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Abstract—The capacity of heterogeneous distributed storage and [5]. Recent work describes the implementation of eeasur

systems under repair dynamics is studied. Examples of these codes in distributed storage systems at the productior éve
systems include peer-to-peer storage clouds, wireless, and In-Microsoft [6] and Facebook [7].

ternet caching systems. Nodes in a heterogeneous system can - . . L
have different storage capacities and different repair bandwidtls. The majority of the results in the Ilterat_ure of _th's f'e"?'
Lower and upper bounds on the system capacity are given. These focus on a homogeneous model when studying the information

bounds depend on either the average resources per node, or on atheoretic limits on the performance of distributed storage
detailed knowledge of the node characteristics. Moreover, the s8  systems. In a homogeneous system all the nodes (hard disks
in which nodes may be compromised by an adversary (passive o other storage devices) have the same parameters (storage

or active) is addressed and bounds on the secure capacity of it ir bandwidth. et Thi del
the system are derived. One implication of these new results is CAPacity, repair bandwidth, etc.). This model encompasses

that symmetric repair maximizes the capacity of a homogeneous Mmany real-world storage systems such as clusters in a data
system, which justifies the model widely used in the literature. center, and has been instrumental in forming the engingerin

Index Terms—Distributed storage systems, information the- imu““?” for understanding these systems. Recent deweiop
oretic security, repair bandwidth, regenerating codes, network have included the emergence loéterogeneousystems that
coding. pool together nodes from different sources and with differe

characteristics to form one big reliable cloud storageesyst
| INTRODUCTION Examples include peer-to-peer (p2p), or hybriq (p2p-tesd)s
) ) cloud storage systems [8], [9], Internet caching systems fo

Cloud storage ha_s emerged in recent years as an inexpengjMe ,_on-demand applications [10], [11], and caching sys-
and scalable solution for storing large amounts of data ajghs i heterogeneous wireless networks [12]. Motivated by
making it pervasively available to users. The growing SBECE 0 ge applications, we study the capacity of heterogeneous

of cloud storage has been accompanied by new advancegy;iyip ted storage systems (DSS) here under reliabiliy a
the theory of erasure codes for such systems, namely recy constraints

application of network coding techniques for distributextad Contributions: The capacity of a DSS is the maximum

stpragg and the theory of regenerating codes introduced apr}ﬁount of information that can be delivered to any user
Dimakis et al. [1], followed by a large body of further work contactingk out of n nodes in the system. Intuitively, in a

in the literature. , o heterogeneous system, this capacity should be limited &y th
Cloud storage systems are typically built using a largg eakest” nodes. However, nodes can have different storage
number of inexpensive commodity disks that fail frequently., o ities and different repair bandwidths. And the temsio

making fail_urgs “th? norm rather then_ the exception." [Z]between these two set of parameters makes it challenging to
Therefore, it is a prime concern to achieve fault-toleraimce identify which nodes are the “weakest".

these systems and minimize the probability of losing theesto Our first result establishes an upper bound on the capacity

datda. ;he recent theoretical results uncovered funplamergﬁa DSS that depends on the average resources in the system
tradeoffs among system resources (storage capacity,repaierage storage capacity and average repair bandwidth per
bandwidth, etc:) that are necessary to achieve fat_;ltetotmr. node). We use this bound to prove that symmetric repair,

They also provided novel erasure codes constructions #mat ?jownloading equal amount of data from each helper node,

