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Abstract—The capacity of heterogeneous distributed storage
systems under repair dynamics is studied. Examples of these
systems include peer-to-peer storage clouds, wireless, and In-
ternet caching systems. Nodes in a heterogeneous system can
have different storage capacities and different repair bandwidths.
Lower and upper bounds on the system capacity are given. These
bounds depend on either the average resources per node, or on a
detailed knowledge of the node characteristics. Moreover, the case
in which nodes may be compromised by an adversary (passive
or active) is addressed and bounds on the secure capacity of
the system are derived. One implication of these new results is
that symmetric repair maximizes the capacity of a homogeneous
system, which justifies the model widely used in the literature.

Index Terms—Distributed storage systems, information the-
oretic security, repair bandwidth, regenerating codes, network
coding.

I. I NTRODUCTION

Cloud storage has emerged in recent years as an inexpensive
and scalable solution for storing large amounts of data and
making it pervasively available to users. The growing success
of cloud storage has been accompanied by new advances in
the theory of erasure codes for such systems, namely the
application of network coding techniques for distributed data
storage and the theory of regenerating codes introduced by
Dimakis et al. [1], followed by a large body of further work
in the literature.

Cloud storage systems are typically built using a large
number of inexpensive commodity disks that fail frequently,
making failures “the norm rather then the exception” [2].
Therefore, it is a prime concern to achieve fault-tolerancein
these systems and minimize the probability of losing the stored
data. The recent theoretical results uncovered fundamental
tradeoffs among system resources (storage capacity, repair
bandwidth, etc.) that are necessary to achieve fault-tolerance.
They also provided novel erasure codes constructions that can
achieve some of these tradeoff points; see for example [3], [4]
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and [5]. Recent work describes the implementation of erasure
codes in distributed storage systems at the production level at
Microsoft [6] and Facebook [7].

The majority of the results in the literature of this field
focus on a homogeneous model when studying the information
theoretic limits on the performance of distributed storage
systems. In a homogeneous system all the nodes (hard disks
or other storage devices) have the same parameters (storage
capacity, repair bandwidth, etc.). This model encompasses
many real-world storage systems such as clusters in a data
center, and has been instrumental in forming the engineering
intuition for understanding these systems. Recent development
have included the emergence ofheterogeneoussystems that
pool together nodes from different sources and with different
characteristics to form one big reliable cloud storage system.
Examples include peer-to-peer (p2p), or hybrid (p2p-assisted)
cloud storage systems [8], [9], Internet caching systems for
video-on-demand applications [10], [11], and caching sys-
tems in heterogeneous wireless networks [12]. Motivated by
these applications, we study the capacity of heterogeneous
distributed storage systems (DSS) here under reliability and
secrecy constraints.

Contributions: The capacity of a DSS is the maximum
amount of information that can be delivered to any user
contactingk out of n nodes in the system. Intuitively, in a
heterogeneous system, this capacity should be limited by the
“weakest” nodes. However, nodes can have different storage
capacities and different repair bandwidths. And the tension
between these two set of parameters makes it challenging to
identify which nodes are the “weakest”.

Our first result establishes an upper bound on the capacity
of a DSS that depends on the average resources in the system
(average storage capacity and average repair bandwidth per
node). We use this bound to prove that symmetric repair,i.e.,
downloading equal amount of data from each helper node,
maximizes the capacity of a homogeneous DSS. While the
optimality of symmetric repair is known for the special case
of MDS codes [13], our results assert that symmetric repair
is always optimal for any choice of system parameters. Fur-
ther, our proof avoids the combinatorial cut-based arguments
typically used this context.

In addition, we give an expression for the capacity when we
know the characteristics of all the nodes in the system (not just
the averages). This expression may be hard to compute, but
we use it to derive additional bounds that are easy to evaluate.
Our techniques generalize to the scenario in which the system
is compromised by an adversary. We consider two types of



adversaries: a passive adversary who can only eavesdrop on
certain nodes in the system, and an active malicious adversary
who can also change the stored data on some nodes. For these
cases, we give bounds on the secure capacity of the system and
show that symmetric repair maximizes the secrecy capacity of
a homogeneous system.

Parts of this paper have been presented at the 2013 Informa-
tion Theory and Applications Workshop (invited presentation
“Data security in heterogeneous distributed storage systems”),
San Diego, California, USA, and at the ISIT 2013 [14].

