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Abstract. We consider Mityuk’s function and radius which have been pro-
posed in [17] as generalizations of the reduced modulus and conformal radius
to the cases of multiply connected domains. We present a numerical method
to compute Mityuk’s function and radius for canonical domains that consist of
the unit disk with circular/radial slits. Our method is based on the boundary
integral equation with the generalized Neumann kernel. Special attention is
given to the validation of the theoretical results on the existence of critical
points and the boundary behavior of Mityuk’s radius.
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1 Introduction

Let G ⊂ C be a bounded simply connected domain and α ∈ G. Then for ε ∈ (0, d(α, ∂G)/2)
the domain Gε = G\{z : |z − α| < ε} is doubly connected. The quantity

m(G,α) = lim
ε→0

(

M(Gε) +
1

2π
log ε

)

is called the reduced modulus of the domain G with respect to the point α where M(Gε)
is the modulus of the doubly connected domain Gε [7, 23]. If w = Φα(z) is the unique
conformal map of G onto the unit disk |w| < 1 such that

Φα(α) = 0 and Φ′
α(α) > 0, (1)

then the conformal radius of G with respect to the point α is defined by [17]

R(G,α) =
1

Φ′
α(α)

. (2)

The reduced modulus of the domain G with respect to the point α is then given by [23,
p. 16]

m(G,α) =
1

2π
logR(G,α) = − 1

2π
log Φ′

α(α). (3)

0
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Vasil’ev [23, Section 2.2.1] assumed that the mapping function w = Φ̂α(z) satisfies the
normalization Φ̂α(α) = 0 and Φ̂′

α(α) = 1. Hence w = Φ̂α(z) maps the domain G onto the
disk |w| < R where R = R(G,α) is the conformal radius of G with respect to the point α.
This is equivalent to the above definition (2) since Φα(z) = Φ̂α(z)/R(G,α).

A generalization of the reduced modulus to multiply connected domains has been pro-
posed by Mityuk [17]. Assume that G ⊂ C is a bounded multiply connected domain of
connectivity ℓ+ 1 bordered by

Γ = ∂G =

ℓ
⋃

k=0

Γk

with Jordan curves Γ0,Γ1, . . . ,Γm such that Γ0 encloses all the other curves. Let Ω ⊂ C be
the canonical multiply connected domain consisting of the unit disk |w| < 1 with p circular
slits and ℓ− p radial slits where 0 ≤ p ≤ ℓ. Then there exists a unique conformal mapping
w = Φα(z) from G onto Ω holding the same normalization (1) [11, Theorem 6, p. 242].
The mapping function Φα depends also on the piecewise constant real-valued function θ
defined on Γ by

θ(ζ) =



















π/2, ζ ∈ Γ0,
θ1, ζ ∈ Γ1,

...
θℓ, ζ ∈ Γℓ,

where, for each k = 1, . . . , ℓ, θk is the “oblique angle” of the slit which represents the angle
of intersection between the slit and any ray emanating from the origin (see [26, p. 109]).
This means, for k = 1, . . . , ℓ

θk =

{

π/2 if Γk is mapped to a circular slit,
0 if Γk is mapped to a radial slit.

So, it is maybe more appropriate to denote the mapping function by w = Φα,θ(z). However,
for convenience, we will omit to mention the subscript θ as it will be clear from the context.

Under this setting, the definitions (2) and (3) of the functions R(G,α) and m(G,α),
respectively, can be extended to the multiply connected domain G. In this context, the
function R(G,α) is called Mityuk’s radius of the domain G with respect to the point α ∈ G
and the canonical domain Ω [9]. Similarly, the function m(G,α), which is called Mityuk’s
function in [9], is the generalized reduced module of the multiply connected domain G with
respect to the point α ∈ G and the canonical domain Ω. It is worth mentioning that for
the canonical domain of the unit disk with circular slits, Mityuk’s function m(G,α) is the
negative of the Robin function related to the motion of a single point vortex in the domain
G [5, 21].

One important motivation for the study of Mityuk’s function/radius is the connection
of their critical points to the solutions of exterior inverse boundary value problems [8, 10].
By rewriting the function Φα as

Φα(z) = (z − α)φα(z), (4)

where φα is an analytic function in G, the critical points of Mityuk’s function/radius are
the roots of the equation φ′

α(α) = 0 [9]. The existence of these critical points for ℓ ≥ 2 was
proven in the case of circular concentric slits in [14] and in the case of a mix of circular
and radial slits domain in [9]. In the former case, Kinder [14] indicated that the nature of
critical points can be specified by the equation

nm − ns = 1− ℓ, (5)

where nm ≥ 1 is the number of local maxima and ns is the number of saddle points. When
G is a doubly connected domain (ℓ = 1), an example was constructed in [9] where Mityuk’s
radius has no critical points.
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Figure 1: The canonical domain Ω: The unit disk with circular/radial slits.