achieve some of these tradeoff points; see for example4g], E’naximizes the capacity of a homogeneous DSS. While the
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adversaries: a passive adversary who can only eavesdropnew node. In a homogeneous system, the repair bandwidth,
certain nodes in the system, and an active malicious adyersdenoted byy, is the same for any new node joining the system.
who can also change the stored data on some nodes. For tidsetypical model adopted in the literature assusygametric
cases, we give bounds on the secure capacity of the system iapair in which the total repair bandwidth is divided equally
show that symmetric repair maximizes the secrecy capatityamong thel helpers. Thus, the new node downloats- v/d
a homogeneous system. amount of information from each helper. In a heterogeneous
Parts of this paper have been presented at the 2013 Inforregstem the repair bandwidth can vary depending on which
tion Theory and Applications Workshop (invited presemtati node has failed and which nodes are helping in the repair
“Data security in heterogeneous distributed storage Bysfe process. We denote b, the amount of information that a
San Diego, California, USA, and at the ISIT 2013 [14]. new node replacing the failed nodg is downloading from
Related work: Wu proved the optimality of symmetric helper node); when the other helper node belong to the index
repair in [13] for the special case of a DSS using Maximumset S (i € S,|S| = d). An important special case is when the
Distance Separable (MDS) codes. Coding schemes for a nggpair bandwidth per helper depends only on the identity of
homogeneous storage system with one super-node thathis helper node and not on the identity of the failed node
more reliable and has more storage capacity were studiecbinthe other helpers. In this case, we say that helper npde
[15]. References [16] and [17] studied the problem of steragas repair bandwidti®;, i.e, 8;;s = 53,74, S. In the case
allocations in distributed systems under a total storagigél of a homogeneous system with symmetric repair, we have
constraint where nodes can fail with different probatebti 3,,¢ = 8 =~/d, Vi, 3, S.
Shah et al. studied in [18] constructions of “flexible” regen e focus on repair from single node failures since it is the
erating codes for systems that allow flexiblity in the amourfominant failure pattern in DSSs [6]. Moreover, in the rare
of data downloaded for repair from each helper node as loBgent of multiple simultaneous failures, the failed nodas c
as the total does not exceed a given budget. Patval. [19], be repaired successively by invoking the repair scheme for
[20] studied the secure capacity of homogeneous distidbutéingle failures.
storage systems under eavesdropping and malicious attacks \when a single node fails, there afé,") possibilities for

Organization: Our paper is organized as follows. Iy set of helpers. Therefore, the average repair bandwidth
Section II, we describe our model for heterogeneous DSS and nodev; is

set up the notation. In Section Ill, we summarize our mairl

results. In Section IV, we prove our bounds on the capacity n—1\ "
of a heterogeneous DSS. In Section V, we study the secure V= ( d > Z Zﬂij8~ 1)
capacity in the presence of an adversary. We conclude in S:j¢Sies

Section VIl and discuss some open problems. 15=d
We denote byy = 37 v anda = 137 a; the
average total repair bandwidth and average node capacity in
A. System Model the DSS, respectively.

A heterogeneous distributed storage system is formed ofe are interested in finding the capaciyof a heteroge-
n storage nodesy, ..., v, with storage capacities;,...,a, neous DSS.
respectively. Unless stated otherwise, we assume thabtiesn Definition: The capacityC' of a DSS represents the

are indexed in increasing order of capacitg., a1 < az < maximum amount of information that can be downloaded by
- < ap. In a homogeneous system all nodes have thgy user contacting out of n nodes in the system.

same storage capacity, i.e, a; = «,Vi. As a reliability | follows directly from the definition above that the cagci

requirement, a user should be able to obtain a file by conctino of 4 homogeneous DSS satisfi€s< k - a. Recall from

any k < " nodes in the DS.S' The nodes fprming the SyStem], that the capacityC”° has the following expression for
are unreliable and can fail. The systemrepaired from a pgg with symmetric repair:

failure by replacing the failed node with a new node. Upon
joining the system, the new node downloads its data ftpm k
k < d <n—1, helper nodes in the system. cho(a,y) = Zmin{a, (d—i+ 1)%} . @)
The repair process can be eittestactor functional In the i=1
case of exact repair, the new node is required to store art exac
copy of the data that was stored on the failed node. Wheregs
in the case of functional repair, the data stored on the new
node does not have to be an exact copy of the lost data, butVe are also interested in characterizing the secure cgpacit
merely “functionally equivalent” in the sense that it press of the system when nodes are compromised by an adversary.
the property that contacting aryout of n nodes is sufficient The adversary can eavesdrop on some storage nodes, and
to reconstruct a stored file. We focus on functional repair ossibly corrupt a subset of the stored data. We follow tyose
this paper, although some of our results do generalize to the adversary model in [19] and [20] and denote tbyhe
exact repair model (see the discussion in Appendix A).  number of nodes that the intruder can eavesdrop onpdhd
An important system parameter is thepair bandwidth number of nodes it can control by maliciously corrupting its
which refers to the total amount of data downloaded by tltata. We study three types of adversaries:

