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Summary 

1. Assortative mating in wild populations is commonly reported as the correlation 

between males’ and females’ phenotypes across mated pairs. Theories of partner 

selection and quantitative genetics assume that phenotypic resemblance of partners 

captures associations in “intrinsically determined” trait values. However, when 

considering traits with a repeatability below one (labile traits or traits measured with 

error), the correlation between phenotypes of paired individuals can arise from shared 

environmental effects on the phenotypes of paired individuals or correlated 

measurement error. 

2. We introduce statistical approaches to estimate assortative mating in labile traits, or 

traits measured with error in the presence of shared environmental effects. These 

approaches include i) the correlation between the mean phenotypes of males and 

females, ii) the correlation between randomized values of individuals and iii) the 

between-pair correlation derived from a bivariate mixed model. 

3. We use simulations to show that the performance of these different approaches 

depends on the number of repeated measures within individuals or pairs, which is 

determined by study design, and rates of survival and divorce.  

4. We conclude that short-term environmental effects on phenotypes of paired 

individuals likely inflate estimates of assortative mating when not statistically 

accounted for. Our approach allows investigation of this important issue in assortative 

mating studies for labile traits (e.g., behavior, physiology, or metabolism) in both 

socially monogamous and other mating systems, and groupings of individuals outside 

a mating context. 
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Introduction 

Phenotypes of males and females are often correlated within breeding pairs of socially 

monogamous species. For instance, human partners are more similar than expected by chance 

with regards to physical traits (Silventoinen, Kaprio, Lahelma, Viken & Rose 2003), 

socioeconomic status (Mascie-Taylor 1987), education (Mare 1991; Lewis & Oppenheimer 

2000), intelligence (Mascie-Taylor 1989; Plomin & Deary 2015), and personality (Mascie-

Taylor 1989; Keller, Thiessen & Young 1996; Glicksohn & Golan 2001). Individuals can 

also be paired with partners of dissimilar phenotype, such as in white-throated sparrows 

Zonotrichia albicollis, where two color morphs exist and over 90% of the population pairs 

disassortatively (Thorneycroft 1975). Nonrandom assortment of individuals can result from 

individuals choosing their partner based on phenotypic similarity/dissimilarity (Jiang, 

Bolnick & Kirkpatrick 2013), or from other processes (Burley 1983). This nonrandom 

assortment generates a positive (‘assortative mating’) or negative (‘disassortative mating’) 

correlation between the homologous traits of mated individuals (Wright 1921).  

Nonrandom assortment and its mechanisms have been extensively studied in the wild 

because of its evolutionary implications. For instance, assortative mating has been proposed 

to drive speciation (Johannesson, Rolán-Alvarez & Ekendahl 1995; Seehausen, Alphen & 

Witte 1997; Maan & Seehausen 2011; Bolnick & Kirkpatrick 2012; Langerhans & Makowicz 

2013). Assortative mating for heritable traits, furthermore, can increase the additive genetic 

variance, or affect the strength of genetic correlations by causing linkage disequilibrium, and 

influence micro-evolution (Gimelfarb 1986; Falconer & MacKay 1996; Lynch & Walsh 

1998). Importantly, individuals are assumed to mate non-randomly with respect to individual-

specific properties, such as an individual’s genetic make-up or expression of a trait that is 

highly repeatable or fixed (Kirkpatrick & Barton 1997). When applied to less repeatable 
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(“labile”) traits, such as behavior, individuals are assumed to mate (dis)assortatively with 

respect to their average phenotypes. Nevertheless, other processes can generate a correlation 

between phenotypes of mated individuals in the wild (Jiang et al. 2013) and need to be taken 

into account (Pérez-Figueroa, de Uña-Alvarez, Conde-Padín & Rolán-Alvarez 2008; 

Snowberg & Bolnick 2012).  

