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Background and Objectives: Chronic kidney disease progression to ESKD is

associated with a marked increase in mortality and morbidity. Its progression is highly

variable and difficult to predict.

Methods: This is an observational, retrospective, single-centre study. The cohort

was patients attending hospital and nephrology clinic at The Canberra Hospital from

September 1996 to March 2018. Demographic data, vital signs, kidney function test,

proteinuria, and serum glucose were extracted. The model was trained on the featurised

time series data with XGBoost. Its performance was compared against six nephrologists

and the Kidney Failure Risk Equation (KFRE).

Results: A total of 12,371 patients were included, with 2,388 were found to have an

adequate density (three eGFR data points in the first 2 years) for subsequent analysis.

Patients were divided into 80%/20% ratio for training and testing datasets.

ML model had superior performance than nephrologist in predicting ESKD within 2

years with 93.9% accuracy, 60% sensitivity, 97.7% specificity, 75% positive predictive

value. The ML model was superior in all performance metrics to the KFRE 4- and

8-variable models.

eGFR and glucose were found to be highly contributing to the ESKD

prediction performance.

Conclusions: The computational predictions had higher accuracy, specificity and

positive predictive value, which indicates the potential integration into clinical workflows

for decision support.

Keywords: machine learning (ML), predictionmodel, end stage kidney disease (ESKD), XGBoost (ExtremeGradient

Boosting), chronic kidney disease

INTRODUCTION

Chronic kidney disease (CKD) is a major cause of morbidity and mortality globally,
having a reported prevalence of 11–13% (1). The prevalence of CKD is rising, especially
in developed nations where lifestyle related diseases are endemic (2). Whilst CKD may
ultimately culminate in end stage kidney disease (ESKD), rate of progression is highly
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variable and difficult to predict. ESKD is associated with amarked
increase in mortality and morbidity: it is a terminal condition
without renal replacement therapy (RRT) in the form of
haemodialysis, peritoneal dialysis, or kidney transplantation. As
ESKD approaches, patients and clinicians are required to make
difficult decisions (3). RRT requires the formation of permanent
dialysis access and/or evaluation of suitability for transplantation.
Preparation for RRT is associated with significant cost and risks
of complications, such as post-operative infection and bleeding
(4). Premature access formation exposes patients to these risks
without benefit and, in some cases, result in RRT access not being
used at all (5). However, the capacity of physicians to correctly
predict patient outcomes is poor (6). Therefore, any method
which will improve the ability to correctly identify patients who
will require RRT is highly desirable.

Data-driven predictive modeling is a rapidly advancing field
and has been employed in a range of clinical scenarios such
as opioid overdose (7) and acute kidney injury (8). Recent
advances have demonstrated the capacity of predictive modeling
to robustly predict acute kidney injury in individuals with varying
levels of kidney function (8). For CKD, multiple risk factors
for initiation and progression to ESKD have been characterized
(9). The most pronounced risk factors include male gender,
proteinuria, excess weight, hypertension and diabetes (10, 11).
Statistical modeling of these data has been shown to be predictive
of an individual developing CKD (12, 13). Application of
machine learning (ML) approaches in small clinical cohorts
has been shown to be capable of predicting accurate estimated
glomerular filtration rate (eGFR) values (14, 15). Analysis of over
sixty thousand electronic medical records (EMRs) and prediction
with a random forest regression method has shown eGFR to
be predicted with a correlation coefficient of better than 0.95
(16). However, to date, ML has not been used to predict the
clinical outcomes of ESKD or death in CKD. It has also not been
compared pragmatically to the predictions of expert clinicians.

In this work, we describe the training of a ML model that was
capable of predicting which CKD patients will progress to ESKD
within 2 years. We compare the predictive power of this model
against the prospective predictions of six nephrologists in a
cohort of fifty CKD patients. The predictions for ESKD occurring
within a 2-year period were better than the most experienced
clinician. The work here shows that predictive models built with
machine learning can be accurate and have a potential role in
providing decision support in a clinical environment.