Il. MODEL

Adversary Model



a) Passive EavesdropperThe eavesdropper can readesult follows directly from Th. 1 and avoids the combin&ibr
the data downloaded during repair and stored/pdi < %k, cut-based arguments that may be needed in a direct proof
compromised nodes, but cannot change the stored @atady. Corollary 2: In a homogeneous DSS with node capacity
We are interested here in information theoretic secrecyhlvhiand total repair bandwidth, symmetric repair maximizes the
characterizes the fundamental ability of the system toigeov system capacity.
data confidentiality independently of cryptographic meho  When we know the parameters of the nodes in the system
The secrecy capacitpf the system, denoted ly,, is defined beyond the averages, we can obtain possibly tighter bounds a
as the maximum amount of information that can be deliveretscribed in Th. 3. To simplify the notation, let us order the
to a user without revealing any information to the eavespleop repair bandwidth per helpet;;s into an increasing sequence
(perfect secrecy). B, B, ... B, such thaB; < B/, , and wheren = nd("}").

b) Active Omniscient AdversaryThe active omniscient Also, recall thato; < ap < -+ < .
adversary knows the file stored in the system and can controlTheorem 3:The capacity C' of heterogeneous DSS is
b nodes in total, wher@b < k. In this case, the adversarybounded by

can maliciously corrupt the data stored on the nodes under hi Chin < C < Chjax
control and can send corrupted messages when contacted er
. . where
repair or for file download. ! h
c) Active Limited-knowledge Adversaritere, the active Cipin = in Z o + Z B,
adversary hatimited knowledgeabout the data stored in the =0k \ S im1

system. He can eavesdrop 6r< k& nodes in the system, and

among these nodes he can corrupt the data @r¢ of them. . ! h ,

We assume that the numbéris not sufficient enough to let Crnax = 2o ZO‘J‘ + Zﬁmﬂ—j g

the adversary guess the stored file. =1 =1
In the case of an active adversary, we are interested and

computing theresiliency capacityof the system,i.e., the h =

maximum file size that can be stored on the DSS such that 2

the user can still decode with no-errors despite the actibns When the system is compromised by an adversary, whether

the malicious adversary. When the type of the adversaryfgssive or active, the system secure capacity can be upper

not specified, we use the term secure capacity to refer to #peunded as stated in the next theorem.

secrecy capacity or resiliency capacity of the system. NoteTheorem 4:The secure capacity of a heterogeneous DSS

that we always assume that the adversary has a compléfger a passive or an active (omniscient or limited-knoggd

knowledge of the code and the repair scheme implementdversarial attack, is upper bounded by the secure capaicity
in the system. a homogeneous system under the same attack and having node

average capacity and average repair bandwidth(See more
details in Table I).
[Il. MAIN RESULTS This theorem implies that symmetric repair also maximizes
tge secure capacity of a homogeneous DSS.

(2d—k—1+1)(k 1)

We start by summarizing our results. Theorem 1 gives
general upper bound on the storage capacity of a heteroge-
neous DSS as a function of the average resources per node.

Theorem 1:The capacityC' of a heterogeneous distributed®- Example & Proof of Theorem 1
storage system, with node average capacitand average  We illustrate the proof of Th. 1 through an example for the
repair bandwidthy, is upper bounded by special case in which the bandwidths depend only on identity

i of the helper node. We compute the capacity of the DSS for

(. . ~ o this specific example, and show that it is strictly less than t
¢< me {O" (d—i+ 1)3} =@y, @) upper bound of Th. 1. That is, it does not achieve the capacity
=1 of a homogenous system with the same average characteristic

The right-hand side term in (3) is the capacity of a homog&lore specifically, consider the heterogeneous DSS depiited
neous DSS as in (2) in which all nodes have storagea and Fig. 1(a) with(n, &k, d) = (3,2,2) formed of3 storage nodes
total repair bandwidthy = 5 . Th. 1 states that the capacityv1,v2 andvs with storage capacitiegy, as, az) = (1,2,2)
of a DSS cannot exceed that of a homogeneous system wtite repair bandwidth$s,, 52, 83) = (1,2,2). The average
the total system resources are split equally among all tRede capacityy = 5/3 and repair bandwidth aré = 10/3.
nodes. Also, Th. 1 implies thatymmetric repair is optimal Th. 1 gives that the capacity of this DSS< 10/3 = 3.33.
in homogeneous systems in the sense that it maximizes th&or this example, it is easy to see that the DSS capacity

system capacity. This justifies the repair model adopted i C' = 3 < 10/3. In fact, a user contacting nodes and
the literature. This result is stated formally in Cor. 2. Vghil v2 cannot download more information then their total storage

the optimality of symmetric repair is known for the special
P y y P P .1 The arguments are based on deriving the value of the min-cugiagh,

_Case of MDS_COdeS [13]* Cor._2 asserts that SymmEtriC rePé_’éﬁedﬂow graph that represent DSSs [1]. For example, see the proof of Th. 8
is always optimal for any choice of system parameters. ThisAppendix C.

