS(evcirc).

Conversely, let us assume that G is SIM.STAT secure over side-
information function Ψtot. Our aim is to prove that G is prv.sim.stat secure
over Φ. The idea of the proof is similar to the earlier part of this proof.
Let adversary B be an arbitrary adversary playing game prv.sim.stat with
side-information function Φ against G. We construct an adversary A for
game SIM.STAT with side-information function Ψtot against G as follows.
Adversary A emulates game prv.sim.stat for B and uses B as a subroutine
in the following way.

Because G is a SIM.STAT secure garbling scheme over Ψtot, there must
be a simulator for any polynomial-time adversary such that the advantage
of the adversary is negligible. Let S be such a simulator in game SIM.STAT
for adversary A. In game prv.sim.stat we use the following simulator S ′

221

against adversary B. Simulator S ′ takes (1k, y,Φ(f)) as an input. First, S ′
computes Ψ(f, x) = (Φ(f),m, y). Note that it is assumed that m can always
be computed from Φ(f). Then, S ′ calls S with input (1k,Ψ(f, x)).

The SIM.STAT game starts with the choice of the challenge bit b. Then
adversary A is asked to provide input to GARBLE procedure. Instead of
choosing (f, x) itself, adversary A tells adversary B to provide input to
GARBLE procedure in game prv.sim.stat. B presumes to play real prv.sim.stat
game, so B sends (f, x) to A. Now, A checks whether x ∈ {0, 1}m where
m is the number of input wires in circuit f . If x /∈ {0, 1}m, A sends ⊥
to B. Regardless of the result of x ∈? {0, 1}m, adversary A sends (f, x)
to its GARBLE procedure. Now, GARBLE in game SIM.STAT checks whether
x ∈ Df , i.e. whether x is a bit string of length m. The test fails exactly
when x /∈ {0, 1}m. In this case, adversary A gets ⊥ from GARBLE . Otherwise,
GARBLE returns (F,X, z) based on the value of the challenge bit b. If b =
1 then (F,X, z) is created with actual algorithms Gb, En and Ψtot and if
b = 0 then (F,X, z) is generated by a simulator S. Now, adversary A
needs to find out d from z. This is possible, since adversary A is able to
compute Ψrest(e, d, f, x) = d from z = Ψtot(e, d, f, x). Adversary A now
sends (F,X, d) to adversary B. Adversary B sends its answer bB to A.
Adversary A answers the same as B, i.e. bA = bB.

Let us now analyze the possible outcomes of the game. If x /∈ {0, 1}m
then adversary B does not receive information about (F,X, d) because the
query to GARBLE_ARG yields ⊥. In this case, also adversary A gets ⊥ since
x /∈ Df (x is not a bit string of length m). If x ∈ {0, 1}m then adversary A
is allowed to find out the information that adversary B needs in its game,
namely (F,X, d). Since the answer of adversary B is the same as the an-
swer of adversary A, the win probability of B in game prv.sim.stat is the
same as the win probability of A in game SIM.STAT. This in turn implies
that AdvB = AdvA. The simulator S is such that the advantage of adver-
sary A is negligible. But now simulator S ′ in game prv.sim.stat makes the
advantage of adversary B equal to AdvA, i.e. negligible. This proves that

GS(SIM.STAT,Ψtot)
⋂

GS(evcirc) ⊆ GS(prv.sim.stat,Φ)
⋂

GS(evcirc).

This concludes the proof. �

Proof of Theorem 2: We prove only the equality

GS(obv.ind.adap`,Φ)
⋂

GS(evcirc) = GS(IND.ADAP`,Ψtot)
⋂

GS(evcirc).

The other cases can be proven in similar manner. For simplicity we use
notation ev instead of evcirc throughout the proof. Let us first assume
that G is obv.ind.adap` secure over side-information function Φ. Our aim
is to prove that then G is also IND.ADAP` secure over Ψtot. From Ψtot

222

we can efficiently compute ΨGb(e, d, f) = Ψev(f, x) = Ψfunc(f) = Φ(f) and
Ψrest(e, d, f, x) = ε.

Let A be an arbitrary adversary playing the IND.ADAP` game against G
with side-information function Ψtot. We construct an adversary B for game
obv.ind.adap` with side-information function Φ. Adversary B runs A as a
subroutine. This means that adversary B emulates the IND.ADAP` game
for adversary A and uses A’s answers in its own obv.ind.adap` game.