Furthermore, given that the domain G has smooth boundary curves, it was proven
in [9] that Mityuk’s radius R(G,α) is infinitely differentiable on G and has the following
limit values on the boundary Γ. First, for the external boundary Γ0, we have

lim
α→β∈Γ0

R(G,α) = 0. (6)

Then, for the internal boundary components Γk, k = 1, 2, . . . , ℓ,

lim
α→β∈Γk

R(G,α) =

{

0 if Γk is mapped to a circular slit,
∞ if Γk is mapped to a radial slit.

(7)

In this paper, we shall present a numerical method to compute Mityuk’s radius R(G,α)
and Mityuk’s function m(G,α) of the domain G with respect to the point α ∈ G and the
canonical domain Ω consisting of the unit disk with ℓ circular/radial slits (see Figure 1).
The presented method depends on the boundary integral equation with the generalized
Neumann kernel. Through various numerical examples, we aim to validate the theoretical
results presented in [14, 9] on the existence of critical points and on the boundary behavior
of Mityuk’s radius. In particular, we will numerically examine the validity of the limits (6)
and (7) in the case of multiply connected domains with smooth, piecewise smooth and slit
boundaries. At the end of the paper we summarize our experimental discoveries which
suggest some problems for theoretical investigation.

2 Preliminaries

Let us first describe briefly the boundary parametrization used in this paper; see [20]
for more details. We parametrize each boundary component Γk, for k = 0, 1, . . . , ℓ, by
a 2π-periodic complex function ηk(t), t ∈ Jk := [0, 2π]. We assume that ηk(t) is twice
continuously differentiable with η′k(t) 6= 0 for t ∈ Jk. The whole parameter domain is
defined by

J =

ℓ
⊔

k=0

Jk =

ℓ
⋃

k=0

{(t, k) : t ∈ Jk}.

A parametrization of the whole boundary Γ is then defined on J by

η(t, k) = ηk(t), t ∈ Jk, k = 0, 1, . . . , ℓ. (8)

As the value of the auxiliary index k for a given t will be clear from the context, we will
drop it in the notation of the function η in (8) and simply write

η(t) =











η0(t), t ∈ J0,
...

ηℓ(t), t ∈ Jℓ.
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On the other hand, the smoothness of η(t) allows us to identify any function φ in the
space of all real-valued Hölder continuous functions H on Γ with a 2π-periodic Hölder
continuous real function φ̂ of the parameter t in Jk by writing φ̂(t) := φ(η(t)). Therefore,
we shall not distinguish between φ(η(t)) and φ(t) in the sequel.

In order to introduce the boundary integral equation that will be used in the next
section to compute Mityuk’s function and radius, we recall the definition of the generalized
Neumann kernel formed with a continuously differentiable complex function A on J and
the parametrization function η [18, 24, 25]

N(s, t) =
1

π
Im

(

A(s)

A(t)

η′(t)

η(t) − η(s)

)

.

We recall also the following associated kernel M(s, t) on J × J [25]

M(s, t) =
1

π
Re

(

A(s)

A(t)

η′(t)

η(t) − η(s)

)

.

The first kernel is continuous and the second has a singularity of cotangent type [25]. Using
these two kernels, the integral operators N,M : H → H defined by

Nµ(s) =

∫

J

N(s, t)µ(t)dt, s ∈ J,

Mµ(s) =

∫

J

M(s, t)µ(t)dt, s ∈ J,

are both bounded with the first one being compact and the second being singular. Further
details can be found in [24, 25].