IV. CAPACITY OF HETEROGENEOUSDSS
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Fig. 1. An example that illustrates the proof of the upper lib(8) on the capacity of a heterogeneous system. (a) A heteeogs distributed storage system
(DSS) with (n, k,d) = (3,2,2). The nodes have storage capacities= 1, as = a3 = 2 and the repair bandwidth per helper &te= 1,82 = 33 = 2.
(b) A DSS constructed by combining together = 6 copies of the original heterogeneous system corresportdirajl possible node permutations. The
obtained DSS is homogeneous with uniform storage per moge 10 and repair bandwidth per help@r= 10. The capacity of this system is 20 as given
by (2) [1]. Any code that stores a file of siz&é (C' = 3 here) on the original DSS can be transformed into a scheme trassa file of sizex!C = 6C in
the “bigger” system. This gives the upper bound in 3K 20/6 = 10/3.

a1 + as = 3. This upper bound is achieved by the code im (2) of a homogeneous DSS with symmetric repair. Hence,
Fig. 1(a). The code stores a file of 3 units,y, z) in the we obtain the result in Cor. 2.

system. During repair the new node downloads the whole
file and stores the lost piece of the data (note that the repgi_r

bandwidth constraints allow this trivial repair). id h . ‘ h i which th
To obtain the upper bound in (3), we use the original het- To avoid heavy notation, we focus on the case in which the

erogeneous DSS to construct a “bigger” homogeneous systéﬁ?air, bandwidth depends only on the helper mﬁj?s(f Ba). )
We obtain this new system by “glueing” together— 3! — 6 We give in Th. 5 lower and upper bounds specific to this

copies of the original DSS as shown in Fig. 1(b). Each cogyse‘ t;l’hes_?hboundsf a;eTiim;Ie;r ITO thehones in Th. 3, b?tr::an
corresponds to a different permutation of the nodes. In t & tighter. The proot o - 3 follows the exact steps of the

figure, thei" copy stores the filéz;, y;, z;). For example in proof below and will be omitted here. Again, we assume that

Fig. 1(b), the first copy is the original system itself, theasd the nodes are indexed in IlnCreZSInghordelr of n(f)dy? capacity,
corresponds to node, and nodews switching positions, and @1 < @2 < -+ < a,. We also order the values of t € reparr
S0 on. bandwidthsg to obtain the increasing sequenge < 3} <

. . . < B
The “bigger” system is homogeneous because all its nodes =~ " ] . :
have storagex — 10 and repair bandwidth per helper — SI'heorem 5:The capacityC' of a heterogeneous DSS, in

B Ly . which the repair bandwidth depends only on the identity of
~v/d = 10. The capacityC’ of this system can be computedthe helper node, is bounded &% < C < C _ where

Proof of Theorem 3

from (2):
k
k i . I / 1
. = ;) »
¢'=> min{a,(d—i+1)7} =20. (4) m‘“ ;mm(a At fatt b
=t ! k—l—1d—l—j ®)
As seen in Fig. 1, any scheme that can store a file of size = l_%link ZO@ + Z Z Bi
C in the original DSS can be transformed into a scheme that T =1 j=0 =1

can store a file of size!C' in the “bigger” DSS. Therefore, and

we getn!C < C" and C < 10/3. This argument can be

directly generalized to arbitrary heterogeneous systdrs. y . p p /

general proof follows the same steps explained above and can Cinax = Z min(as, By + Biyz 0+ B

be found in Appendix B. =t (6)
Theorem 1 implies that symmetric repdige., downloading . l o = ,

equal numbers of bits from each of the helpers, is optimal in a - z:%l,l.].[.l,k Z @i+ Z , Z ,ﬁi

homogeneous system. To see this, consider a DSS with node = gl

storage capacityy, and a total repair bandwidth budget A The second expressions fér , and C/,,. highlight the

new node joining the system has the flexibility to arbitsarilanalogy with the bounds in Th. 3. Before proving Th. 5, we

split its repair bandwidth among th&helpers as long as thegive a couple of illustrative examples and discuss someapec

total amount of downloaded information does not exceelth cases.