Related work: Wu proved the optimality of symmetric
repair in [13] for the special case of a DSS using Maximum
Distance Separable (MDS) codes. Coding schemes for a non-
homogeneous storage system with one super-node that is
more reliable and has more storage capacity were studied in
[15]. References [16] and [17] studied the problem of storage
allocations in distributed systems under a total storage budget
constraint where nodes can fail with different probabilities.
Shah et al. studied in [18] constructions of “flexible” regen-
erating codes for systems that allow flexiblity in the amount
of data downloaded for repair from each helper node as long
as the total does not exceed a given budget. Pawaret al. [19],
[20] studied the secure capacity of homogeneous distributed
storage systems under eavesdropping and malicious attacks.

Organization: Our paper is organized as follows. In
Section II, we describe our model for heterogeneous DSS and
set up the notation. In Section III, we summarize our main
results. In Section IV, we prove our bounds on the capacity
of a heterogeneous DSS. In Section V, we study the secure
capacity in the presence of an adversary. We conclude in
Section VII and discuss some open problems.

II. M ODEL

A. System Model

A heterogeneous distributed storage system is formed of
n storage nodesv1, . . . , vn with storage capacitiesα1, . . . , αn

respectively. Unless stated otherwise, we assume that the nodes
are indexed in increasing order of capacity,i.e., α1 ≤ α2 ≤
· · · ≤ αn. In a homogeneous system all nodes have the
same storage capacityα, i.e., αi = α, ∀i. As a reliability
requirement, a user should be able to obtain a file by contacting
any k < n nodes in the DSS. The nodes forming the system
are unreliable and can fail. The system isrepaired from a
failure by replacing the failed node with a new node. Upon
joining the system, the new node downloads its data fromd,
k ≤ d ≤ n− 1, helper nodes in the system.

The repair process can be eitherexactor functional. In the
case of exact repair, the new node is required to store an exact
copy of the data that was stored on the failed node. Whereas
in the case of functional repair, the data stored on the new
node does not have to be an exact copy of the lost data, but
merely “functionally equivalent” in the sense that it preserves
the property that contacting anyk out of n nodes is sufficient
to reconstruct a stored file. We focus on functional repair in
this paper, although some of our results do generalize to the
exact repair model (see the discussion in Appendix A).

An important system parameter is therepair bandwidth
which refers to the total amount of data downloaded by the

new node. In a homogeneous system, the repair bandwidth,
denoted byγ, is the same for any new node joining the system.
The typical model adopted in the literature assumessymmetric
repair in which the total repair bandwidthγ is divided equally
among thed helpers. Thus, the new node downloadsβ = γ/d
amount of information from each helper. In a heterogeneous
system the repair bandwidth can vary depending on which
node has failed and which nodes are helping in the repair
process. We denote byβijS the amount of information that a
new node replacing the failed nodevj is downloading from
helper nodevi when the other helper node belong to the index
setS (i ∈ S, |S| = d). An important special case is when the
repair bandwidth per helper depends only on the identity of
the helper node and not on the identity of the failed node
or the other helpers. In this case, we say that helper nodevi
has repair bandwidthβi, i.e., βijS = βi, ∀j, S. In the case
of a homogeneous system with symmetric repair, we have
βijS = β = γ/d, ∀i, j, S.

We focus on repair from single node failures since it is the
dominant failure pattern in DSSs [6]. Moreover, in the rare
event of multiple simultaneous failures, the failed nodes can
be repaired successively by invoking the repair scheme for
single failures.

When a single node fails, there are
(

n−1
d

)

possibilities for
the set of helpersS. Therefore, the average repair bandwidth
γj of nodevj is

γj =

(

n− 1

d

)−1
∑

S:j /∈S
|S|=d

∑

i∈S

βijS . (1)

We denote byγ = 1
n

∑n
j=1 γj and α = 1

n

∑n
j=1 αj the

average total repair bandwidth and average node capacity in
the DSS, respectively.

We are interested in finding the capacityC of a heteroge-
neous DSS.

Definition: The capacityC of a DSS represents the
maximum amount of information that can be downloaded by
any user contactingk out of n nodes in the system.

It follows directly from the definition above that the capacity
Cho of a homogeneous DSS satisfiesC ≤ k · α. Recall from
[1], that the capacityCho has the following expression for
DSS with symmetric repair:

Cho(α, γ) =

k
∑

i=1

min
{

α, (d− i+ 1)
γ

d

}

. (2)

B. Adversary Model

We are also interested in characterizing the secure capacity
of the system when nodes are compromised by an adversary.
The adversary can eavesdrop on some storage nodes, and
possibly corrupt a subset of the stored data. We follow closely
the adversary model in [19] and [20] and denote byℓ the
number of nodes that the intruder can eavesdrop on, andb the
number of nodes it can control by maliciously corrupting its
data. We study three types of adversaries:



a) Passive Eavesdropper:The eavesdropper can read
the data downloaded during repair and stored onℓ, ℓ < k,
compromised nodes, but cannot change the stored data (b = 0).
We are interested here in information theoretic secrecy which
characterizes the fundamental ability of the system to provide
data confidentiality independently of cryptographic methods.
Thesecrecy capacityof the system, denoted byCs, is defined
as the maximum amount of information that can be delivered
to a user without revealing any information to the eavesdropper
(perfect secrecy).