First, the obv.ind.adap` game starts by the choice of the challenge bit
b. Then, adversary B is expected to provide two functions as input to
GARBLE_FUNC procedure. Instead of choosing the functions itself, adversary
B starts IND.ADAP` game with adversary A. Since adversary A presumes
to play a real IND.ADAP` game, it sends two functions, f0 and f1, to
adversary B. Adversary B sends the same functions, f0 and f1, to its game
obv.ind.adap`. The game first checks whether Φ(f0) = Φ(f1) holds. If
this is not the case, then the game sends ⊥ to adversary B. This is the
correct behavior because Ψfunc(f0) 6= Ψfunc(f1), following from the fact that
Ψfunc(f0) = Φ(f0), Ψfunc(f1) = Φ(f1) and Φ(f0) 6= Φ(f1). In this case,
adversary B sends ⊥ to A.

If f0 and f1 pass the test Φ(f0) = Φ(f1) in the obv.ind.adap` game,
then the game garbles function fb, based on the choice of the challenge bit.
The garbled function F is sent to adversary B. Now adversary B sends
(F,Φ(fb)) to adversary A: in the IND.ADAP` game, an adversary should
get (F,w) where w = ΨGb(e, d, fb) = Φ(fb). After getting (F,w), adversary
A chooses two arguments, x0 and x1, and sends them to adversary B to
get output from procedure GARBLE_ARG. Adversary B sends (x0, x1) to its
obv.ind.adap` game.

The game first checks again, whether the side-information Φ(f0) coin-
cides with the side-information Φ(f1). If this is not the case, then the
obv.ind.adap` game sends ⊥ to B. Adversary B sends ⊥ to A. If the first
test in obv.ind.adap` game is passed, then the game tests whether the length
of both arguments is suitable for functions f0 and f1. If this is not the case,
then the game obv.ind.adap` sends ⊥ to B. Adversary B sends ⊥ to A.

We show next that adversary B is able to correctly emulate the
GARBLE_ARG procedure of game IND.ADAP` to adversary A. Adversary
B receives ⊥ from its game if the side-information Φ of functions f0 and
f1 are different or if the arguments x0 and x1 are not bit strings of correct
length. In this case, also adversary A receives ⊥. The meaning of ⊥ to
adversary A is that either the arguments have not been of correct form (i.e.
bit strings of correct length) or that the side-information Ψev is different for
functions f0 and f1. This is the correct behavior since Ψev(f, x) = Φ(f).

If both tests are passed in B’s obv.ind.adap` game, then adversary A
returns its answer bA to adversary B. Adversary B’s answer is the same
as A’s answer. Let us now analyze the winning chance of both adversaries.

223

Adversary B is able to correctly emulate the game IND.ADAP` to adversary
A. The answer of both adversaries is the same. Furthermore, the answer b
is the same in both games. Therefore, the probability of winning the game
is the same for both adversaries A and B.

Since we assumed that G is obv.ind.adap` secure over Φ, the advantage of
any PT adversary is negligible. Especially, the advantage of adversary B is
negligible. We assumed that the adversary A is an arbitrary PT adversary
playing the game IND.ADAP`. Now we have that the advantage of an
arbitrary adversary A in game IND.ADAP` is negligible, proving that G is
IND.ADAP` secure over the chosen side-information function Ψtot(e, d, f, x).
This concludes the proof of the claim

GS(obv.ind.adap,Φ)
⋂

GS(evcirc) ⊆ GS(IND.ADAP`,Ψtot)
⋂

GS(evcirc).

Conversely, let G be an IND.ADAP` secure garbling scheme over side-
information function Ψtot. Our aim is to prove that G is obv.ind.adap` secure
over Φ. The idea of the proof is similar to the earlier part of this proof. Let
adversary B be an arbitrary adversary playing game obv.ind.adap` with
side-information function Φ against G. We construct an adversary A for
game IND.ADAP` with side-information function Ψtot against G as follows.
Adversary A emulates game obv.ind.adap` for B and uses B as a subroutine
in the following way.