3 Computing Mityuk’s radius and Mityuk’s function

We use a boundary integral equation involving the integral operators N and M to com-
pute Mityuk’s function/radius with respect to the canonical domain Ω in Figure 1. To
this aim, we first review the following method from [19, Section 4.2] for computing the
unique conformal mapping w = Φα(z) satisfying the normalization (1) from the multiply
connected domain G in z-plane onto the canonical circular/radial slit domain Ω in w-plane.
We assume that the conformal mapping w = Φα(z) maps the curve Γ0 onto the unit circle
|w| = 1 and maps the curve Γk, for each k = 1, 2, . . . ,m, onto a circular or radial slit, i.e.,
for ηk(t) ∈ Γk,

Im
[

e−iθk log Φα(ηk(t))
]

= Rk, k = 1, 2, . . . , ℓ,

where θk = 0 for the radial slit case and θk = π/2 for the circular slit case. The unde-
termined real constants R1, . . . , Rℓ should be computed alongside the conformal mapping
Φα. Thus, the boundary values of the conformal mapping w = Φα(z) satisfy

Im
[

e−iθ(t) log Φα(η(t))
]

= R(t), η(t) ∈ Γ, (9)

where R(t) = (0, R1, . . . , Rℓ). Here and in what follows, the notation h(t) = (h0, . . . , hℓ)
stands for the real piecewise constant function

h(t) =











h0, t ∈ J0,
...
hℓ, t ∈ Jℓ,

where h0, . . . , hℓ are real constants.
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The mapping function Φα can be written as

w = Φα(z) = c(z − α)e(z−α)f(z), z ∈ G ∪ Γ,

where
c = Φ′

α(α) > 0

and f(z) is an analytic function on G. Therefore, for η(t) ∈ Γ,

log Φα(η(t)) = log c+ log(η(t) − α) + (η(t) − α)f(η(t)).

Multiplying both sides by e−θ(t), taking the imaginary of both sides, and using (9), we
conclude that the boundary values of the function f are given by

A(t)f(η(t)) = γ(t) + h(t) + iµ(t), η(t) ∈ Γ, (10)

where
A(t) = ei(

π
2
−θ(t)) (η(t)− α), γ(t) = Im

[

e−iθ(t) log (η(t) − α)
]

and
h(t) = (− log c,−R1 − log c sin θ1, . . . ,−Rℓ − log c sin θℓ). (11)

In (10), only γ is known whereas h and µ are unknown. The function µ is the unique
solution of the integral equation

(I−N)µ = −Mγ, (12)

and the piecewise constant real-valued function

h = (h0, h1, . . . , hℓ) (13)

is given by
h = [Mµ − (I−N)γ]/2. (14)

By computing µ and h, we obtain the boundary values of the auxiliary analytic function
f from (10). Moreover, comparing (13) with (11) implies that

Φ′
α(α) = c = e−h0 . (15)

Now, we are in position to compute Mityuk’s radius and Mityuk’s function. In view
of (15), it follows from (2) and (3) that Mityuk’s radius and Mityuk’s function of the
domain G with respect to the point α ∈ G and the canonical domain Ω can be computed
through

R(G,α) = eh0 and m(G,α) =
h0
2π

. (16)

A MATLAB function fbie for solving numerically the integral equation (12) has been
presented in [20]. The function fbie is based on discretizing the integral equation (12) by
the Nyström method with the trapezoidal rule [2, 3, 22] to obtain a linear system. For
domains with corners, the trapezoidal rule with a graded mesh is used, see [15, 16] for
more details. The MATLAB function gmres is then used to solve iteratively this linear
system. The matrix-vector multiplication required by the GMRES method is computed
efficiently using the MATLAB function zfmm2dpart from the toolbox FMMLIB2D [12]. The
function fbie is also used to compute approximations of the function h in (14). The total
computational cost of the overall method is O((ℓ + 1)n ln n) operations where n is the
number of nodes in each of the intervals J0, J1, . . . , Jℓ. For more details, see [20].
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Listing 1: MATLAB function for computing Mityuk’s function/radius for bounded multi-
ply connected domains

1 function [R,m] = Mityuk(et,etp,n,thetak,alpha)

2 % Compute Mityuk's radius R(G,alpha) and Mityuk's function m(G,alpha)

3 % where alpha is a point in G, et, etp: parametrization of the boundary

4 % and its first derivative, thetk=[theta_1,...,theta_L] are the oblique

5 % angles of the spirals

6 for k=1:length(thetak)

7 J = 1+(k-1)*n:k*n;

8 A(J,1) = exp(i.*(pi/2-thetak(k))).*(et(J)-alpha);

9 gam(J,1)=imag(exp(-i.*thetak(k)).*clog(et(J)-alpha));

10 end

11 [~,h] = fbie(et,etp,A,gam,n,5,[],1e-14,100);

12 h0 = mean(h(1:n)); R = exp(h0); m = h0/(2*pi);

13 end

If the discretized versions of the functions η(t), η′(t), A(t), γ(t), µ(t) and h(t) are
denoted by the vectors et, etp, A, gam, mu and h, respectively, then the linear systems (12)
and (14) are numerically solved by calling

[mu, h] = fbie(et, etp, A, gam, n, iprec, restart, gmrestol, maxit).