b) Active Omniscient Adversary:The active omniscient
adversary knows the file stored in the system and can control
b nodes in total, where2b < k. In this case, the adversary
can maliciously corrupt the data stored on the nodes under his
control and can send corrupted messages when contacted for
repair or for file download.

c) Active Limited-knowledge Adversary:Here, the active
adversary haslimited knowledgeabout the data stored in the
system. He can eavesdrop onℓ < k nodes in the system, and
among these nodes he can corrupt the data onb ≤ ℓ of them.
We assume that the numberℓ is not sufficient enough to let
the adversary guess the stored file.

In the case of an active adversary, we are interested in
computing theresiliency capacityof the system,i.e., the
maximum file size that can be stored on the DSS such that
the user can still decode with no-errors despite the actionsof
the malicious adversary. When the type of the adversary is
not specified, we use the term secure capacity to refer to the
secrecy capacity or resiliency capacity of the system. Note
that we always assume that the adversary has a complete
knowledge of the code and the repair scheme implemented
in the system.

III. M AIN RESULTS

We start by summarizing our results. Theorem 1 gives a
general upper bound on the storage capacity of a heteroge-
neous DSS as a function of the average resources per node.

Theorem 1:The capacityC of a heterogeneous distributed
storage system, with node average capacityᾱ and average
repair bandwidth̄γ, is upper bounded by

C ≤
k

∑

i=1

min
{

ᾱ, (d− i+ 1)
γ̄

d

}

= Cho(ᾱ, γ̄). (3)

The right-hand side term in (3) is the capacity of a homoge-
neous DSS as in (2) in which all nodes have storageα = ᾱ and
total repair bandwidthγ = γ̄ . Th. 1 states that the capacity
of a DSS cannot exceed that of a homogeneous system where
the total system resources are split equally among all the
nodes. Also, Th. 1 implies thatsymmetric repair is optimal
in homogeneous systems in the sense that it maximizes the
system capacity. This justifies the repair model adopted in
the literature. This result is stated formally in Cor. 2. While
the optimality of symmetric repair is known for the special
case of MDS codes [13], Cor. 2 asserts that symmetric repair
is always optimal for any choice of system parameters. This

result follows directly from Th. 1 and avoids the combinatorial
cut-based arguments that may be needed in a direct proof1.

Corollary 2: In a homogeneous DSS with node capacityα
and total repair bandwidthγ, symmetric repair maximizes the
system capacity.

When we know the parameters of the nodes in the system
beyond the averages, we can obtain possibly tighter bounds as
described in Th. 3. To simplify the notation, let us order the
repair bandwidth per helperβijS into an increasing sequence
β′
1, β

′
2, . . . , β

′
m, such thatβ′

l ≤ β′
l+1 and wherem = nd

(

n−1
d

)

.
Also, recall thatα1 ≤ α2 ≤ · · · ≤ αn.

Theorem 3:The capacity C of heterogeneous DSS is
bounded by

Cmin ≤ C ≤ Cmax

where

Cmin = min
l=0,...,k





l
∑

j=1

αj +

h
∑

j=1

β′
j



 ,

Cmax = min
l=0,...,k





l
∑

j=1

αj +
h
∑

j=1

β′
m+1−j



 ,

and

h =
(2d− k − l + 1)(k − l)

2
.

When the system is compromised by an adversary, whether
passive or active, the system secure capacity can be upper
bounded as stated in the next theorem.

Theorem 4:The secure capacity of a heterogeneous DSS
under a passive or an active (omniscient or limited-knowledge)
adversarial attack, is upper bounded by the secure capacityof
a homogeneous system under the same attack and having node
average capacitȳα and average repair bandwidth̄γ (See more
details in Table I).
This theorem implies that symmetric repair also maximizes
the secure capacity of a homogeneous DSS.

IV. CAPACITY OF HETEROGENEOUSDSS

A. Example & Proof of Theorem 1

We illustrate the proof of Th. 1 through an example for the
special case in which the bandwidths depend only on identity
of the helper node. We compute the capacity of the DSS for
this specific example, and show that it is strictly less than the
upper bound of Th. 1. That is, it does not achieve the capacity
of a homogenous system with the same average characteristics.
More specifically, consider the heterogeneous DSS depictedin
Fig. 1(a) with(n, k, d) = (3, 2, 2) formed of3 storage nodes
v1, v2 and v3 with storage capacities(α1, α2, α3) = (1, 2, 2)
and repair bandwidths(β1, β2, β3) = (1, 2, 2). The average
node capacityα = 5/3 and repair bandwidth areβ = 10/3.
Th. 1 gives that the capacity of this DSSC ≤ 10/3 = 3.33.