Assortative mating studies focus primarily on fixed traits (Jiang et al. 2013). Recent 

research, however, increasingly addresses nonrandom mating with respect to labile traits 

(e.g., behaviour: Dingemanse, Both, Drent & Tinbergen 2004; Ariyomo & Watt 2013; Kralj-

Fišer, Sanguino Mostajo, Preik, Pekár & Schneider 2013; Montiglio, Wey, Chang, Fogarty & 

Sih 2016; body condition and ornaments: Jiang et al. 2013). Importantly, because labile traits 

(such as behaviour, hormone levels, or aspects of immunology) are repeatedly expressed 

within an individual, they can be plastically adjusted to environmental conditions between 

time points. Labile traits therefore vary not just among but also within individuals. As we will 

detail below, the assumption that an individual’s trait value (i.e., phenotype) measured at 

some point during its life reflects its “intrinsic” individual-specific value is a rather strong 

assumption for labile traits. Hence, partners may look more alike because they both respond 

similarly to a shared environmental factor, were measured by the same observer, etc., rather 

than because they were assortatively mated.  

Here, we discuss the importance of acknowledging multi-level variation when 

interpreting correlations between phenotypes of partners for labile phenotypic traits or traits 

measured with error. We mathematically describe the relative contributions of assortative 

mating, correlated environmental effects and correlated measurement error to correlations 

between phenotypes of partners, highlighting the role of the trait’s repeatability in mediating 

each mechanism’s overall effect. We further compare the utility of various statistical 

approaches used to estimate nonrandom assortment for labile phenotypes and investigate the 
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performance of each approach using simulations. We provide R scripts for researchers 

interested in estimating nonrandom assortment. Finally, we provide guidelines with regard to 

study design and statistical analyses of assortative mating for a range of biological systems. 

A variance-partitioning description of assortative mating 

Nonzero phenotypic correlations between traits of partners are often viewed as evidence for 

nonrandom assortment with respect to individual-specific phenotypes (Wright 1921; Falconer 

& Mackay 1996). We use a variance partitioning approach to illustrate why this assertion 

only stands for phenotypic traits that do not harbor within-individual variance (i.e., ‘fixed’ 

traits, like adult skeleton size in species with determinate growth, measured without error). 

Individual-specific phenotypes exist when a repeatedly measured trait is repeatable because it 

harbors significant among-individual variance (    ). Phenotypic variation (  ) is also 

attributable to within-individual plastic responses to environmental variation (  ) and 

measurement error (   ): 

                      Eqn.1 

The latter variance component (   ) would be estimated as “residual” variance (  ) in 

statistical analyses (i.e.,       ) as would variation not attributable to individual 

differences (i.e.          ) in statistical models not modeling environmental effects 

causing within-individual variation (  ). While    is 0 for “fixed” traits where phenotypic 

variation represents among-individual variation (unless measured with error),    is known to 

explain a large portion of variation in labile traits. For example, meta-analyses imply that, 

respectively, 63%, 55%, and 85% of phenotypic variance in behavior (Bell, Hankinson & 

Laskowski 2009), metabolism or hormones (Holtmann, Lagisz & Nakagawa 2017) is within-

individuals.   
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The multi-level nature of phenotypic variation is illustrated in Figure 1a, where values for a 

labile trait measured at the same time point t in a male i              and a female j 

            ) forming a pair are determined by the sum of their individual-specific values 

(    
      

 ), environmental effects (   
     

 ), and measurement error (    
      

 ).  We 

assume here, for simplicity, that each level follows a univariate normal distribution, and that 

phenotypes are not affected by other factors, such as their partner’s phenotype (further 

assumptions are described in Text S1). The existence of variance at multiple levels implies 

that covariance (correlation) between partners’ phenotypes can also exist at multiple levels. 

While the correlation between individual-specific values            represents our statistical 

definition of “true” nonrandom mating for a repeatable trait, the environmental correlation 

       represents the correlation across the sexes in within-individual responses to the 

environment which arises because individuals forming a pair respond to the same 

environmental factor (i.e. food availability or predation risk) varying spatio-temporally across 

pairs. In other words, a positive correlation between male and female phenotype can arise 

because individuals increase their response when breeding in a type A habitat and decrease it 

when breeding in a type B habitat in a situation where habitat types are heterogeneously 

distributed across pairs. Finally,          represents correlated measurement error across the 

sexes, existing, for instance, because the same observer measures both partners at the same 

time. The phenotypic correlation (      ) between paired individuals thus results from the 

sum of assortative mating, common environmental correlation and correlated measurement 

error weighed by the proportional contribution of each level to the total phenotypic variance 

(Roff 1997). Hence, the effect of assortative mating on the phenotypic correlation is 

proportional to the trait’s geometric mean repeatability (Rgeom), representing the weighted 

average of the two sex-specific repeatabilities (see Supplementary Text S1 for a step-by-step 
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explanation). The influence of the residual correlation        (i.e., the combined effects of 

         and       ) on the phenotypic correlation is thus proportional to 1-Rgeom.  