METHODS

Data Cleaning
The raw clinical time-series data included much manually
entered information, and included erroneous extreme outliers
in some variables, particularly, height, weight, standing systolic
pressure, standing heart rate and protein-creatinine. These were
outliers detected and removed using chi-squared outlier tests
with an inclusion threshold of 99.999999%, excluding points with
a p-value of lesser than 10−8 for distribution membership. A
total of 538 outlying points were flagged, out of 869,901 data
points (0.062%).

Data Filtering
Out of 12,371 patients extracted 7,565 patients recorded an eGFR
value. We filtered the primary data to remove patients with fewer
than three pre-ESKD eGFR measurements. This filtering step
retained 4,477 patients. Primarymeasures of creatinine level were
excluded from subsequent study due to the output predictor,
eGFR, being derived from it.

Machine Learning Model
The Training Span (TS) and the Test Timepoint (TT) values were
chosen as a trade-off between accuracy and the clinical usefulness
of the size of the prediction window. Here, TS = 2 and TT = 8
years provided the most clinically relevant predictor, with a large
amount of useful training data and relatively high accuracy. With
this selection of TS, we removed patients who had reached ESKD
within 2 years of commencement of their data collection. This
reduced our sample size to 2,388 patients.

Data Partitioning
To ensure that the model was trained on distinct data to the test
data, individual patients were fist randomly partitioned into two
groups. 80% (N = 1,910) of the patients formed the training
set and the remaining 20% (N = 478) was used for testing. To
ensure that a similar proportion of ESKD patients were randomly
included in each set, a two-sample test for equality of proportions
with continuity correction was performed, which confirmed that
the proportions were not significantly different (χ²= 0.000538, p
= 0.9812).

Time-Series Featurisation
Data from 19 different time-series from each of the 1,910
training and 478 test patients was featurised with the tsfresh
v0.12.0 python library (17), using the internal Comprehensive
calculator setting to produce 764 features per individual
timeseries (including power spectral density, Fourier, cosine and
wavelet transforms). Four case studies with varying degrees of
Comprehensive featurisation was performed: zero (all Minimal),
2 (only eGFR and glucose), 6 (adding standing heart rate,
systolic and diastolic blood pressure and heart rate), and 19
(all Comprehensive).

Model Training and Hyperparameter Tuning
A model was trained on the featurised time series data for
the 1,910 training set patients with XGBoost (18) (version
0.90.0.2), as implemented in R 3.6.1. This method is particularly
suited to efficiently handle sparse data. Since the prediction
accuracy of XGBoost can vary greatly according to various
hyperparameters, we performed 10-fold cross-validation (CV)
and hyperparameter grid search across five frequently-cited
(19) tunable XGBoost parameters (nrounds, eta, max_depth,
subsample, colsample_bytree). In order to properly handle the
over 8-fold class imbalance between ESKD cases (N = 263)
and non-ESKD cases (N = 2,125), the metric for tuning and
evaluating performance of the predictive models was changed
from accuracy to Area Under the Precision-Recall Curve,
AUCPR (20). Upon subsequent prototyping, the Matthews
Correlation Coefficient (MCC) metric, reported to be optimal
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for imbalanced binary classification (21), indeed performed
better than AUCPR on our dataset and was solely employed
in all subsequent analyses. The highest 10-fold CV mean MCC
of 0.4327 corresponded with nrounds = 200, eta = 0.01,
max_depth = 4, subsample = 1, colsample_bytree = 0.8, and this
hyperparameter set was used to build the final optimal model
employing the entire training dataset. The fully-featurised (all-
Comprehensive) run had a 10-fold CV mean MCC of 0.4303
with the corresponding best hyperparameter set: nrounds = 500,
eta = 0.04, max_depth = 4, subsample = 1, colsample_bytree
= 0.6. SHapley Additive exPlanation (SHAP) values (22) were
calculated and graphed using the SHAPforxgboost 0.0.2 R library
(23). Our software and trained models are available for download
from (https://github.com/catlyst/trendal).