For this example, it is easy to see that the DSS capacity
is C = 3 ≤ 10/3. In fact, a user contacting nodesv1 and
v2 cannot download more information then their total storage

1 The arguments are based on deriving the value of the min-cut in agraph,
calledflow graph, that represent DSSs [1]. For example, see the proof of Th. 8
in Appendix C.
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Fig. 1. An example that illustrates the proof of the upper bound (3) on the capacity of a heterogeneous system. (a) A heterogeneous distributed storage system
(DSS) with (n, k, d) = (3, 2, 2). The nodes have storage capacitiesα1 = 1, α2 = α3 = 2 and the repair bandwidth per helper areβ1 = 1, β2 = β3 = 2.
(b) A DSS constructed by combining togethern! = 6 copies of the original heterogeneous system correspondingto all possible node permutations. The
obtained DSS is homogeneous with uniform storage per nodeα = 10 and repair bandwidth per helperβ = 10. The capacity of this system is 20 as given
by (2) [1]. Any code that stores a file of sizeC (C = 3 here) on the original DSS can be transformed into a scheme that stores a file of sizen!C = 6C in
the “bigger” system. This gives the upper bound in (3)C ≤ 20/6 = 10/3.

α1 + α2 = 3. This upper bound is achieved by the code in
Fig. 1(a). The code stores a file of 3 units(x, y, z) in the
system. During repair the new node downloads the whole
file and stores the lost piece of the data (note that the repair
bandwidth constraints allow this trivial repair).

To obtain the upper bound in (3), we use the original het-
erogeneous DSS to construct a “bigger” homogeneous system.
We obtain this new system by “glueing” togethern! = 3! = 6
copies of the original DSS as shown in Fig. 1(b). Each copy
corresponds to a different permutation of the nodes. In the
figure, theith copy stores the file(xi, yi, zi). For example in
Fig. 1(b), the first copy is the original system itself, the second
corresponds to nodev1 and nodev3 switching positions, and
so on.

The “bigger” system is homogeneous because all its nodes
have storageα = 10 and repair bandwidth per helperβ =
γ/d = 10. The capacityC ′ of this system can be computed
from (2):

C′ =

k
∑

i=1

min
{

α, (d− i+ 1)
γ

d

}

= 20. (4)

As seen in Fig. 1, any scheme that can store a file of size
C in the original DSS can be transformed into a scheme that
can store a file of sizen!C in the “bigger” DSS. Therefore,
we get n!C ≤ C ′ and C ≤ 10/3. This argument can be
directly generalized to arbitrary heterogeneous systems.The
general proof follows the same steps explained above and can
be found in Appendix B.

Theorem 1 implies that symmetric repair,i.e., downloading
equal numbers of bits from each of the helpers, is optimal in a
homogeneous system. To see this, consider a DSS with node
storage capacityα, and a total repair bandwidth budgetγ. A
new node joining the system has the flexibility to arbitrarily
split its repair bandwidth among thed helpers as long as the
total amount of downloaded information does not exceedγ. In
other words, we have

∑

i∈S βijS = γ, ∀j, S. Now, irrespective
of how each new node splits its bandwidth budget, the average
repair bandwidth in the system is the same,γ = γ. If we apply
Th. 1, we get an upper bound that matches exactly the capacity

in (2) of a homogeneous DSS with symmetric repair. Hence,
we obtain the result in Cor. 2.

B. Proof of Theorem 3

To avoid heavy notation, we focus on the case in which the
repair bandwidth depends only on the helper node (βijS = βi).
We give in Th. 5 lower and upper bounds specific to this
case. These bounds are similar to the ones in Th. 3, but can
be tighter. The proof of Th. 3 follows the exact steps of the
proof below and will be omitted here. Again, we assume that
the nodes are indexed in increasing order of node capacity,
α1 ≤ α2 ≤ · · · ≤ αn. We also order the values of the repair
bandwidthsβ to obtain the increasing sequenceβ′

1 ≤ β′
2 ≤

· · · ≤ β′
n.