                                         Eqn.2 

Because many labile traits have repeatabilities below 0.5, their phenotypic correlations will 

largely represent the residual within-pair correlation caused by the environment shared by 

pair members or measurement error. Obviously, the phenotypic correlation can represent an 

unbiased estimate of assortative mating when the repeatability is one or when correlations do 

not differ between levels (i.e.,                   ). In all other cases, phenotypic 

correlations will systematically under- or over-estimate assortative mating (Figure 1b,c). In 

sum, depending on the sign and magnitude of the residual within-pair correlation, and the 

trait’s repeatability, the phenotypic correlation between partners’ traits will either 

underestimate or overestimate true assortative mating. This problem has not been explicitly 

recognized in assortative mating studies, most of which rely on phenotypic correlations. We 

detail various approaches to estimate assortative mating for labile traits or traits measured 

with error below.  
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Figure 1. Correlations at multiple levels shape the overall phenotypic correlation 

between paired individuals. In a), phenotypes of paired males and females (   
     

 ) are 

determined by individual-specific values (    
      

 ), environmental effects (   
     

 ) 

and measurement error (    
      

 ), where 1/3 of the phenotypic variation is due to 

individual differences and the remainder to residual variation (ε=me+e). Correlations 

can exist at each level (dashed arrows); the phenotypic correlation equals (Eqn. 2) 

      = 1/3*           + 2/3*      . The phenotypic correlation thus b) underestimates or 

c) overestimates the correlation caused by assortative mating. 

Statistical approaches to estimate assortative mating 

We introduce here three statistical alternatives to the “classical” phenotypic approach to 

estimate assortative mating in labile traits or traits measured with error. We study whether 
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these approaches can provide unbiased estimates of assortative mating, and how this depends 

on the amount of replication of pairs and individuals in the data. 

 (a) Correlation between mean phenotypes of males and females of each unique pair (CIM) 

This approach seeks to correct for repeated measures within unique breeding pairs, by using 

individual means instead of unique phenotypic values (Roulin 1999). Here, a unique pair is 

defined by the unique combination of a male and a female forming a pair; a single individual 

can hence be a partner in multiple pairs. The CIM approach estimates the correlation between 

the mean value of males and females (        ) within a pair, which intuitively approximates 

our measure of assortative mating (i.e.,           ). Indeed, the individual-mean of all 

phenotypic values tends to correspond to its individual-specific value (Text S1) and the 

correlation between the means of mates tends to the correlation between their individual 

specific values. As detailed by Snijders & Bosker (1999) and Dingemanse et al. (2012), for 

correlations between two traits assayed repeatedly within a single individual, the correlation 

between mean values does only approximate the correlation between individual-specific 

values though under specific conditions; their exact relationship is: 

           
    
 

    
  

  
 

 

  
    
 

    
  

  
 

 

                   
    
 

    
  

  
 

 

  
    
 

    
  

  
 

 

    
 
     

 

 Eqn. 3 

where n represents the number of repeated measures collected for each unique individual 

(here assumed to be the same across sexes). Eqn. 3 clarifies that this approximation only 

holds for specific cases where the sample size per individual (n) is relatively large. The 

majority of empirical studies, by contrast, have access to very few repeated measures per 
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individual, implying that the approach is typically expected to return estimates biased 

towards the residual correlation. 