The IND.ADAP` game starts with INITIALIZE procedure in which the
challenge bit b is chosen uniformly at random. In the next step, adversary
A is expected to give two functions as input to procedure GARBLE_FUNC.
Instead of choosing f0, f1 itself, adversary A tells adversary B that game
obv.ind.adap` game has been started and an input to GARBLE_FUNC is ex-
pected. Since B presumes to play the actual, not emulated, obv.ind.adap`
game, it chooses f0, f1 and sends them to A. Adversary A sends the same
functions f0, f1 to the GARBLE_FUNC in its IND.ADAP` game. The procedure
in IND.ADAP` game first tests whether Ψfunc(f0) = Ψfunc(f1) is satisfied.
If this is not the case, then ⊥ is sent to adversary A. Adversary A sends ⊥
to B, to indicate that Φ(f0) 6= Φ(f1) is not satisfied in obv.ind.adap` game.
This is the correct behavior in the emulated game because Ψfunc(f) = Φ(f).

If the test Ψfunc(f0) = Ψfunc(f1) is passed, then GARBLE_FUNC in
IND.ADAP` game prepares a garbled function F based on the choice of
the challenge bit b: F = Gb(1k, fb). Procedure GARBLE_FUNC also computes
w = ΨGb(e, d, fb) = Φ(fb). Finally, GARBLE_FUNC sends (F,w) to A. Adver-
sary A now extracts F from (F,w) and sends it to adversary B.

Then, adversary B starts its calls to procedure GARBLE_ARG by sending
two arguments, x0 and x1, to adversary A. Adversary A sends the same
arguments to GARBLE_ARG in its IND.ADAP` game. The GARBLE_ARG first
checks whether the arguments belong to the right domain, i.e. whether they

224

are bit strings of correct length. If this is not the case, GARBLE_ARG sends ⊥
to A. Adversary A sends ⊥ to B. If the arguments are bit strings of correct
length, then the IND.ADAP` game performs the next test Ψev(f0, x0) =?

Ψev(f1, x1). If this test fails, then the game sends ⊥ to A. Adversary A
sends ⊥ to B.

We show next that adversary A is able to correctly emulate the test in
obv.ind.adap` game. In the obv.ind.adap` game, there are two tests. First,
the game tests whether the side-information of function f0 is the same as the
side-information of function f1. The result of the second test tells whether
the arguments x0 and x1 are bit strings of correct length. If either of the
tests in IND.ADAP` game fails, then adversary A gets ⊥ and consequently
also adversary B gets ⊥. If A gets ⊥ in its game, then it means that either
the arguments are not of correct form or that the functions have different
partial side-information Ψev. Because Ψev(f, x) = Φ(f), for adversary B
playing the emulated game, getting ⊥ in these cases is the correct behavior:
either the arguments are not of correct form or the functions have different
side-information.

If both tests are passed in IND.ADAP` game then GARBLE_ARG computes
the garbled argument X = En(e, xb) and z = Ψtot(e, d, fb, xb). Then, (X, z)
is sent to adversary A. Adversary A extracts X from (X, z) and sends it
to B. Adversary B may now provide its answer bB to A or make a new
GARBLE_ARG query. Both adversaries make the same amount of GARBLE_ARG
queries, both at most ` of them.

Finally, B answers bB to A, which now uses this answer also as its own
answer (i.e. bA = bB). Let us now analyze the probability that bB = bA = b
and both adversaries win their games. First of all, adversary A is able to
correctly emulate the obv.ind.adap` game to adversary B (with the same
value of b). Secondly, both adversaries answer the same bit in their games.
Therefore, both adversaries have exactly the same chance to win their game.
This yields that the advantage of both adversaries in their own games is
also the same. Since we assumed that G is IND.ADAP` secure over Ψtot,
the advantage of adversary A is negligible. Then, also the advantage of B is
negligible, which now completes the proof. �

Proof of Theorem 3:
We prove the claim in case

GS(mao.sim.adap`,Φ) = GS(SIM.ADAP`,Ψtot).

The other cases are proven in similar manner.
Consider first the claim GS(mao.sim.adap`,Φ) ⊆ GS(SIM.ADAP`,Ψtot).

To prove the claim, let G be a mao.sim.adap` secure garbling scheme
over side-information function Φ(f). Our aim is to prove that G is also
SIM.ADAP` secure over side-information function Ψtot(e, d, f, x).

225

Let A be an arbitrary adversary playing the game SIM.ADAP` game
against garbling scheme G. We construct an adversary B who plays the game
MaoSimAdap` against G. Adversary B uses adversary A as a subroutine by
emulating game SIM.ADAP` to adversary A.