RESULTS

Dataset
Weobtained pathology and clinical records for patients attending
hospital and outpatient clinics at The Canberra Hospital
Department of Renal Medicine, Australian Capital Territory,
Australia. This included 12,371 patients spanning 21.5 years
from September 1996 to March 2018. In addition to birth
year, sex and date of death, this dataset consists of 17 time-
stamped clinical measures including creatinine and derived
eGFR (168,500 points each), glucose (145,961 points), sitting
and standing blood pressure (42,818 points), heart rate (28,741
points), weight (47,981 points), height (35,421 points) and
derived Body Mass Index (BMI), HbA1c (15,349 points), urine
protein-creatinine ratio (14,777 points) and 24-h proteinuria
(883 points). All data was observed in a normal distribution with
the exception of creatinine, eGFR, glucose, HbA1c, proteinuria
and urine protein/creatinine ratio (Supplementary Figure 1). In
addition to the clinical measures, we derived two features, sitting
and standing pulse pressure. With the addition of these derived
measures, a total of 19 time-based measurements were obtained.
We applied a threshold of three eGFR data points obtained in
the first 2 years for each individual as a required minimum
data density for subsequent analysis. From 7,565 patients, 2,388
were found to have adequate density for ML prediction (31.6%)
(Supplementary Figure 2).

Out of 2,388 patients, 1,910 were used to train the model
and 478 were used as a holdout test dataset. Patients baseline
characteristics are shown in Table 1. There was no difference in
the age at presentation, gender proportion, diagnosis, and CKD
stage. The majority of patients were in CKD stage 2 and 3.

Machine Learning Model Identifies EGFR
and Cardiovascular Risk Factors as Key
Predictors of ESKD
We aimed to develop a model capable of predicting whether
a patient would reach ESKD and to estimate the timeframe in
which this would occur. We first aggregated individual patients’
clinical measurements into a single, initial predictive model,
including potentially interacting and confounding variables (see

TABLE 1 | Baseline characteristics.

Train,

N = 1,910

Test,

N = 478

P-value

Age at presentation (median, IQR) 62 (48–72) 64 (51–73) 0.13

Sex Male 1,101 (58%) 274 (57%) 0.9

Diagnosis 0.8

DKD 412 (22%) 112 (23%)

HTN 357 (19%) 83 (17%)

GN and Vasculitis 272 (14%) 65 (14%)

Genetic 50 (2.6%) 10 (2.1%)

Other 819 (43%) 208 (44%)

CKD Stage 0.14

Stage 1 137 (7.2%) 20 (4.2%)

Stage 2 571 (30%) 153 (32%)

Stage 3a 379 (20%) 102 (21%)

Stage 3b 489 (26%) 114 (24%)

Stage 4 334 (17%) 89 (19%)

P-values reported are for chi-squared tests of homogeneity between the train and test

sets. Since these p-values are insignificant (above 0.05), the train and test sets are

deemed homogeneous. CKD, Chronic Kidney Disease; DKD, Diabetic Kidney Disease;

GN, Glomerulonephritis.

Methods). Throughout this analysis, we defined ESKD as the
composite endpoint of an eGFR below a threshold of 10
mL/min/1.73 m2 (24) or the commencement of RRT, whichever
came first. Using the initial model, we then incorporated data
for each patient with an observation period, or training span
(TS), of 2 years to predict if the patient would reach ESKD by
a test timepoint (TT) of 8 years. The initial model incorporated
all 19 time series measures present in the primary data and
this was augmented with full featurisation derived from these
timeseries (seeMethods). When predicting if ESKD would occur
by 8 years follow-up, the initial model had a prediction accuracy
for ESKD of 84.5% with a sensitivity and specificity of 55.8 and
88.0%, respectively.