other words, we havg ;¢ Bijs = 7,74, S. Now, irrespective ~ Example 6:Consider again the example in the previous

of how each new node splits its bandwidth budget, the averaggction wherén, k, d) = (3, 2,2) and where the nodes param-

repair bandwidth in the system is the sames ~. If we apply eters arday, 81) = (1,1), (a2, 82) = (a3, 83) = (2,2). Here,

Th. 1, we get an upper bound that matches exactly the capadity,, = 2 andC/ ., = 3. Note that here”} . is tighter then

max max

k



that are easy to compute. To get the lower bound in (5), let
(f1s-- fu) = (ff, ..., f5) be the minimizer of (7). We have

k

C= E min | o gx min Bs
— T s =dy1—i '
= {1 £ INS=0

k
. / / /
Fig. 2. A series of failures and repairs in the DSS that explains the capacity Z Z n (af? ’ 61 + 62 +ooet Bdfz#l)
i=1

expression in (7). Nodesy, , ..., vy, fail successively and are repaired as (8)
depicted above. The amount of “new” information that nege can give the l* d—1* d—1"—1 d—k+1
gser is the minimum between his storage capaeity and downloaded data > Z a; + Z 51/‘ + Z BZ{ 4t Z 51{
Si i=1 i=1 i=1 i=1
l k—l—1d—1—j
| = min D et D D B

the average-based upper bound of Th. 1 which gives 3.33. T i=1 j=0 i=1
Recall that the capacity for this system@s=3 = C/_. .. .

pacity y max wherel*,0 < [* < k is the number of those cases wherg

Example 7:Consider now a second DSS with, k,d) =
(3,2,2) and (041751) = (5,3), (a2752) = (6,4) and
(as, B3) = (7,5). Here,C! ., =9 andC/ . =11,and Th. 1
givesC <10 < O, -

The upper and lower bounds can coincidg (, = Cr,..) in

certain cases, which gives the exact expression of the itgpac . _
For example: We now consider the case of a passive adversary that

1) A homogeneous DSS, where we recover the capacﬁ vesdrops orf nodes in the system, and elaborate on the
expression in (2) ’ finition of secrecy capacity. The secrecy capaClfyof the
2) A DSS with unifo.rm repair bandwidth.e., 8 — 3,Vi system is the maximum amount of information that can be
I koo T delivered to any user without revealing any informationfte t
3 wr? capacity i< /:vzifl Iﬁl-n(ai’ (d ;]Z ;i 1)6)1 eavesdropper ();)erfect secrecy) o
) Zkenjyer“’ < Fr Vi In this case the capacity Formally, letS be the information source that represents the
=1 _ _file that is stored on the DSS. A user contacts the nodes in any
To prove the upper and lower bounds in Th. 5, we firgletp 1, ... v} of sizek and downloads their stored data
establish the following expression of the DSS capacity.  genoted byC’s. The user should be able to decode the file,
Theorem 8:The capacityC' of a heterogeneous DSS iSypich implies that the relative entropif (S|Cs) = 0. Let

is smaller or equal than the corresponding sunt'sf
The upper bound/ .. is obtained by takingfi, ..., fx) =

max

(1,...,k) in (7) and following similar steps as above.

V. SECURITY

given by be the set of the compromised nodes, anfl; be the data
. observed by the eavesdropper. The perfect secrecy camditio
_ . . . implies thatH(S|Dg) = H(S). Following the definition in
o fll,l.l.l.%k) me o \SJEZIElfi Bsi |» (D) [20], we write the secrecy capacity as
fit f; foritj =1 S0 f1yn i} =0
Cs(a, ) = sup H(S). 9)
where for anyS C {1,...,n},Bs = > .5 Bi- H(S|Cp)=0YB
The proof of Th. 8 is a generalization of the proof in [1] H(S|Dp)=H(S)VE