Theorem 5:The capacityC of a heterogeneous DSS, in
which the repair bandwidth depends only on the identity of
the helper node, is bounded asC ′

min ≤ C ≤ C ′
max, where

C ′
min =

k
∑

i=1

min(αi, β
′
1 + β′

2 + · · ·+ β′
d−i+1)

= min
l=0,...,k





l
∑

i=1

αi +

k−l−1
∑

j=0

d−l−j
∑

i=1

β′
i



 ,

(5)

and

C ′
max =

k
∑

i=1

min(αi, β
′
i+1 + β′

i+2 + · · ·+ β′
d+1)

= min
l=0,...,k





l
∑

i=1

αi +
k−l
∑

j=1

d+1
∑

i=l+1+j

β′
i



 .

(6)

The second expressions forC ′
min and C ′

max highlight the
analogy with the bounds in Th. 3. Before proving Th. 5, we
give a couple of illustrative examples and discuss some special
cases.

Example 6:Consider again the example in the previous
section where(n, k, d) = (3, 2, 2) and where the nodes param-
eters are(α1, β1) = (1, 1), (α2, β2) = (α3, β3) = (2, 2). Here,
C ′

min = 2 andC ′
max = 3. Note that hereC ′

max is tighter then
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Fig. 2. A series ofk failures and repairs in the DSS that explains the capacity
expression in (7). Nodesvf1 , . . . , vfk fail successively and are repaired as
depicted above. The amount of “new” information that nodevfi can give the
user is the minimum between his storage capacityαfi and downloaded data
βSi

.

the average-based upper bound of Th. 1 which givesC ≤ 3.33.
Recall that the capacity for this system isC = 3 = C ′

max.
Example 7:Consider now a second DSS with(n, k, d) =

(3, 2, 2) and (α1, β1) = (5, 3), (α2, β2) = (6, 4) and
(α3, β3) = (7, 5). Here,C ′

min = 9 andC ′
max = 11, and Th. 1

givesC ≤ 10 < C ′
max.

The upper and lower bounds can coincide (C ′
min = C ′

max) in
certain cases, which gives the exact expression of the capacity.
For example:

1) A homogeneous DSS, where we recover the capacity
expression in (2).

2) A DSS with uniform repair bandwidth,i.e., βi = β, ∀i.
The capacity isC =

∑k
i=1 min(αi, (d− i+ 1)β).

3) Wheneverαi ≤ β′
1, ∀i. In this case the capacityC =

∑k
i=1 αi.

To prove the upper and lower bounds in Th. 5, we first
establish the following expression of the DSS capacity.

Theorem 8:The capacityC of a heterogeneous DSS is
given by

C = min
(f1,...,fk)

fi 6=fj for i6=j

k
∑

i=1

min






αfi , min

|Si|=d+1−i
Si∩{f1,...,fi}=∅

βSi






, (7)

where for anyS ⊆ {1, . . . , n}, βS =
∑

i∈S βi.
The proof of Th. 8 is a generalization of the proof in [1]

of the capacity of a homogeneous system (2). We defer this
proof to Appendix C and explain here the intuition behind
it. Consider the scenario depicted in Fig. 2 where nodes
vf1 , . . . , vfk fail and are repaired successively such that node
vfi is repaired by downloading data from the previously
repaired nodesvf1 , . . . , vfi−1

and d − (i − 1) other helper
nodes in the system. Consider now a user contacting nodes
vf1 , . . . , vfk . The amount of “non-redundant” information that
nodevfi can give to the user is evidently limited by its storage
capacityαi on one hand, and on the other hand, by the amount
of informationβSi

downloaded from thed−i+1 helper nodes
that are not connected to the user. Minimizing over all the
choices off1, . . . , fk gives the expression in (7).

The optimization problem underlying the capacity expres-
sion in (7) is over a space that is exponential ink and
d. It is not clear whether there exists a polynomial time
algorithm that solves this problem and computes the DSS
capacity. For this reason we give upper and lower bounds

that are easy to compute. To get the lower bound in (5), let
(f1, . . . , fk) = (f∗

1 , . . . , f
∗
k ) be the minimizer of (7). We have

C =
k

∑

i=1

min






αf∗

i
, min

|Si|=d+1−i
{f∗

1
,...,f∗

i }∩Si=∅

βSi







≥
k

∑

i=1

min
(

αf∗

i
, β′

1 + β′
2 + · · ·+ β′

d−i+1

)

≥
l∗
∑

i=1

αi +

d−l∗
∑

i=1

β′
i +

d−l∗−1
∑

i=1

β′
i + · · ·+

d−k+1
∑

i=1

β′
i

= min
l=0,...,k





l
∑

i=1

αi +

k−l−1
∑

j=0

d−l−j
∑

i=1

β′
i



 ,

(8)

wherel∗, 0 ≤ l∗ ≤ k is the number of those cases whereαf∗

i

is smaller or equal than the corresponding sum ofβ’s.
The upper boundC ′

max is obtained by taking(f1, . . . , fk) =
(1, . . . , k) in (7) and following similar steps as above.