Let the simulator in the game MaoSimAdap` be S. The simulator S
takes (1k,Φ(f)) as input when it is called in procedure GARBLE_FUNC and
y when the simulator is called in procedure GARBLE_ARG. Using the sim-
ulator S we construct another simulator S ′ for the game SIM.ADAP`. In
procedure GARBLE_FUNC, the simulator S ′ is called with input (1k,Ψfunc(f)).
Because Ψfunc(f) = Φ(f) according to our assumption, simulator S ′ can call
simulator S with the same input (1k,Ψfunc(f)). In procedure GARBLE_ARG,
the simulator S ′ takes input ev(f, x). Simulator S ′ now calls simulator S
with input (ev(f, x),Φ(f)) which is Ψev(f, x) according to our assumptions.

First, the game MaoSimAdap` tells adversary B to start its game and to
provide a function to procedure GARBLE_FUNC. Adversary B does not choose
f itself; instead it asks adversary A to start SIM.ADAP` game. Adversary A
presumes to play a real SIM.ADAP` game. Therefore, he chooses a function
f and sends it to adversary B. Adversary B sends f to his GARBLE_FUNC
procedure.

Based on the challenge bit chosen in the INITIALIZE procedure of game
MaoSimAdap`, GARBLE_FUNC either uses the algorithm Gb or the simulator
S ′ to compute the garbled function F . The garbled function F is sent to
adversary B who sends F to adversary A.

Then, adversary A sends his argument x to adversary B. Adversary B
sends argument x to his GARBLE_ARG procedure. The procedure GARBLE_ARG
checks first whether the argument is of correct length, i.e. whether x is a
bit string of length m. If x is not a bit string of length m then GARBLE_ARG
procedure is exited with ⊥ as the return value to adversary B. In this case,
adversary B sends ⊥ to A. If x is a bit string of lengthm, then the procedure
GARBLE_ARG computes the garbled argument using either the encryption
algorithm En or the simulator S ′ based on the value of the challenge bit.

Queries to obtain garbled arguments can be performed at most ` times.
Then adversary A gives his answer bA to adversary B. Adversary B uses
A′s answer as his own answer in the MaoSimAdap` game.

Let us now consider the possible outcomes of the game. Adversary B
receives ⊥ in his game exactly in the same cases as A gets ⊥ in his game.
Therefore, adversary B is able to correctly emulate the SIM.ADAP` game
to A. Furthermore, the answers of A and B in their games are equal. The
answer of A and B are both correct or incorrect at the same time since the
correct answer is b in both games.

To conclude, both adversaries have an equal probability to win their
games. This implies that the advantage of both adversaries in their games
are equal. Since G is mao.sim.adap` secure over Φ there is a simulator such

226

S ′ GAME A B

EMUL GARBLE

INITIALIZE

b � {0, 1}

GARBLE_ARG

if
b = 1

if
b = 0

GARBLE_FUNC EMUL_INPUT

if
b = 1

if
b = 0

FINALIZE
b =? bB

Game starts Game starts
f

f

(F, w) F

Ψfunc(f)

(F, w) (F, w) F

xx

(X, z) X

Ψev(f, x)

(X, z) (X, z) X

bB bA

Figure 6.2: In the above figure, A is an adversary playing the game
SIM.ADAP` denoted by GAME in the diagram. S ′ is the simulator in this
game. B is an adversary presuming to play game MaoSimAdap`. Actu-
ally adversary A uses B as a subroutine by trying to emulate the game
MaoSimAdap`.

that advantage of B is negligible. Let simulator S be such a simulator. We
have constructed simulator S ′ for game SIM.ADAP` which uses S in such
way that the advantage of A in game SIM.ADAP` is negligible. This now
shows that there is a simulator S ′ such that the advantage of an arbitrary
adversaryA is negligible. Thus, G is SIM.ADAP` secure over Ψtot which now
concludes the proof of the claim GS(mao.xxx.yyy,Φ) ⊆ GS(XXX.YYY,Ψtot).

Conversely, let us consider the inclusion GS(SIM.ADAP`,Ψtot) ⊆
GS(mao.sim.adap`,Φ). Let G be a garbling scheme in the class
GS(SIM.ADAP`,Ψtot). Our aim is to prove that G belongs also to the class
GS(mao.sim.adap`,Φ).