of the capacity of a homogeneous system (2). We defer thisRecall that in the case of an active adversary, the resilienc
proof to Appendix C and explain here the intuition behindapacity of the system is the maximum amount of information
it. Consider the scenario depicted in Fig. 2 where nodé#sat can be stored on the DSS such that any user contacting
vy,. .., Uy, fail and are repaired successively such that node nodes can still decode with no-errors despite the errors
vy, is repaired by downloading data from the previouslintroduced by the malicious adversary.
repaired nodesy,,...,vs,_, andd — (i — 1) other helper  Finding the secrecy and resiliency capacities of a DSS is a
nodes in the system. Consider now a user contacting nodiesd problem and is still open in general, even for the cléss o
Vg, .., Uf. The amount of “non-redundant” information thahomogeneous systems. Following the same steps in the proof
nodevy, can give to the user is evidently limited by its storagef Th. 1, we can show that the secrecy and resilience cagsciti
capacitye; on one hand, and on the other hand, by the amouwrfta heterogeneous DSS cannot exceed that of a homogeneous
of informationgs, downloaded from thé —i+1 helper nodes DSS having the same average resources. This result is stated
that are not connected to the user. Minimizing over all thie Th. 4.
choices offy, ..., fi gives the expression in (7). In [20], the secure capacity of a homogeneous system
The optimization problem underlying the capacity expresvith symmetric repair was studied. Moreover, upper bounds
sion in (7) is over a space that is exponential inand on the secrecy capacity in the presence of an eavesdropper
d. It is not clear whether there exists a polynomial timand resiliency capacity in the presence of an omniscient and
algorithm that solves this problem and computes the D3igited-knowledge active adversary were derived. We use
capacity. For this reason we give upper and lower bountteese upper bounds in conjunction with Th. 4, to give the



Adversary Model Upper Bound: Secure Capacity of a Homogenous DSS
Passive eavesdroppet € k, b = 0) Cs <F ,  min{a,(d—i+1)2}
Active omniscient adversary & k, 2b < k) Cr < Zf:2b+1 min {&, (d — i + 1)%}
Active limited-knowledge adversar(b < £) Cr<y b, min{a (d—i+1)3}
TABLE |

UPPER BOUNDS ON THE SECRECY CAPACIT's AND THE RESILIENCY CAPACITY C)- OF A HETEROGENEOUS DISTRIBUTED STORAGE SYSTEM WITH

AVERAGE NODE CAPACITY & AND AVERAGE TOTAL REPAIR BANDWIDTH 7. THE ADVERSARY IS CHARACTERIZED BY TWO PARAMETERS/, THE NUMBER

OF NODES IT CAN EAVESDROP ONAND b, THE NUMBER OF NODES IT CAN CONTROL NOTE THAT IF THE CONDITIONS ON/, b SPECIFIED IN THE FIRST
COLUMN ARE NOT SATISFIED, THEN C§, C) ARE EQUAL TO ZERQ

el ™ Upper bound €%, first node fromo to 6 continuously and plot the corresponding
P Upper bound €% eg. (3 bounds and capacity in Fig. 3. The bounds we plot are the
- - Upper bound Clyg, €q. (6) two upper bound€” in (3) andC’,,, in (6), and the lower
20 - — D) boundC/ .. in (5). Moreover, we plot the trivial upper and
. R —— lower bounds, denoted respectively @2, andC”, _, which
T Lowerbound (R0 femmenmee are obtained by using the minimum (respectively maximum)
i R ————— values of then;’s and 3;'s in (2).

In the second simulation, we consider a DSS with two types
of nodes and vary the number of nodes of each type while
keeping the total number of nodes constant. We choose
(n,k,d) = (6,4,5) and nodes of type 1 have, 5) = (6,6)
while nodes of type 2 hav&/, 8’) = (5,1) . The results of

« this simulation are presented in Fig. 4.

5 ‘ 6
Capacity

Fig. 3. The results of the first simulation. The different bdsiand capacity s

are plotted for a heterogeneous DSS w(ith k, d) = (5,4, 4) in which we

vary the storage capacity; of the first node.

Capacity
Cin

ho
Cain

BEEEE

upper bounds on the secrecy and resiliency capacity ofx
heterogeneous DSS which can be found in Table 1.

Using Th. 4, we easily deduce that symmetric repair
also optimal in terms of maximizing the secure capacity ¢
a compromised DSS.

Corollary 9: Symmetric repair maximizes the secrecy ce"
pacity of a homogeneous system with a given budget on to
repair bandwidth.