In the numerical experiments presented in this paper, we choose iprec = 5 which means
the tolerance of the FMM is 0.5× 10−15. For the GMRES method, we choose gmrestol =
10−14 so that the tolerance of the GMRES method is 10−14. The GMRES is used without
restart by choosing restart = [ ] and the maximum number of GMRES iterations is
maxit = 100. Choosing the value of n depends on the geometry of the domain G and
the location of the point α. For domains with smooth boundaries, accurate numerical
results can be obtained for moderate values of n if α is sufficiently far from the boundary
of G. If α is close to the boundary of G or if the boundary of G has corners, a sufficiently
large value of n is required to obtain accurate results. In the numerical examples below,
α could be very close to the boundary of G so we shall choose n = 215 for all examples.
By obtaining the vector h, an approximate value for the constant h0 is computed as the
average of the values of h over the interval J0. Finally, from h0 we can compute Mityuk’s
radius and Mityuk’s function through (16). See Listing 1 for a MATLAB implementation.
All the computer codes of our computations are available through the internet link at
https://github.com/mmsnasser/mityuk-radius.

4 Numerical Examples

In this section, we use the MATLAB function Mityuk given in Listing 1 to compute the
values of Mityuk’s radius of several multiply connected domains. We examine especially
the existence of critical points of Mityuk’s radius for different cases of the canonical domain,
and check the validity of the limit values in equations (6) and (7). Note that a considerable
computational effort is needed for each example. In fact, computing the values of Mityuk’s
radius R(G,α) at a vector of points αk, k = 1, 2, . . . , p, requires calling the MATLAB
function Mityuk for each point αk, i.e., p times. In the numerical examples below, to
plot the contour maps of Mityuk’s radius R(G,α), we first discretize the domain G to
get a mesh-grid and then compute values of R(G,α) at the mesh-grid points. Although
the function Mityuk takes only 0.5-3 seconds to execute, the overall running time for all
mesh-grid points could be several hours.
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4.1 Doubly connected domains

In the following examples, we consider G to be a doubly connected domain and compute
R(G,α) for two cases of the canonical domain: the unit disk with a circular slit and the
unit disk with a radial slit.

4.1.1 Annulus. First, as a special case, we consider an annulus G = {z : q < |z| < 1}
when 0 < q < 1. In [9], it was proven that Mityuk’s radius with respect to the canonical
domain consisting of the unit disk with a radial slit has no critical points in G. On the
contrary, it was shown in [1] that Mityuk’s radius with respect to the canonical domain
consisting of the unit disk with a circular slit has an infinite number of critical points in
G, which constitute the circle |α| = √

q.
Furthermore, an analytical formula for Mityuk’s radius can be derived in terms of the

inner radius q of the annulus (see [1, 9] for more details). In the case of the canonical
domain consisting of the unit disk with a circular slit, Mityuk’s radius can be written as

R(G,α) = (1− |α|2)
∞
∏

j=1

(1− q2j |α|2)(1− q2j/|α|2)
(1− q2j)2

.

Similarly, the exact form of Mityuk’s radius with respect to the canonical domain consisting
of the unit disk with a radial slit is given by

R(G,α) = (1− |α|2)
∞
∏

j=1

[

(1− q2j |α|2)(1− q2j/|α|2)
(1− q2j)2

](−1)j

.

In order to validate these analytic results, we compute numerically the values of Mi-
tyuk’s radius for G = {z : q < |z| < 1} with q = 0.25. The contour maps and the surface
plots of the function R(G,α) are shown in Figures 2 and 3. Figure 2 reveals that all the
points on the circle |α| = 0.5 are critical points of the function R(G,α) for the canonical
domain consisting of the unit disk with a circular slit, which is an agreement with the
analytical results [1]. On the other hand, Figure 3 illustrates the non-existence of critical
points of R(G,α) in the case of a radial slit, which confirms the result presented in [9]. We
also numerically validate the limits (6) and (7) by computing R(G,x) for several values of
x ∈ G with −1 < x < 1. The graph of R(G,x) as a function of x is shown in Figure 4 for
the two cases of the canonical domain. We can see that

lim
|x|→1−

R(G,x) = 0

for the two cases of the canonical domain as follows from (6), and

lim
|x|→0.25+

R(G,x) =

{

0 if θ1 =
π
2 ,

∞ if θ1 = 0,

which is consistent with (7).