Let B be an arbitrary adversary playing the game MaoSimAdap` game
against garbling scheme G. We construct an adversary A playing the game
SIM.ADAP` who uses adversary B as subroutine. Figure 6.2 illustrates how
the games are played when A plays its own game and emulates B’s game.

Let S ′ be the simulator in game SIM.ADAP`. The simulator S ′
takes (1k,Ψfunc(f)) as input in GARBLE_FUNC procedure and Ψev(f, x) in
GARBLE_ARG procedure. We construct a simulator S for game MaoSimAdap`.
In the game MaoSimAdap`, the simulator S takes (1k,Φ(f)) as input in
INPUT procedure. Simulator S calls simulator S ′ with input (1k,Φ(f)). In-
put (1k,Φ(f)) is a valid input to simulator S ′ because we assumed that
Ψfunc(f) = Φ(f). In procedure GARBLE, the simulator S takes y as input

227

and makes call S ′(y,Φ(f)). Input (y,Φ(f)) is a valid input to simulator S ′
because we assume that Ψev(f, x) = (ev(f, x),Φ(f)).

First, the game SIM.ADAP` tells adversary A to start its game and
to provide a function to procedure GARBLE_FUNC. Adversary A does not
choose f itself; instead it asks adversary B to start MaoSimAdap` game.
Adversary B presumes to play a real MaoSimAdap` game. Therefore, he
chooses a function f and sends it to adversary A. Adversary A sends f to
his GARBLE_FUNC procedure.

Based on the challenge bit chosen in the INITIALIZE procedure of game
SIM.ADAP`, GARBLE_FUNC either uses the algorithm Gb or the simulator S
to compute the garbled function F . The output of GARBLE_FUNC procedure,
(F,w) is sent to adversary A who then sends F to adversary B.

Then, adversary B sends his argument x to adversary A. Adversary A
sends argument x to his GARBLE_ARG procedure. The procedure GARBLE_ARG
checks first whether the argument is of correct length, i.e. whether x is a
bit string of length m. If x is not a bit string of length m then GARBLE_ARG
procedure is exited with ⊥ as the return value to adversary A. In this case,
adversary A sends ⊥ to B. If x is a bit string of lengthm, then the procedure
GARBLE_ARG computes the garbled argument using either the encryption
algorithm En or the simulator S based on the value of the challenge bit.

Queries to obtain garbled arguments can be performed at most ` times.
Then adversary B gives his answer bB to adversary A. Adversary A uses
B′s answer as his own answer in the SIM.ADAP` game.

The above construction shows that adversary A is able to correctly em-
ulate mao.sim.adap` game with simulator S to adversary B. Now consider
the win probabilities of both adversaries.

Consider first the case b = 0. In this case, the simulator S ′ has been used
for constructing F and X. The simulator S in B’s game and the simulator S ′
in A’s game behave in exactly similar manner: Both simulators use the same
inputs and S ′ is constructed using simulator S. Outputs F and X generated
by S ′ are exactly the same as those generated by S. In addition, both
adversaries have the same answer in their games, so the winning probability
is the same for both adversaries.

Then consider the case b = 1. In this case, the actual garbling algorithms
Gb and En are used to construct F and X. In this case, adversary B is able
to correctly emulate mao.sim.adap` game to adversary A. Both adversaries
have the same answer in their games, so both adversaries have the same
winning probability.

In both cases b = 0 and b = 1, the winning probability of adversary B
is the same as the winning probability of A. In terms of advantages, the
advantage of adversary B is equal to the advantage of adversary A. Since G
is SIM.ADAP` secure over Ψtot there is a simulator such that the advantage
of A is negligible. Let simulator S ′ be such a simulator. Using simulator S ′

228

we have constructed a simulator S such that the advantage of an arbitrary
adversary B is negligible. This proves that G is mao.sim.adap` secure over
Φ.

This now concludes the proof of the claim GS(XXX.YYY,Φ) =
GS(mao.xxx.yyy,Ψtot). �

229

230

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www.tucs.fi

Turku

Centre

Computer

Science

for

University of Turku

Department of Information Technology

Department of Mathematics

Åbo Akademi University

Turku School of Economics

Department of Information Technologies

Institute of Information Systems Sciences

!

!

!

!

ISBN 978-952-12-3515-3
ISSN 1239-1883