(b) Correlation between randomized values of individuals (CIR) 

In situations where the within-pair residual correlation (      ) is zero, the correlation 

between individual-specific values (Eqn. 2) simplifies to:  

            
 
     

     
       Eqn. 4 

A zero within-pair residual correlation may be achieved by randomizing all observed 

phenotypic values of an individual over its records, followed by the calculation of a simple 

phenotypic correlation to approximate        in Eqn.4. This approach should return unbiased 

estimates of assortative mating despite utilizing the phenotypic correlation because the 

randomization procedure produces data where the residual within-pair correlation is zero. A 

drawback is that it requires multiple analyses, to estimate repeatability for each sex, and 

calculate the phenotypic correlation (      ) for each run of the randomized dataset. The 

calculated uncertainty associated with the individual-level correlation (          ) should 

thus be inflated because, in addition to the normal sampling bias and estimation uncertainty, 

randomization bias and estimation uncertainty for repeatability cause additional noise. 

(c) Between- and within-pair correlations derived from bivariate mixed-effects models 

Mixed-effect models can also be used to estimate trait (co)variances at multiple hierarchical 

levels within a single dataset (Lynch & Walsh 1998; Wilson et al. 2009; Dingemanse & 

Dochtermann 2013), and may be applied to the level of the unique pairs in assortative mating 

analyses. Instead of defining phenotypes at the individual level, one considers the same data 

categorized at the level of unique pairs. For every male i and female j forming a unique pair p 

(p = 1 ..   ), where np is the number of unique pairs in the data, the expression of a labile trait 
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z measured for the male (superscript M) and the female (superscript F) is defined such that 

male and female phenotypes vary across pairs (pair): 

   
          

     
  

    
          

     
         

 Eqn.5 

where the pair-specific effect (pair) and the residual within-pair (co)variances affecting male 

and female phenotypes are both assumed to follow a bivariate normal distribution with zero 

mean and (co)variance matrix to be estimated. The pair-identity correlation (            ) and 

within-pair residual correlation (      ) is calculable from these (co)variance matrices using 

standard approaches. This model may seem somewhat removed from our original definition 

of assortative mating (Eqn.2). By contrast, the pair-level bivariate mixed model simply 

represents a sophisticated multi-level version of the “traditional” phenotypic approach 

(defining assortative mating as the association of traits across sexes within pairs). The 

advantage of the mixed model is that it uses all phenotypic measurements: it includes all 

repeated measures made on unique pairs (instead of just 1 in the phenotypic approach). It also 

statistically controls for unequal replication within pairs (which approach (a) does not), and it 

directly estimates the residual within-pair correlation (instead of controlling for in approach 

(b)). Partitioning of variance across and within pairs requires replication of measurements on 

the pair level, which differs from replications on the individual level if individuals change 

partners across observations. Because the identity of the individual is not included in the pair-

level model, we assume that all pairs are independent, and do not consider while additional 

individual identity effects (i.e., an individual mated with different partners is 

indistinguishable from other same-sex individuals). The pair-level mixed model approach 
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uses data efficiently when two members of the same pair re-mate in subsequent breeding 

attempts because it results in replication at the pair level. 

Our summary detailed above implies that the performance of each approach should depend 

on the number of observations per individual and/or unique pair (Table 1). As individuals can 

be a member of >1 unique pair, the number of unique pairs is equal or greater than the 

number of same-sex individuals. Individual-level approaches thus have more replication than 

pair-level approaches. In the next section, we test the relative performance of each approach. 

We do so using simulations, focusing on populations of two hypothetical species where the 

amount of replication on the individual and pair levels are similar (the “immortal albatross” 

scenario) or different (the “bluish tit” scenario) due to stable or unstable pair composition. 

Table 1: Level of replication associated with each approach and characteristics affecting 

it 

Approach  Replication affected by Replicate level Replication affected by 

Phenotypic Unique pair number of unique pairs (once per pair) 

CIM Individual number of individuals and number of trials per individual 

CIR Individual number of individuals and number of trials per individual 

Bivariate mixed 

model 

Unique pair number of unique pairs and number of trials per unique pair  

 

Simulation studies 

We simulated phenotypic data (e.g. aggressiveness) in two populations of birds representing 

stable (albatrosses) and unstable (tits) pair composition scenarios, with both populations 

consisting of pairs breeding every year at the same site. We varied amount of replication at 
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the individual or pair level, and investigated the distribution of the estimates obtained with 

each approach (Table 1). We considered scenarios where the phenotypic correlation between 

the sexes was due to i) assortative mating (i.e., correlations between ind values across sexes) 

only or, ii) common environmental effects only, while measurement error was assumed 

uncorrelated between partners. 