4.1.2 Two circles. Let G be the domain interior to the circle |z| = 1 and exterior to the
circle |z − a| = 0.25 for a = 0.05 and a = 0.5. The contour maps of the function R(G,α)
are shown in Figure 5 for a = 0.05 (first row) and a = 0.5 (second row). As we can see
from this figure, we have two critical points (nm = ns = 1) for the unit disk with a circular
slit and no critical point in the case of a radial slit. Interestingly, shifting the origin of the
inner circle in the annulus changes dramatically the number of critical points in the case
of a circular slit. On the other hand, the graph of R(G,x) as a function of x ∈ G such that
−1 < x < 1 is shown in Figure 5 for the two cases of the canonical domain. Notice that
limit values of Mityuk’s radius at domain boundaries as given in equations (6) and (7) are
again confirmed for this example.
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Figure 2: The contour maps and the surface plots of the function R(G,α) for θ1 = π/2.

Figure 3: The contour maps and the surface plots of the function R(G,α) for θ1 = 0.

4.1.3 Rectangle with a slit. Consider the domain (see Figure 6 (left))

G = {z : −3 < Re z < 3, −1 < Im z < 1}\[−1, 0].

The MATLAB function Mityuk is not directly applicable to such a domain as it is not
bounded by Jordan curves. So we shall use an elementary conformal mapping to “open
up” the intervals and obtain a domain bounded by piecewise smooth Jordan curves. Since
the elementary mapping

Ψ1(z) =
1

4

(

z +
1

z

)

+
1

2

maps conformally the exterior of the unit disk onto the exterior of the segment [0, 1], its
inverse mapping

Ψ2(z) = Ψ−1
1 (z) = (2z − 1)

(

1 +

√

1− 1

(2z − 1)2

)

maps the exterior of the segment [0, 1] onto the exterior of the unit disk where we choose
the branch for which

√
1 = 1. Thus, the mapping ζ = Ψ−1

1 (z) maps the domain G onto
the domain Ψ2(G) exterior to the unit disk and interior to the piecewise smooth Jordan
curve Ψ2(Γ0) where Γ0 is the external boundary component of G (see Figure 6 (right)).

Let w = Ψ(ζ) be the conformal mapping from the domain Ψ2(G) onto the unit disk
with a circular/radial slit such that Ψ(Ψ2(α)) = 0 and Ψ′(Ψ2(α)) > 0. Hence, the function

w = Φα(z) = e−i argΨ2(α)Ψ(Ψ2(z))

conformally maps the domain G onto the unit disk with a circular/radial slit such that

Φα(α) = 0, Φ′
α(α) = Ψ′(Ψ2(α))|Ψ′

2(α)| > 0,

8
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Figure 4: The values of the radius function R(G,x) for x ∈ G with −1 < x < 1. The
domain G is the same as in Figures 2 and 3.

where

Ψ′
2(α) =

1

Ψ′
1(Ψ2(α))

=
4Ψ2(α)

2

Ψ2(α)2 − 1
.

Henceforth, in view of (2), Mityuk’s radius of the domain G with respect to the point α is
given by

R(G,α) =
1

Ψ′(Ψ2(α))|Ψ′
2(α)|

.

Note that R(Ψ2(G),Ψ2(α)) = 1/Ψ′(Ψ2(α)), and hence the previous equation becomes
(see [23, Corollary 2.2.1])

R(G,α) =
R(Ψ2(G),Ψ2(α))

|Ψ′
2(α)|

. (17)

The external boundary component of the domain Ψ2(G) is a piecewise smooth curve.
With suitable parametrization of such a boundary component (see [16] for more details),
we can use the MATLAB function Mityuk to compute the values of Mityuk’s radius
R(Ψ2(G),Ψ2(α)), and then get the values of R(G,α) by (17). The contour maps of the
function R(G,α) are shown in Figure 7, and unveil the existence of eight critical points
(nm = ns = 4) in the case of a circular slit and no critical point for a radial slit.