To understand the relative contribution of each feature in
the initial model, SHapley Additive exPlanation (SHAP) values
(25) were calculated, representing the weight of a particular
feature in the model’s ESKD prediction outcome. A SHAP
value >0 suggests the feature value is a risk for ESKD, and
<0 suggests the feature value is protective against the risk
of ESKD.

For the prediction of ESKD, as expected eGFR-based features
(the minimum value and values at the 80, 20, and 10th
percentiles) had the highest contributions, comprising six of
the top 10 features (Table 2). Other quantities present in the
top 10 predictive features included the patient’s minimum
standing heart rate, their age at first consultation and several
derived or transformed values related to blood glucose levels
and eGFR (Figure 1; Supplementary Figure 3). Further, blood
glucose was a major contributor to the prediction of ESKD
(6 of top 25 features) when >7 mmol/L (Figure 1; Table 2).
Other identified features contributing to risk include known
clinical risk factors such as blood pressure features including
minimum standing diastolic blood pressure where a value of
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TABLE 2 | The 25 most predictive features of the initial and optimized models.

Data type Featurised value Rank

(initial model)

SHAP value

(initial model)

Rank

(optimized

model)

SHAP value

(optimized

model)

eGFR 80th percentile 1 0.25254 1 0.24691

eGFR Minimum 2 0.15594 2 0.14371

eGFR 20th percentile 3 0.13539 3 0.13772

eGFR 10th percentile 4 0.11008 4 0.11848

Standing heart rate Minimum 5 0.09653 25 0.01417

Age Initial 6 0.09118 5 0.08176

eGFR CWT coefficients (2,5,10,20;

2,2)

7 0.05538 10 0.03539

Glucose 80th percentile 8 0.05421 8 0.05527

eGFR 70th percentile 9 0.04888 6 0.06204

eGFR 60th percentile 10 0.03283 14 0.02945

Standing-sitting pulse pressure

difference

Mean 11 0.0327 – –

eGFR Mean change in 40 and 80th

percentile

12 0.03149 11 0.03376

Glucose CWT coefficients (2,5,10,20;

2,20)

13 0.02902 18 0.02302

Glucose 10th percentile 14 0.02861 – –

Standing diastolic blood

pressure

Minimum 15 0.02707 – –

Glucose Unnormalized CID Complexity

Estimate

16 0.026 24 0.01522

Sitting heart rate Minimum 17 0.02561 9 0.03748

eGFR Mean central second derivative 18 0.02501 12 0.03189

eGFR 40th percentile 19 0.0224 – –

eGFR Mean change 20 0.02229 23 0.01572

Glucose Absolute energy 21 0.02136 16 0.02408

eGFR Linear trend rightmost-value 22 0.01957 15 0.02541

Sitting heart rate Maximum 23 0.01931 – –

Sitting systolic blood pressure Minimum 24 0.01916 – –

Glucose Median 25 0.01889 21 0.01802

Sitting heart rate Linear trend rightmost-value – – 7 0.06066

Sitting heart rate Welch density (coeff = 2) – – 13 0.02951

Sitting systolic blood pressure C3 non-linearity in timeseries

(lag = 1)

– – 17 0.02353

Glucose 10th percentile – – 19 0.023

Standing-sitting pulse pressure

difference

CWT coefficients (2,5,10,20;

0,2)

– – 20 0.02133

Glucose Maximum – – 22 0.01694

>75 mmHg increases risk. The model also identified other
features such as minimum heart rate (increased risk at more
than ∼85 bpm), age at initial attendance (increased risk, <55
yrs) and mean pulse pressure difference between sitting and
standing (increased risk, >10) which are not known as clinical
risk factors for ESKD but appear to have cutoff values associated
with ESKD risk. We hypothesized that increased cardiovascular
disease explained the association of increased HR and pulse
pressure difference, and that the competing interest of death
at higher age groups made youth a risk factor for progression
to ESKD.