Methods for simulating assortative mating 

We implemented an approach that simulated phenotypic data for any population size with i) 

varying survival and divorce rates, ii) varying repeatabilities and iii) varying correlations 

between mated individuals on different hierarchical levels. To model re-mating in the 

population due to divorce, we first generated the identities of individuals forming pairs and 

then the phenotypic values (using a “network approach”; Text S2). Specifically, we generated 

identities of individuals forming pairs in the population, reflecting the mating structure of the 

population. Every year, npt pairs of individuals are formed; the number of males and females 

is constant over the years. From one year to the other, a certain number of males and females 

survive (determined by psurv, a proportion of the number of males and females). Males and 

females that do not survive are replaced by the same number of new males and females. 

Every year, single individuals are mated randomly but if both partners of a pair survive, they 

can re-mate with probability premate. Phenotypic data, finally, is generated for every individual 

using different steps. First, individual-specific values, with correlation of ind between sexes, 

were randomly drawn. Second, we added environmental effects common to the pair 

(correlation of env) on top. Third, we added error to each individual’s measurement of its 

phenotype, which was uncorrelated between sexes. All effects followed a Gaussian 

distribution. The complete procedure is detailed in Supplementary Text S2. 
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We first generated data for the “immortal albatross” population, characterized by an 

exceptionally high longevity and fidelity (psurv = 1, premate = 1). In this population, composed 

of 200 breeding pairs (200 males and 200 females), individuals do not die, are always mating 

with the same partner and are tested for their aggressiveness once every year. Hence, 

individuals and pairs all have the same amount of replication, equal to the number of years of 

data collection. Aggressiveness scores of paired individuals can be affected (in a correlated or 

independent way) by an environmental factor that both share during a breeding season but 

which can change across breeding seasons (e.g. environmental characteristics of their 

territory, see Araya-Ajoy & Dingemanse 2017). In this simulated example, individuals breed 

in nests that were randomly assigned to pairs, thus potentially changing every year (contrary 

to real albatross species, see Bried, Pontier & Jouventin 2003). Phenotypic data was 

generated for two scenarios (see Text S3 for further scenarios) where the assortative mating 

(ind) and environmental (env) correlations are: i) ind = 0.5 and env = 0 and  ii) ind = 0 and 

env = 0.5, for study durations 3 and 10 years. Mean aggressiveness in males and females was 

zero-centered and individual, environmental and residual variances, were respectively 0.3, 

0.35 and 0.35, and the same between sexes (i.e., repeatability = 0.3). Phenotypic data was 

generated for each combination of scenario and sampling design 100 times. Using the same 

methodology, we generated phenotypic data for the “bluish tit” population, characterized by 

moderate rates of survival and remating (psurv = 0.6 and premate = 0.5). For this scenario, we 

varied the number of years (3, 5, 10), the annual number of breeding pairs (50, 100, 200, 300, 

500), the number of repeats per individual per year (1, 2), and the trait’s repeatability (0.1 to 

0.7), applied to both the ‘assortative mating only’ and ‘common environment only’ scenarios.  
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Data analysis 

For each dataset generated in each scenario, we estimated assortative mating for each 

approach. Pearson’s correlations were calculated between males and females’ mean values 

and randomized values, and the phenotypic correlation (defined as the Pearson’s correlation 

of the first phenotypic value collected for each male and female within each unique pair; 