The function Mityuk is also used to compute R(G, iy), R(G, 0.25 + iy), R(G, 0.5 + iy),
and R(G, 1+iy) for x ∈ (−1, 1)\{0} in the case of the two canonical domains, and R(G,x)
for x ∈ (−3, 0) ∪ (1, 3) in the case of a radial slit. It should be pointed out that the limits
in (6) and (7) were proved in [8] only for domains with smooth boundaries. The graphs
in Figure 8 presents a numerical counter example that shows these limits are not valid if
the inner slit of G is mapped onto a radial slit. More precisely, for θ1 = 0 (i.e., when the
canonical domain is the unit disk with a radial slit), if α ∈ G approaches the slit in the
domain G, then the values of Ψ2(α) move toward the unit circle in the domain Ψ2(G).
Hence, by (7), the values of R(Ψ2(G),Ψ2(α)) converge to +∞. However, when α ∈ G goes
to any of the two end-points of the slit, the values of |Ψ′

2(α)| converge to +∞. Hence,
by (17), it is not necessary that the function R(G,α) has an infinite limit in this case.
In fact, as α moves vertically toward the slit, Figure 8 (center) shows that the values of
R(G,α) converge to a finite number when α approaches particularly one of the two end-
points of the slit and the values of R(G,α) become large when α approaches points on
the slit away of its two end-points. In the case when α comes close to the two end-points
along the real axis, Figure 8 (right) shows that the values of R(G,α) converge to finite
numbers which are different from the limits in the vertical direction. This means the limit
of Mityuk’s radius R(G,α) does not exists as α approaches the two end-points of the slit.

On the other hand, for θ1 = π/2 (i.e., when the canonical domain is the unit disk with
a circular slit), if α ∈ G approaches the slit in the domain G, then the values of Ψ2(α) come

9
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Figure 5: The contour maps of the function R(G,α) for θ1 = π/2 (left), θ1 = 0 (center),
and the values of R(G,x) for x ∈ G with −1 < x < 1 (right) where the center of the inner
circle is a = 0.05 for the first row and a = 0.5 for the second row. Critical streamlines are
shown in red color.

Figure 6: The rectangle with a slit domain G (left) and its image Ψ2(G) (right) as described
in §4.1.3.

close to the unit circle in the domain Ψ2(G) and, by (7), the values of R(Ψ2(G),Ψ2(α))
converge to 0. Since Ψ′

2(α) 6= 0 even for points on the slit, then, by (17), the values of
R(G,α) go to 0 as well if α ∈ G approaches any point on the slit. This is confirmed by the
numerical results presented in Figure 8 (left). Finally, we note that the values of R(G,α)
converge to 0 if α ∈ G approaches any point on the outer rectangle for both the two cases
of the canonical domain.

4.1.4 Rectangle in rectangle. Let

G = {z : −3 < Re z < 3, −1 < Im z < 1} \ {z : 0 < Re z < 1, 0 < Im z < 0.5}.

The function Mityuk can be directly used (with suitable parametrization of the boundary
components) to compute the values of Mityuk’s radius R(G,α). The contour maps of the
function R(G,α) are shown in Figure 9. Similarly to the previous example, we have the
existence of eight critical points (nm = ns = 4) for a circular slit and no critical point in
the case of a radial slit. We compute also R(G, iy), R(G, 0.25 + iy), R(G, 0.5 + iy), and
R(G, 1 + iy) for y ∈ (−1, 0) ∪ (0.5, 1). The results are shown in Figure 10.

Although, the boundary components of the domain are only piecewise smooth, the
numerical results of this example reveal that the limits in (6) and (7) are still valid for
the two cases of the canonical domain. Figure 10 shows the values of R(G,α) converge to

10



Figure 7: The contour maps of the function R(G,α) for θ1 = π/2 (left) and θ1 = 0 (right).
Critical streamlines are shown in red color.
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Figure 8: The values of R(G, iy), R(G, 0.25 + iy), R(G, 0.5 + iy), and R(G, 1 + iy), x ∈
(−1, 0) ∪ (0, 1), for θ1 = π/2 (left) and θ1 = 0 (center), and the values of R(G,x), x ∈
(−3, 0) ∪ (1, 3), for θ1 = 0 (right). The domain G is the same as in Figure 7.

0 if α ∈ G approaches any point on the outer rectangle. The results shown in Figure 10
(left) suggest also that the limit in (7) is valid if the inner rectangle of G is mapped onto a
circular slit; i.e., when the canonical domain is the unit disk with a circular slit (θ1 = π/2).
Indeed, if α ∈ G approaches any point on the inner rectangle, then the values of R(G,α)
converge to 0. When the canonical domain is the unit disk with a radial slit (θ1 = 0),
the numerical results presented in Figure 10 (center and right) illustrate that if α ∈ G
approaches points on the inner rectangle away of its corners, the values of R(G,α) become
very large. However, when α comes vertically or horizontally toward any of the inner
rectangle corners, the values of R(G,α) become large but not as large as for off-corner
points.