V. SECURITY

We now consider the case of a passive adversary that
eavesdrops onℓ nodes in the system, and elaborate on the
definition of secrecy capacity. The secrecy capacityCs of the
system is the maximum amount of information that can be
delivered to any user without revealing any information to the
eavesdropper (perfect secrecy).

Formally, letS be the information source that represents the
file that is stored on the DSS. A user contacts the nodes in any
setB ⊂ {v1, . . . , vn} of sizek and downloads their stored data
denoted byCB . The user should be able to decode the file,
which implies that the relative entropyH(S|CB) = 0. Let E
be the set of theℓ compromised nodes, andDE be the data
observed by the eavesdropper. The perfect secrecy condition
implies thatH(S|DE) = H(S). Following the definition in
[20], we write the secrecy capacity as

Cs(α, γ) = sup
H(S|CB)=0∀B

H(S|DE)=H(S)∀E

H(S). (9)

Recall that in the case of an active adversary, the resiliency
capacity of the system is the maximum amount of information
that can be stored on the DSS such that any user contacting
k nodes can still decode with no-errors despite the errors
introduced by the malicious adversary.

Finding the secrecy and resiliency capacities of a DSS is a
hard problem and is still open in general, even for the class of
homogeneous systems. Following the same steps in the proof
of Th. 1, we can show that the secrecy and resilience capacities
of a heterogeneous DSS cannot exceed that of a homogeneous
DSS having the same average resources. This result is stated
in Th. 4.

In [20], the secure capacity of a homogeneous system
with symmetric repair was studied. Moreover, upper bounds
on the secrecy capacity in the presence of an eavesdropper
and resiliency capacity in the presence of an omniscient and
limited-knowledge active adversary were derived. We use
these upper bounds in conjunction with Th. 4, to give the



Adversary Model Upper Bound: Secure Capacity of a Homogenous DSS

Passive eavesdropper (ℓ < k, b = 0) Cs ≤
∑k

i=ℓ+1
min

{

ᾱ, (d− i+ 1) γ̄
d

}

Active omniscient adversary (ℓ = k, 2b < k) Cr ≤
∑k

i=2b+1
min

{

ᾱ, (d− i+ 1) γ̄
d

}

Active limited-knowledge adversary(ℓ, b ≤ ℓ) Cr ≤
∑k

i=b+1
min

{

ᾱ, (d− i+ 1) γ̄
d

}

TABLE I
UPPER BOUNDS ON THE SECRECY CAPACITYCs AND THE RESILIENCY CAPACITYCr OF A HETEROGENEOUS DISTRIBUTED STORAGE SYSTEM WITH

AVERAGE NODE CAPACITY ᾱ AND AVERAGE TOTAL REPAIR BANDWIDTH γ̄. THE ADVERSARY IS CHARACTERIZED BY TWO PARAMETERS: ℓ, THE NUMBER

OF NODES IT CAN EAVESDROP ON, AND b, THE NUMBER OF NODES IT CAN CONTROL. NOTE THAT IF THE CONDITIONS ONℓ, b SPECIFIED IN THE FIRST

COLUMN ARE NOT SATISFIED, THEN Cs, Cr ARE EQUAL TO ZERO.

Fig. 3. The results of the first simulation. The different bounds and capacity
are plotted for a heterogeneous DSS with(n, k, d) = (5, 4, 4) in which we
vary the storage capacityα1 of the first node.

upper bounds on the secrecy and resiliency capacity of a
heterogeneous DSS which can be found in Table I.

Using Th. 4, we easily deduce that symmetric repair is
also optimal in terms of maximizing the secure capacity of
a compromised DSS.

Corollary 9: Symmetric repair maximizes the secrecy ca-
pacity of a homogeneous system with a given budget on total
repair bandwidth.

VI. SIMULATIONS

In this section, we compare our different bounds to the
actual value of the capacity for two examples of heterogeneous
DSSs. The examples we consider have small values for the
parameters(n, k, d) which makes it possible to compute the
capacity in (7) by brute force. In general, the tightness of our
bounds depends on the system parameters and the distribution
of the nodes’ storage capacitiesαi and repair bandwidthsβi.
This behavior can be seen in the simulation plots in Fig. 3
and Fig. 4.

In the first simulation, we consider a DSS with(n, k, d) =
(5, 4, 4) and β1 = 1, β2 = 3, β3 = 2, β4 = 1, β5 = 2 and
α2 = 3, α3 = 3, α4 = 4, α5 = 4. We vary the storageα1 of the

first node from0 to 6 continuously and plot the corresponding
bounds and capacity in Fig. 3. The bounds we plot are the
two upper boundsCho in (3) andC ′

max in (6), and the lower
boundC ′

min in (5). Moreover, we plot the trivial upper and
lower bounds, denoted respectively byCho

min andCho
max, which

are obtained by using the minimum (respectively maximum)
values of theαi’s andβi’s in (2).