Class, Kluen & Brommer 2014). For the bivariate mixed model, where male and female 

aggressiveness are the response variables, the pair identity and a pair-specific environmental 

factor (e.g. nest identity), were fitted as random effects. This model differs from the model 

introduced above (Eqn.5) in that it additionally decomposes the within-pair covariance intro 

covariance due to the common environment versus correlated measurement error. This 

extension thus allowed for testing the performance of the bivariate mixed model when an 

extra random effect is modelled (note that when this factor is unknown or not modelled, the 

common environmental covariance is estimated as residual (i.e., within-pair) covariance). We 

calculated the distribution (mode and 95% credible intervals) for the different types of 

correlations (indicative of assortative mating, common environment, and residual 

correlations) over all iterations and scenarios. For the “bluish tit” scenario, we also 

quantitatively compared bias, imprecision, coverage and power for the CIM, CIR and 

bivariate mixed model approaches in each dataset (Text S5). All the simulations and analyses 

were performed in R (R Core Team 2016, R version 3.3.0.), using the package “asreml” 

(VSN International, Hemel Hempstead, UK; Butler, Cullis, Gilmour & Gogel 2009). We 

provide the code for generating all simulations and analyses (Text S5).  

Comparison of the different approaches for both populations 

The performance of the approaches for albatrosses and tits is visualized in figure 2, which 

shows the distribution of estimates for the “assortative mating only” (Scenario 1) and 
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“common environmental correlation only” (Scenario 2) simulations for populations 

composed of 200 pairs measured once per year for either 3 or 10 years, and a trait 

repeatability of 0.3. Note that while the number of repeats per individual and pair is equal to 

the number of years in the albatross population, this number varies, respectively from 1.66 to 

2.17 for individuals and from 1.14 to 1.19 for pairs for the 3 and 10 year studies in the tit 

population. 

As predicted, the phenotypic correlation is biased when the assortative mating vs. common 

environment correlation differ (Figure 2). In scenario 1, the distribution of the phenotypic 

correlation does not cover the true assortative mating correlation and often includes zero. In 

scenario 2, the phenotypic correlation tends to overestimate true assortative mating and is 

biased towards the common environment correlation. 

The performance of the CIM approach depends on the population and number of years. 

Though performing reasonably well in albatrosses with many years of data, it remains biased 

in tits, where increasing the number of years only reduces imprecision (width of the 

distribution of estimates). In line with Eqn. 3, the CIM estimates are generally biased towards 

the phenotypic correlation when the number of replicates at the individual level is low (see 

Text S4 for further detail). By contrast, the performance of the CIR approach is affected by 

the number of years and the specific scenario. Though relatively unbiased in scenario 1 

(where the common environmental correlation is by definition 0), this approach is biased 

towards the phenotypic correlation in scenario 2. It overestimates assortative mating for both 

species for 3-year studies, because the low number of replicates does not enable the 

randomization procedure to properly suppress environmental correlations between mated 

individuals. Although the CIR approach has a relatively low precision, it becomes more 

precise within increasing number of years (see also Text S4). Hence, the performance of both 

individual-level approaches critically depends on the number of replicates observations per 
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individuals. Importantly, both approaches are biased (towards the phenotypic correlation) 

when the number of replicates is low (for Scenario 2), which increases the risk of spuriously 

detecting assortative mating when it is absent (Type I error, see Text S4).  

By contrast, the pair-level bivariate mixed model accurately estimates the true assortative 

mating correlation; regardless of number of replicates, population, or scenario, it returns 

relatively unbiased estimates for the common environment and residual correlations. Though 

least precise (compared to CIM and CIR approaches), its imprecision decreases as the 

number of replicates on the pair level increases (i.e., with increasing numbers of years, or 

when pairs are stable). Although the bivariate mixed model is the most conservative approach 

as shown by our power analysis, this approach becomes the most powerful when pairs are 

measured twice per year (Text S4). This is because repeated measures within years increase 

the pair-level replication, which consequentially increases power. By contrast, the individual-

level approaches (CIM and CIR) are less affected by repeated measures within years (Text 

S4). Finally, our simulations also demonstrated a positive influence of repeatability and the 

number of pairs on the accuracy and precision of the estimates of assortative mating and the 

power to detect it (Text S4). 
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Figure 2: Distributions (point estimate and 95% credible intervals) of types of 

correlations simulated and estimated for scenarios 1 (assortative mating only) and 2 

(common environment only) in ‘immortal albatross’ and ‘bluish tit’ populations studied 

over 3 or 10 breeding seasons. The left-side of each panel depicts the simulated 

correlations of individual-specific values (Ind, red), common environment correlations 