Given the contribution of eGFR and glucose we modified our
ML algorithm to emphasize these variables. We hypothesized
that the prominence of eGFR and glucose suggested these
variables contributed to the majority of the prediction. Further,
we noted that the greatest data density existed for eGFR. We
trained a further, optimized model utilizing all 19 time-series
measures but only comprehensively-featurised two timeseries
values: that of eGFR and glucose, which were featurised each
into 764 numerical features. We then only minimally-featurised
the remaining 17 timeseries values (eight numerical features
each). In predicting ESKD at 8 years on 2 years of patient
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FIGURE 1 | Representative SHAP dependency plots taken from the top 25 features in the optimal model. SHAP values represent the predictive value of a feature in

models in which they are integrated. Positive SHAP valu es imply a contribution to ESKD risk, while negative values are protective against ESKD. Selected panels are

(A) estimated glomerular filtration rate (eGFR) at the 80th percentile, the most predictive of ESKD in both models, (B) minimum eGFR, the second-most predictive

value in both models, (C) Standing heart rate, (D) patient age at study initiation, (E) blood glucose levels at the 80th percentile, and (F) individual points represent the

SHAP and feature values of an individual evaluated by the optimal model. The points in all plots are colored spectrally by initial age to differentiate between younger

patients (yellow) and older patients (dark blue). The top 25 SHAP dependency plots are shown in full in Supplementary Figure 3.

data, this optimized model improved prediction accuracy from
84.5 to 86.2%. Sensitivity improved from 55.8 to 65.4% and
specificity from 88 to 88.7%. The most predictive quantities
identified from this optimized model are only slightly different
(Supplementary Table 1) from the initial model. Therefore,
we concluded that unbiased predictions of ESKD by our ML
algorithm is based on classic ESKD risk factors and has a strong
predictive capability.

To contrast optimized model performance by disease severity,
we grouped patients in the test set by their eGFR at
presentation (either below, or at least, 30 ml/min/1.73 m2)
(Supplementary Table 2). Out of 478 patients in the test set,
90 (18.8%) had presenting eGFR below 30 ml/min/1.73 m2, of
which 26 patients (28.9%) developed ESKD within 8 years. In
contrast, of the 388 patients with presenting eGFR of at least 30
ml/min/1.73 m2, only 6.7% developed ESKD.

The model’s accuracy in predicting ESKD in the former group
was 67.8% (84.6% sensitivity, 60.9% specificity). In contrast,
the accuracy of the model in the latter group was 90.4%
(46.2% sensitivity, 93.6% specificity). These numbers highlight

the sensitivity-specificity trade-off, which our single optimized
model attempts to finely balance (overall accuracy 86.2% at 65.4%
sensitivity and 88.7% specificity), but also suggests room for
stratified ensemble models for future work.

Comparison of ML Algorithm Against
Clinician Prediction
Forty-nine patients with CKD at risk of ESKD were selected as
a test cohort. We considered the risk of ESKD at 2 years to be
of greater clinical significance for RRT planning. Therefore, 2
years of clinical data was utilized by ML algorithm to provide
a probability of reaching ESKD within the next 2 years. Six
consultant nephrologists were given baseline demographics and
diagnosis, medical comorbidities, proteinuria, blood pressure,
and eGFR measurements over 2 years for the same cohort. The
nephrologists predicted prospectively for each individual, within
a 10-year window, the number of years (to the nearest half-
year) it would likely take for the patient to reach ESKD. The
ML algorithm and clinician predictions were compared to the
outcomes in the 49 patients at the 2-year mark (the time of
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FIGURE 2 | Boxplots of (A) predictions of year of ESKD for each patient by all six clinicians and (B) predictions of ESKD across the patient cohort by each clinician.
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TABLE 3 | Comparative performance of 2-year ESKD predictions by optimized model and expert clinicians.