4.1.5 Triangle in triangle. Consider the domain G bordered externally by the triangle
with vertices 0, 5, and 4 + 5i, and internally by the triangle with vertices 3 + 3i, 4 + 3i,
and 3 + i (see Figure 12 (top, left)). The contour maps of the function R(G,α) are shown
in Figure 11, which unveil the existence of six critical points (nm = ns = 3) in the case
of a circular slit and no critical point in the case of a radial slit. To check the validity of
limit values in equations (6) and (7), we display in Figure 12 the curve of R(G,α) along
the vertical and horizontal paths α = 3 + iy, α = 4 + iy, α = x + i, and α = x + 3i for
real numbers x and y such that α ∈ G. As can be seen from this figure the behavior of
the function R(G,α), as α ∈ G approaches any of the corner points of the inner triangle,
is similar to the previous example.

4.1.6 Square in square / Square in circle / Circle in square. In a similar fashion
to the case of an annulus, we consider three examples of G by replacing the inner circle, the
outer circle, or both by squares. The vertices of the outer square are ±1± i and the vertices
of the inner square are ±0.25 ± 0.25i and hence, for these three examples, the domain G
is symmetric. The contour maps of the function R(G,α) shown in Figure 13 are quite
revealing in several ways. First, in agreement with the previous examples, Mityuk’s radius
has no critical point for the canonical domain with a radial slit. In the case of a circular
slit, it is apparent that the number of critical points depends on the number of corners in
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Figure 9: The contour maps of the function R(G,α) for θ1 = π/2 (left) and θ1 = 0 (right).
Critical streamlines are shown in red color.
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Figure 10: The values of R(G,x), R(G, 0.25 + iy), R(G, 0.5 + iy), and R(G, 1 + iy), y ∈
(−1, 0) ∪ (0.5, 1), for θ1 = π/2 (left) and θ1 = 0 (center), and the values of R(G,x),
R(x+0.25i), and R(x+0.5i), x ∈ (−3, 0)∪ (1, 3), for θ1 = 0 (right). The domain G is the
same as in Figure 9.

the inner and outer boundary components. In particular, we have the existence of sixteen
critical points (nm = ns = 8) when both the inner and outer boundary components are
squares, and eight critical points (nm = ns = 4) when one of them is a circle and the other
is a square. Note also the symmetrical distribution of critical points location in these three
examples.

4.2 Multiply connected domains

Finally, in this section, we consider two examples of the domain G when ℓ ≥ 2.

4.2.1 Three circles. Let G be the triply connected domain interior to the circle |z| = 3
and exterior to the circles |z − 1.5| = 1 and |z + 1.5| = 1. We include three cases of the
canonical domain: two circular slits, two radial slits, and one circular slit and one radial
slit. The contour maps of the function R(G,α) are shown in Figure 14. We can see that for
the unit disk with two circular slits, Mityuk’s radius has five critical points (nm = 2 and
ns = 3), where four of them are symmetric with respect to the saddle point 0. Remark also
that there is only one critical point (saddle) for the two remaining cases of the canonical
domain. The existence of critical points in the cases of two circular slits and a mix of
circular and radial slits confirms the theoretical results of [9, 17]. On the other hand,
the nature of critical points in the case of two radial slits opens a room for theoretical
investigation. Finally, we present in Figure 15 the graph of R(G,x) with respect to x ∈ G
such that −3 < x < 3. It can be seen that the boundary behavior of R(G,x) agrees
with (6) and (7) for the three cases.

4.2.2 Six circles. Suppose G is of connectivity 6 being interior to the circle |z| = 1
and exterior to the five circles with centers 0, 0.6, 0.6i, −0.6 and −0.6i. The radii of all
inner circles is 0.2. We include three cases of the canonical domain: five circular slits
(θ1 = · · · = θ5 = π/2), five radial slits (θ1 = · · · = θ5 = 0), and three circular slits and
two radial slits (θ1 = θ3 = θ5 = π/2 and θ2 = θ4 = 0). The contour maps of the function
R(G,α) are shown in Figure 16. We can see that Mityuk’s radius has twelve critical points
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Figure 11: The contour maps of the function R(G,α) for θ1 = π/2 (left) and θ1 = 0 (right).
Critical streamlines are shown in red color.

Figure 12: The points 3 + iy, 4 + iy, x+ i, and x+ 3i in the domain G (top, left) and the
values of Mityuk’s radius R(G,α) at these points.