(E, blue), and the measurement error correlations (Me, black). The variation around 

these estimates represents sampling error while the horizontal dashed lines represent 

the “true” values (red line for ρind, blue line for ρenv, and black line for ρres). The middle 

part of each panel depicts the estimated phenotypic correlation (Phen, red squares), the 

correlation of individual means (CIM, red triangles), and the correlation of randomly 

drawn values (CIR, red diamonds). The right-side of each panel, represented by tip-

down triangles, depicts the correlations estimated by the bivariate model: the between-

pairs correlation (Pair, red), the correlation due to common environment effects (Nest, 

blue), and the residual correlation (Res, black). In each population, 200 unique pairs are 

measured every year and repeatability is 0.3. 

Choosing the best statistical approach and sampling designs for ‘bluish tits’ 

We compared the performance of all approaches to estimate assortative mating in a 

hypothetical tit population, representing the most realistic natural scenario in that individuals 

may die or change partner between time intervals. Our simulations clearly show that the 

individual-level approaches are inappropriate to estimate assortative mating in such 

populations whereas the bivariate mixed model still provides consistently unbiased estimates 

of assortative mating. However, the precision and power of the bivariate mixed model is 

generally lower compared to the other approaches, implies that it requires more data. 

Encouragingly, adopting a study design where repeated measures are taken on the level of the 

pair drastically increases statistical power. For instance, given a trait repeatability of 0.3, one 
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could monitor a population of 150 pairs during 3 years instead of 10 by measuring each pair 

twice per year (Figure 3). Note that for this sampling design, fitting a random effect 

designating the unique combination of pair and year in the bivariate mixed model becomes 

necessary (in our simulations this was done by fitting nest identity). Overall, we stress that 

our comparison between the approaches applies to this worked example, but that our code 

provided in Supplementary Text S5 will enable simulating a variety of other scenarios.  

Figure 3: Power to detect assortative mating (ρind =0.3) in scenario 1 using the bivariate 

mixed-model approach when the repeatability is 0.3, as a function of the number of 

years, the number of pairs monitored each year and the number of measures per year. 

Power is represented by different color levels ranging from red (0 to 10% power) to 

white (90 to 100% power) as power increases. 

General discussion  

We highlighted in this paper that there are various types of processes (e.g., correlated 

responses to an environmental factor common to both individuals forming a pair, and 

measurement error correlated across pairs) that can greatly bias the estimation of assortative 

mating for labile phenotypic traits. As we demonstrated mathematically, assortative mating 
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can be described using a variance partitioning approach analogous to the one used to by 

quantitative geneticists to study the covariance between multiple traits within individuals 

(Falconer & Mackay 1996; Lynch & Walsh 1998). We introduced different statistical 

approaches that can be used to estimate non-random mating for repeatable traits in wild 

populations, all hinging on having sufficient amounts of replication on the individual or pair 

levels. Because the performance of each approach depends on the characteristics of the 

population, we advise using the code provided in the Supplementary Text S5 to: i) choose the 

best statistical approach given the data already collected or ii) choose the best sampling 

design and the best statistical approach based on the characteristics of the population and the 

trait repeatability. 

Importantly, the approaches described in this paper are not restricted to assortative 

mating for repeatedly expressed traits such as behavior, physiology or metabolism but can be 

applied to i) any trait showing intra-individual variability (i.e., repeatability< 1). This 

includes truly “fixed” traits that are measured with error and where measurement error can be 

correlated between two partners forming a pair, ii) other non-random mating situations where 

the traits of mated partners are not homologous, and iii) other mating systems (e.g. social 

polyandry). Indeed, the pair-level approach can be used whenever paired individuals can be 

repeatedly measured during their pair bond; individual-level approaches can instead be 

applied to estimate assortative mating as long as individuals can be identified and measured 

repeatedly and the pair bonds between them are known. In addition, the pair-level approach 

can be extended to a group-level approach to study interactions between more than two 

individuals, where individuals that have been measured repeatedly for a specific trait are 

recorded (e.g. neighbors).  