" y Nodes of
1 2 3 3 5 6 wpe |

VI. SIMULATIONS Fig. 4. The results of the first simulation. The different bdsimnd capacity
. . . are plotted for a heterogeneous DSS w(ith k, d) = (6,4, 5) and nodes of
In this section, we compare our different bounds to the 1 having(c, 8) = (6,6) and nodes of type 2 having’, 8') = (5, 1).

actual value of the capacity for two examples of heterogeseo
DSSs. The examples we consider have small values for the
parametergn, k, d) which makes it possible to compute the
capacity in (7) by brute force. In general, the tightnesswof o VII. CONCLUSION
bounds depends on the system parameters and the distnibutiole have studied distributed storage systems that are het-
of the nodes’ storage capacities and repair bandwidths;. erogeneous. Nodes in these systems can have differengstora
This behavior can be seen in the simulation plots in Fig. @pacities and different repair bandwidths. We have fatuse
and Fig. 4. on determining the information theoretic capacity of these
In the first simulation, we consider a DSS with, k,d) = systems,.e., the maximum amount of information they can
(5,4,4) and 5y = 1,8, = 3,83 = 2,8, = 1,05 = 2 and store, to achieve a required level of reliability (ahput of the
as = 3,3 = 3,04 = 4, a5 = 4. We vary the storage; of the n nodes should be able to give a stored file to a user). We have



proved an upper bound on the capacity that depends on fHe...,n} — {1,...,n}, we denote byDSS, the storage
average resources available per node. Moreover, we hage gigsystem with nodes?, ..., v; such thatv = v,(;. Let P,
an expression for the system capacity when we know all tdenote the set of alk! permutations on the sdtl, ..., n}.
nodes’ parameters. This expression may be hard to compWé define a new “big” system by

but we use it to derive additional upper and lower bounds that

are easy to evaluate. We have also studied the case in which DSS, = Y DSS,.

the system is compromised by an active or passive adversary, o€Pn

and have provided bounds on the system secure capacity. @Hg new syster®SS, is homogeneous with symmetric repair
results imply that symmetric repair maximizes the capacifyhere the storage capacity per nageis given by
of a homogeneous system, which justifies the repair model

used in the literature. Problems that remain open include

n

e . . : =(n—1) = nla
finding an efficient algorithm to compute the capacity of a a = (n 1)’20‘1 na.
heterogeneous distributed storage system, as well aseeffici =t
code constructions. The repair bandwidtl, ;;5 in DSS, can be expressed as:
APPENDIX (@
A. Functional vs. Exact Repair Br,ijs = 27; Bijrse
o&Pn

All of our results so far assumed a functional repair model. ®)
However, Theorems 1 and 4 can be directly extended to the = Z Z Birjrst
exact repair case. For instance, Th. 1 becomes: i/’j/’S/a(i')—i Uc(rg;P—nfa(S/)—S

Theorem 10:The capacityC' of a heterogeneous distributed SO
storage system under exact repair, with node average ¢tgapaci © o —d— 1(d— 1) e
@ and average repair bandwidth is upper bounded by ( M ) ;::1 12:21 ;B' 8 (11)

C < Cl(@7), (10) .
. . (d) d—1(d— 1) n—1

where C!2. . (&,7) is the capacity of a homogeneous DSS =(n—d=1ld-1)! Z a )
under exact repair. ’ =

In the proofs of Theorems 1 and 4 we construct a new _(n—1)! = I
“big” storage system using the original one as a buildingklo T d Z: ="y
Hence, if we had exact repair in the original system to start 7=t
with, we will have exact repair in the new “big” system. The (a) Here,i’ = o~1(i),j/ = o~ !(j) and S’ = o 1(9).

results can thus be straightforwardly generalized to treecgh) ¢/, = 1,....n, andi’ # j. |S'| = d with i/ € &

of exact repair. Moreover, under an exact repair constraintand ;' ¢ $’. (c ) The number of permutations that satisfy

homogeneous DSS with symmetric repair maximizes capagy’) = i o(j') = j,0(S") = S'is (n — d — 1)!(d — 1)!. (d)

ity under given average node storage and repair bandwidthis follows from (1).