Metric Prediction with optimized model Clinician 1 Clinician 2 Clinician 3 Clinician 4 Clinician 5 Clinician 6

Predicted ESKD (actual = 5/49 patients) 4 2 9 13 13 14 22

True positives 3 0 2 2 4 4 4

True negatives 43 42 37 33 35 34 26

False positives 1 2 7 11 9 10 18

False negatives 2 5 3 3 1 1 1

Accuracy 0.939 0.857 0.796 0.714 0.796 0.776 0.612

Sensitivity 0.600 0.000 0.400 0.400 0.800 0.800 0.800

Specificity 0.977 0.955 0.841 0.750 0.795 0.773 0.591

Precision (PPV) 0.750 0.000 0.222 0.154 0.308 0.286 0.182

F1 score 0.667 0.000 0.286 0.222 0.444 0.421 0.296

MCC 0.638 0.000 0.188 0.103 0.408 0.384 0.238

ESKD, End Stage Kidney Disease; MCC, Matthews Correlation Coefficient; PPV, Positive Predictive Value.

writing). The variability in the clinician predicted ESKD date for
each patient was high (Figure 2A). As expected each clinician
appeared to have a systematic bias, predicting longer or shorter
times until ESKD was reached for the same cohort (Figure 2B).
Variation was also high in the number of predictions made,
with some clinicians predicting that all patients will reach ESKD,
while others did not. The pairwise-correlations in the predicted
dates of each clinician with correlation-coefficients ranging from
0.257 to 0.757 (Supplementary Figure 4). Clinician performance
compared to the predictive model was poor (Table 3). The
ML algorithm demonstrated a 2-year predictive accuracy of
93.9%, with sensitivity of 60%, specificity of 97.7% and precision
(or positive predictive value) of 75%. This was superior to all
clinicians, with the best performance being Clinician 4, who
had an accuracy of 79.6% (sensitivity 80%, specificity 79.5%,
precision 30.8%). All other clinicians performed significantly
worse, primarily due to higher false positive counts (Table 3).
Cumulatively, this data suggests that trained predictive ML
modeling may assist nephrologists in making predictions
of ESKD.

Comparison of ML Algorithm Against
Kidney Failure Risk Equations
The Kidney Failure Risk Equations (KFRE) (26) have been
extensively used and validated to predict ESKD within 2 and
5 years. We used the updated 4- and 8- variable KFRE (13)
to predict ESKD within 2 years for the test cohort of 49
patients, however as these equations rely on serum albumin
tests, 3 patients had to be excluded (Table 4). The 4-variable
KFRE (91.3% accuracy, 25% sensitivity, 97.6% specificity, 50%
precision) performed better than the 8-variable KFRE (89.1%
accuracy, 0% sensitivity, 97.6% specificity, 0% precision), which
was consistent with validation studies (27), but both were inferior
to our model.

Other Metrics of Classification
Performance
Like many other clinical predictive settings, one of the main
challenges in building a reliable model was its class imbalance,

TABLE 4 | Comparative performance of 2-year ESKD predictions by optimized

model and 4- and 8- variable KFRE.

Metric Prediction with

optimized model

4-variable KFRE 8-variable KFRE

Predicted

end-stage (actual

= 5/49 patients)

4 2 1

True positives 3 1 0

True negatives 43 41 41

False positives 1 1 1

False negatives 2 3 4

Accuracy 0.939 0.913 0.891

Sensitivity 0.600 0.250 0.000

Specificity 0.977 0.976 0.976

Precision (PPV) 0.750 0.500 0.000

F1 score 0.667 0.613 0.488

MCC 0.638 0.271 0.000

ESKD, End Stage Kidney Disease; KFRE, Kidney Failure Risk Equation; MCC, Matthews

Correlation Coefficient; PPV, Positive Predictive Value.

e.g., in the clinician test cohort, only 5 out of the 49 patients
actually reached ESKD, and even a null-predictor that predicts
that none would reach ESKD would achieve a misleading
accuracy of 89%. Commonly, F1 score (the harmonic mean of
precision and recall) has been used to provide a fairer measure
of predictor performance, but recently the Matthews correlation
coefficient has been shown (28) to be better than both F1 and
accuracy as a binary classification metric.