In the second simulation, we consider a DSS with two types
of nodes and vary the number of nodes of each type while
keeping the total number of nodesn constant. We choose
(n, k, d) = (6, 4, 5) and nodes of type 1 have(α, β) = (6, 6)
while nodes of type 2 have(α′, β′) = (5, 1) . The results of
this simulation are presented in Fig. 4.

Fig. 4. The results of the first simulation. The different bounds and capacity
are plotted for a heterogeneous DSS with(n, k, d) = (6, 4, 5) and nodes of
type 1 having(α, β) = (6, 6) and nodes of type 2 having(α′, β′) = (5, 1).

VII. C ONCLUSION

We have studied distributed storage systems that are het-
erogeneous. Nodes in these systems can have different storage
capacities and different repair bandwidths. We have focused
on determining the information theoretic capacity of these
systems,i.e., the maximum amount of information they can
store, to achieve a required level of reliability (anyk out of the
n nodes should be able to give a stored file to a user). We have



proved an upper bound on the capacity that depends on the
average resources available per node. Moreover, we have given
an expression for the system capacity when we know all the
nodes’ parameters. This expression may be hard to compute,
but we use it to derive additional upper and lower bounds that
are easy to evaluate. We have also studied the case in which
the system is compromised by an active or passive adversary,
and have provided bounds on the system secure capacity. Our
results imply that symmetric repair maximizes the capacity
of a homogeneous system, which justifies the repair model
used in the literature. Problems that remain open include
finding an efficient algorithm to compute the capacity of a
heterogeneous distributed storage system, as well as efficient
code constructions.

APPENDIX

A. Functional vs. Exact Repair

All of our results so far assumed a functional repair model.
However, Theorems 1 and 4 can be directly extended to the
exact repair case. For instance, Th. 1 becomes:

Theorem 10:The capacityC of a heterogeneous distributed
storage system under exact repair, with node average capacity
ᾱ and average repair bandwidth̄γ, is upper bounded by

C ≤ Cho
exact(ᾱ, γ̄), (10)

whereCho
exact(ᾱ, γ̄) is the capacity of a homogeneous DSS

under exact repair.
In the proofs of Theorems 1 and 4 we construct a new

“big” storage system using the original one as a building block.
Hence, if we had exact repair in the original system to start
with, we will have exact repair in the new “big” system. The
results can thus be straightforwardly generalized to the case
of exact repair. Moreover, under an exact repair constraint, a
homogeneous DSS with symmetric repair maximizes capac-
ity under given average node storage and repair bandwidth
budgets.

The other results, namely Theorems 3, 5, and 8, are proved
using the analysis of the information flow graph. Therefore,It
is not clear if there is an obvious extension of these resultsto
the case of exact repair.

B. Proof of Theorem 1

We prove Th. 1 by making formal the argument of the
example in Section IV-A. We start by describing the operation
of adding, or combining, together multiple storage systems
having same number of nodes. LetDSS1,DSS2 be two
storage systems with nodesv11 , . . . , v

1
n andv21 , . . . , v

2
n, respec-

tively. The new system that we refer to asDSS obtained
by combiningDSS1 and DSS2 is comprised ofn nodes,
sayu1, . . . , un. Nodeui has storage capacityαi = α1

i + α2
i

(superscriptj, j = 1, 2, denotes a parameter of systemSj).
Moreover, when nodeuj fails in DSS, the new node down-
loadsβijS = β1

ijS + β2
ijS amount of information from helper

node ui (recall thatS is the set of indices of thed helper
nodes). We writeDSS = DSS1 +DSS2.

Now, letDSS be the given heterogeneous system for which
we wish to compute its capacityC. For each permutationσ :

{1, . . . , n} → {1, . . . , n}, we denote byDSSσ the storage
system with nodesvσ1 , . . . , v

σ
n such thatvσi = vσ(i). Let Pn

denote the set of alln! permutations on the set{1, . . . , n}.
We define a new “big” system by

DSSb =
∑

σ∈Pn

DSSσ.

The new systemDSSb is homogeneous with symmetric repair
where the storage capacity per nodeαb is given by

αb = (n− 1)!
n
∑

i=1

αi = n!α.