We showed that the partitioning of male and female traits into a (co)variance on the between- 

and within-pair level can be used to approximate the correlation in individual-specific values 
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between partners, and hence capture “true” assortative mating for individual-level differences 

in (labile) phenotypic traits. An interesting corollary of this method is that it allows 

quantifying (if known) the extent to which environmental effects common to the pair (e.g., 

territory quality) or residual correlations (if unknown) drive the phenotypic resemblance of 

pair members. Indeed, these phenomena are likely to be common for labile traits, which 

respond plastically to environments often varying in time and space between and within pairs.  

It is nevertheless important to note that environmental factors that are conserved across 

repeated measures of a pair can generate a covariance which can be confounded with 

assortative mating using a pair-level approach. Solving this issue would require partitioning 

the between-pair covariance further (i.e. genetic and permanent environmental levels). 

Estimating the environmental source of resemblance between pair members is of relevance 

e.g. in the study of sexual selection where theories assume that mate selection is causing 

correlations in “intrinsically” determined differences between individuals (Kirkpatrick & 

Barton 1997). Thus, for phenotypic resemblance of partners to have evolutionary 

consequences, it cannot be a purely residual (within-pair) correlation. Quantification of the 

residual correlation across pairs may also be relevant in evolutionary quantitative genetics. 

This is because assortative mating estimated as the phenotypic correlation r between the 

parents’ traits is typically assumed to reflect the correlation between parents’ breeding values 

m such that m = h
2
r, where h

2
 is the heritability of the trait (Falconer & Mackay 1996). 

Absence of residual (environmental) correlation between pair members is a necessary (but 

insufficient) condition for the equality m = h
2
r to hold, and the bivariate pair-level mixed 

model approach introduced here would hence allow for a “first test” of this condition.  

Finally, we assumed that individuals do not respond to the phenotype of their partner 

(i.e., no indirect effects) despite the fact that individuals forming monogamous pairs and 

providing biparental care likely adjust their phenotype to either resemble their partner or 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

specialize on different tasks (“social niche hypothesis”, Dingemanse & Araya-Ajoy 2015). 

For instance, the “personalities” of spouses converge in humans (Rammstedt, Spinath, 

Richter & Schupp 2013). Similarly, paired individuals become more behaviorally and 

physiologically similar with time in other species (Hile, Plummer & Striedter 2000; Ouyang, 

Muturi, Quetting & Hau 2013; Laubu, Dechaume-Moncharmont, Motreuil & Schweitzer 

2016). Here again, a quantitative genetic approach can be used to estimate indirect effects 

between paired individuals (Moore, Brodie & Wolf 1997; Dingemanse & Araya-Ajoy 2015). 

However, such approaches do not readily allow for accounting for assortative mating, and 

estimates of indirect effects might thus be biased when assortative mating occurs. 

Disentangling indirect effects (partners become more alike after mating) from assortative 

mating (like mates with like) would either require phenotyping individuals before and after 

they form pairs, which unfortunately can be difficult to implement, or further development of 

statistical approaches using data of individuals mating repeatedly with different partners.  

Environmental heterogeneity across unique pairs is common in wild populations 

where individuals forming a pair might look more alike because of effects of shared 

environments. We here use examples inspired by bird species with biparental care and pair 

stability over a breeding season, because such mating systems provide an intuitive grasp of 

mating dynamics and pair-specific environmental effects. However, environmental 

heterogeneity may well bias the phenotypic resemblance between pair members also in 

sexually reproducing species without biparental care. In such species, assortative mating on 

the phenotypic level would arise as a correlation between the phenotypes (e.g. body mass) of 

male and female measured at mating. Correlated plasticity of the focal trait in response to 

spatio-temporal heterogeneity in an environmental factor may also produce trait resemblance 

in pair members in such systems, thereby biasing the phenotypic correlation relative to the 

“true assortative mating” correlation, as detailed above. Although such biases have yet to be 
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demonstrated in wild populations, it likely inflates estimates of assortative mating, when not 

corrected for. Using the methodological tools discussed in this paper, an empirical question to 

evaluate now is how common shared environmental effects on the phenotypes of paired 

individuals actually are in natural populations.  
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