Revisiting our results (Tables 3, 4) shows that our model
performs better at both F1 (0.667) andMCC (0.638) than the best
of 6 clinicians (F1 = 0.444, MCC = 0.408) and the better of the
KFRE predictors (F1= 0.333, MCC= 0.271).

DISCUSSION

The prediction of hard outcomes of CKD such as death and
ESKD is often inaccurate, especially progressing toward RRT
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(29, 30). Here we developed a predictive machine learning
model that in our optimized model, comprising values from
19 dynamic measures including two fully-featurised time-series
(eGFR and blood glucose), is able to predict the incidence
of ESKD within an 8-year timeframe with an accuracy
of 86.2%.

In a trial cohort of forty-nine patients assessed by six
clinicians, the model was retrained to predict ESKD within
a 2-year timeframe. The model proved to be more accurate
and precise than all clinicians, however sensitivity was lower
than some clinicians. Our model was trained from prospectively
collected clinical data, and we showed that the 25 most predictive
measures overlap with existing recognized clinical risk factors
and recapitulate accepted clinical thresholds. For example, the
inflection point for eGFR values is ∼60 mL/min/1.73 m2 (stage
3A CKD) below which SHAP values increase sharply (31) and the
inflection point of blood glucose (7 mmol/L) associated with risk
of CKD progression is also accepted diabetic glucose treatment
targets (32). Importantly, some measurements of accepted risk
factor values (serum potassium, bicarbonate and uric acid) were
not necessary or not included in our trained predictive models.
This may indicate they closely replicate other information and
trends already included in the models, or that fluctuations
in these values are only weakly correlated with progression
to ESKD.

The superior performance of the machine learning model
compared to assessment by six experienced renal physicians leads
supports the recognized variability of clinician performance. On
the short-term outcome of the occurrence of ESKD within 2
years, clinician performance ranged from an accuracy of 47
to 81%.

Risk factors for ESKD have been extensively investigated in
clinical studies and elevated blood pressure, proteinuria and
kidney function are closely linked to ESKD (33). The description
of risk factors, however, does not translate into an accurate
assessment of future risk for an individual patient by clinicians,
especially when accounting for the synergistic effects of these
risk factors. Increasingly vast amounts of data accrued through
medical records are difficult for clinicians to absorb, integrate and
analyse into meaningful predictions.

We have purposefully restricted our analysis to factors known
to be associated with an increased risk of ESKD to demonstrate
the feasibility of using ML in a clinical setting to improve upon
clinical prediction of hard endpoints. ML has the advantage of the
ability to examine the features of the data that are most influential
in the risk prediction. In our current model eGFR and glucose
appeared to the be most influential. It is encouraging that specific
parameters of risk factors appear to be linked to ESKD risk, such
as diastolic blood pressure >75 mmHg and blood glucose over
7 mmol/L. This would suggest that the ML approach is able to
detect appropriate clinical parameters.

The ML approach is also able to identify features that are
not conventional risk factors for ESKD. In our current analysis,
a sitting minimum heart rate below 75 bpm and an overall
minimum heart rate below 85 bpm appears to be potentially
protective, likely reflecting superior underlying cardiovascular

health. This suggests ML may identify potential new clinical
indicators of ESKD risk. Currently we have excluded other
potential risk factors such as serum potassium, bicarbonate and
uric acid, each of which have data suggesting they may be
associated with risk of CKD progression.

Therefore, we conclude that unbiased MLmodeling is capable
of integrating large amounts of data points, establishing a
predictivemodel that agnostically identifies classic cardiovascular
ESKD risk factors to create robust predictions of ESKD.
This forms the basis for improving prediction of ESKD to
assist with RRT planning and prognostication, as well-potential
identification of novel risk factors for ESKD.
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