The repair bandwidthβb,ijS in DSSb can be expressed as:

βb,ijS
(a)
=

∑

σ∈Pn

βi′j′S′

(b)
=

∑

i′,j′,S′

∑

σ∈Pn:
σ(i′)=i,σ(j′)=j,σ(S′)=S

βi′j′S′

(c)
=(n− d− 1)!(d− 1)!

n
∑

j′=1

n
∑

i′=1
i′ 6=j′

∑

S′

βi′j′S′

(d)
=(n− d− 1)!(d− 1)!

n
∑

j′=1

(

n− 1

d

)

γj′

=
(n− 1)!

d

n
∑

j′=1

γj′ = n!
γ̄

d
.

(11)

(a) Here, i′ = σ−1(i), j′ = σ−1(j) and S′ = σ−1(S).
(b) i′, j′ = 1, . . . , n, and i′ 6= j′. |S′| = d with i′ ∈ S′

and j′ /∈ S′. (c ) The number of permutationsσ that satisfy
σ(i′) = i, σ(j′) = j, σ(S′) = S is (n − d − 1)!(d − 1)!. (d)
This follows from (1).

Therefore, the capacityCb of DSSb as given by (2) is

Cb = n!

k
∑

i=1

min
{

ᾱ, (d− i+ 1)
γ̄

d

}

. (12)

Any scheme achieving the capacityC of the original system
can be naturally extended to store a file of sizen!C in DSSb

(see Fig. 1). Therefore,Cb ≥ n!C. This inequality combined
with (12) gives the result of the Th. 1.

C. Proof of Theorem 8

We use the definition of the flow graph in [1] to represent
the DSS. The flow graph is a multicast network in which
the multiple destinations correspond to the users requesting
files from the DSS by contacting anyk out of then nodes.
Therefore, the capacity of the DSS is the capacity of this
multicast network which is equal to the minimum value of the
min-cuts to the users, by the fundamental theorem of network
coding. Note that in the flow graph, a storage nodevi is
represented by two verticesxi

in and xi
out connected by an

edge of capacityαi (see Fig. 2).



Let C be the capacity of the DSS and defineF to be

F , min
(f1,...,fk)

fi 6=fj for i6=j

k
∑

i=1

min






αfi , min

|Si|=d+1−i
{f1,...,fi}∩Si=∅

βSi






.

We want to show thatC = F .
Let (f1, . . . , fk) be fixed and consider the successive fail-

ures and repairs of nodesvf1 , . . . , vfn as seen in Fig. 2.
Suppose nodevf1 is repaired by contacting the helper nodes
that minimize the sumβS1

with |S1| = d and{f1} ∩ S1 = ∅,
and nodevf2 is repaired by contacting nodevf1 and thed−1
helper nodes that minimize the sumβS2

with |S2| = d−1 and
{f1, f2}∩S2 = ∅. We continue in this fashion and finish with
node vfk being repaired by contacting nodesvf1 , . . . , vfk−1

and the d − k + 1 helper nodes that minimizeβSk
with

|Sk| = d+ 1− k and{f1, . . . , fk} ∩ Sk = ∅. Now consider a
user contacting nodesvf1 , . . . , vfn there is a cut to the user of
valueF . By the max-flow min-cut theorem, we getC ≤ F .

To prove the other direction, consider a user in the system
and letE denote the edges in the min-cut that separates this
user from the source in the flow graph. Also, letV be the set
of vertices in the flow graph that have a path to the user. Since
the flow graph is acyclic, we have a topological ordering of
the vertices inV , which means that they can be indexed such
that an edge fromvi to vj implies i < j.

Let x1
out be the first “out-node” inV (with respect to the

ordering). Ifx1
in /∈ V , thenx1

inx
1
out ∈ E. On the other hand,

if x1
in ∈ V , then the set of incoming edgesS′

1, |S′
1| = d, of

x1
in must be inE.
Now similarly letx2

out be the second “out-node” inV with
respect to the ordering. Ifx2

in /∈ V , then x1
inx

2
out ∈ E. If

x2
in ∈ V , then the setS′

2, |S
′
2| ≥ d− 1, of edges incoming to

x2
in, not including a possible edge fromx1

out, must be inE.
All k nodes adjacent to the user must be inV so continuing
in the same fashion gives that the min-cut is at least

k
∑

i=1

min(αfi , βS′

i
),

wherefi 6= fj for i 6= j, |S′
i| ≥ d+ 1− i, and{f1, . . . , fi} ∩

S′
i = ∅.
Let S′′

i ⊆ S′
i be a subset such that|S′′

i | = d + 1 − i. Now
the min-cut is at least

k
∑

i=1

min(αfi , βS′′

i
) ≥

k
∑

i=1

min






αfi , min

|Si|=d+1−i
{f1,...,fi}∩Si=∅

βSi







giving thatC ≥ F .
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