(nm = 4 and ns = 8) for the case of five circular slits, and only four saddle points in the
two other cases of the canonical domain. We remark also the symmetrical distribution of
critical points location in all the three cases.

4.2.3 Seven circles. Assume G is of connectivity 7, interior to the circle |z| = 1 and
exterior to the five circles with centers 0.2, 0.5+ 0.5i, −0.1+0.5i, −0.6+0.1i, −0.4− 0.5i,
and 0.3−0.6i. The radii of all inner circles is 0.15. We include three cases of the canonical
domain: six circular slits (θ1 = · · · = θ6 = π/2), five radial slits (θ1 = · · · = θ6 = 0), and
three circular slits and three radial slits (θ1 = θ2 = θ3 = π/2 and θ4 = θ5 = θ6 = 0). The
contour maps of the function R(G,α) are shown in Figure 17. It is apparent from this
figure that the critical points of Mityuk’s radius satisfy the equation nm−ns = −5 for the
three cases of the canonical domain.

13



Figure 13: The contour maps of the function R(G,α) for θ1 = π/2 (left) and θ1 = 0 (right).
Critical streamlines are shown in red color.

5 Conclusion

We have introduced a numerical method to compute Mityuk’s function and radius of
multiply connected domains with respect to the canonical domain consisting of the unit
disk with ℓ circular/radial slits. Our main interest has been to validate the theoretical
results on the existence and nature of critical points of Mityuk’s radius as well as the
boundary behavior of this function as proven in [1, 9, 14]. For doubly connected domains,
we have first considered the special case of an annulus. In contrast to the case of the unit
disk with a radial slit where Mityuk’s radius has no critical points [9], there is an infinite
number of critical points located on the circle with center zero and radius equal to the
square root of the inner circle radius in the other case of the unit disk with a circular
slit [1]. The other examples of doubly connected domains exhibit the same property of
existence of critical points for a circular slit and nonexistence for a radial slit. Except for
the case of an annulus, where there is an infinite number of critical points, equation (5) is
also true for doubly connected domains. In particular, the number of maxima is equal to
the number of saddle points [14].
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Figure 14: The contour maps of the function R(G,α) for: θ1 = θ2 = π/2 (left), θ1 = θ2 = 0
(center), and θ1 = π/2, θ2 = 0 (right). Critical streamlines are shown in red color.
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Figure 15: The values of R(G,x) for −3 < x < 3 such that x ∈ G for: θ1 = θ2 = π/2
(left), θ1 = θ2 = 0 (center), and θ1 = π/2, θ2 = 0 (right). The domain G is the same as in
Figure 14.

For multiply connected domains of connectivity ℓ ≥ 2, we have presented several ex-
amples for which Mityuk’s function/radius admits critical points for different cases of the
canonical domain. The numerical results illustrate that Mityuk’s radius has at least one
local maximum if the canonical domain contains only circular slits. Concerning the bound-
ary behavior of Mityuk’s radius, we have remarked that the limit at the external boundary
component is always equal to zero even when the boundary is piecewise smooth. On the
other hand, the limit values in (7) do not hold true when one of the internal curves is a
slit mapped to a radial slit. Two final observations on the numerical results presented in
this paper that might open a room for theoretical investigation are given as follows:

• The symmetry and geometry of the domain is directly reflected into the location and
number of critical points. Mityuk’s radius has more critical points for symmetric
domains compared to non-symmetric domains of the same connectivity.

• For Mityuk’s radius R(G,α) of the domain G with respect to the point α ∈ G and
the canonical domain consisting of the unit disk with circular slits, it follows from the
limits (6) and (7) that R(G,α) approaches 0 as α approaches the boundary Γ = ∂G.
Our numerical tests suggest that

R(G,α) ≥ d(α, ∂G) (18)

holds for all α ∈ G and for the all multiply connected domains G considered in this
paper. This observation suggests the following question: “Is it true that (18) holds
for all finitely connected domains G bordered by Jordan curves?”
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Figure 16: The contour maps of the function R(G,α) for: θ1 = · · · = θ5 = π/2 (first
row, left), θ1 = · · · = θ5 = 0 (first row, right), θ1 = θ2 = θ3 = θ5 = π/2, θ4 = 0
(second row, left), θ1 = θ3 = θ5 = π/2, θ2 = θ4 = 0 (second row, center), and θ4 = π/2,
θ1 = θ2 = θ3 = θ5 = 0 (second row, right). Critical streamlines are shown in red color.
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