budgets. Therefore, the capacity, of DSS, as given by (2) is
The other results, namely Theorems 3, 5, and 8, are proved

using the analysis of the information flow graph. Therefdrre, k _

is not clear if there is an obvious extension of these resalts Cp =nl Zmin {Ey, (d—i+ 1)%} . (12)

the case of exact repair. i=1

Any scheme achieving the capaciyof the original system
B. Proof of Theorem 1 can be naturally extended to store a file of siz€' in DSS,
We prove Th. 1 by making formal the argument of thésee Fig. 1). Therefore, > n!C. This inequality combined
example in Section IV-A. We start by describing the operatiovith (12) gives the result of the Th. 1.
of adding, or combining, together multiple storage systems
having same number of nodes. L&SS,,DSS, be two
storage systems with nodes, . .., v} andv?, ... v2, respec- C. Proof of Theorem 8
tively. The new system that we refer to @SS obtained  We use the definition of the flow graph in [1] to represent
by combining DSS; and DSS, is comprised ofn nodes, the DSS. The flow graph is a multicast network in which
sayus,...,u,. Nodewu; has storage capacity; = a! + o? the multiple destinations correspond to the users requgesti
(superscriptj, j = 1,2, denotes a parameter of systesn). files from the DSS by contacting arly out of then nodes.
Moreover, when node; fails in DSS, the new node down- Therefore, the capacity of the DSS is the capacity of this
loads ;5 = f;;5 + 57, amount of information from helper multicast network which is equal to the minimum value of the
node u; (recall thatS is the set of indices of the@ helper min-cuts to the users, by the fundamental theorem of network
nodes). We writeDSS = DSS1 + DSSs. coding. Note that in the flow graph, a storage nadeis
Now, letDSS be the given heterogeneous system for whiatepresented by two vertices!, and x? , connected by an
we wish to compute its capacity. For each permutation : edge of capacityy; (see Fig. 2).



Let C be the capacity of the DSS and defifeto be [4]
F£ min min | ay,, i i
(fisesfi) Z fe \Silgﬂlfi Ps. (5]
fifj for izg =1 {F1oee fi NS =0
We want to show tha€ = F. 6]

Let (f1,..., fx) be fixed and consider the successive fail-
ures and repairs of nodesy,,...,v;, as seen in Fig. 2. [7]
Suppose nodey, is repaired by contacting the helper nodes
that minimize the sunBs, with [S1|=d and{fi} NS =0, (g
and nodevy, is repaired by contacting nodg, and thed — 1
helper nodes that minimize the suyg, with |S;| = d—1 and
{f1, f2} NSy = 0. We continue in this fashion and finish with
node vy, being repaired by contacting nodes,, ..., vy, ,
and thed — k + 1 helper nodes that minimizgs, with
|Sk| =d+1—Fkand{f,...,fr} NS, =0. Now consider a
user contacting nodes, , ..., vy, there is a cut to the user of[10]
value F'. By the max-flow min-cut theorem, we gét< F.

To prove the other direction, consider a user in the systgmj
and let £ denote the edges in the min-cut that separates this
user from the source in the flow graph. Also, létbe the set
of vertices in the flow graph that have a path to the user. Singej
the flow graph is acyclic, we have a topological ordering of
the vertices inV/, which means that they can be indexed suc‘[tfg]
that an edge fromy; to v; impliesi < j.

Let 2}, be the first “out-node” inV (with respect to the [14]
ordenng) Ifz}, &V, thenz) z! , € E. On the other hand,
if a:m € V, then the set of mcoming edges, |Si| = d, of

, must be inE.
Now similarly letz2,,, be the second “out-node” i with
respect to the ordering. If?, ¢ V, thenz] 22, € E. If
€V, then the setS}, |S5| > d — 1, of edges incoming to [17]
x2 , not including a possible edge fron},,, must be inE.
All k£ nodes adjacent to the user must bélirso continuing [18]
in the same fashion gives that the min-cut is at least

El

(15]

(16]

k [19]
Zmin(afi,BS:),
i=1
where f; # f; for i # j, |Si| > d+1—14, and{fi,...
Si = 0.
Let S/ C S! be a subset such thgf!’| = d + 1 —i. Now
the min-cut is at least

(20]

)fl}m

k k
min(of, ) > Zmin Q. min )
Z ( fﬂﬂsi ) = fio |Si|=dt1—i le

=1 =1 {f1,-, fi}NS;=0

giving thatC > F.
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