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Abstract 25 

Aim: A major problem for conservation in Amazonia is that species distribution maps are 26 

inaccurate. Consequently, conservation planning needs to be based on other information sources 27 

such as vegetation and soil maps which are inaccurate as well. We propose and test the use of 28 

biotic data on a common and relatively easily inventoried group of plants to infer environmental 29 

conditions that can be used to improve maps of floristic patterns for plants in general. 30 

Location: Brazilian Amazonia. 31 

Methods: We sampled 326 plots of 250 m x 2 m separated by distances of 1 to 1800 km. 32 

Terrestrial fern individuals were identified and counted. Edaphic data were obtained from soil 33 

samples and analyzed for cation concentration and texture. Climatic data were obtained from 34 

Worldclim. We performed multivariate regression tree to evaluate the hierarchical importance of 35 

soils and climate for fern communities and identified significant indicator species for the 36 

resultant classification. We then tested how well the edaphic properties of the plots could be 37 

predicted on the basis of their floristic composition using two calibration methods, weighted 38 

averaging and k-nearest neighbour estimation.  39 

Results: Soil cation concentration emerged as the most important variable in the regression tree, 40 

whereas soil textural and climatic variation played secondary roles. Almost all the plot classes 41 

had several fern species with high indicator values for that class. Soil cation concentration was 42 

also the variable most accurately predicted on the basis of fern community composition (R2 = 43 

0.65-0.75 for log-transformed data). Predictive accuracy varied little among the calibration 44 

methods, and was not improved by the use of abundance data instead of presence-absence data.   45 

Main conclusions: Fern species composition can be used as an indicator of soil cation 46 

concentration, which can be expected to be relevant also for other components of  rain forests. 47 
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Presence-absence data are adequate for this purpose, which makes the collecting of additional 48 

data potentially very rapid. Comparison with earlier studies suggests that edaphic preferences of 49 

fern species have good transferability across geographical regions within lowland Amazonia. 50 

Therefore, species and environmental datasets already available in the Amazon region represent 51 

a good starting point for generating better environmental and floristic maps for conservation 52 

planning. 53 

Keywords: pteridophytes; tropical forest; edaphic characteristics; floristic composition; 54 

vegetation maps; k-NN; weighted averaging; calibration methods; indicator species. 55 

Nomenclature: The International Plant Name Index (IPNI) (www.ipni.org; accessed 22 July 56 

2013) 57 

Abbreviations: db-MRT = distance-based Multivariate Tree Regression; k-NN = k neareast-58 

neighbours; RMSE = Root Mean Squared Error; WA = Weighted Averaging  59 

Running head: Predicting soil fertility using Amazonian ferns 60 
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Introduction 63 

Understanding the spatial heterogeneity of environmental conditions and species 64 

distributions in Amazonia is a major challenge for conservation planning. A generally accepted 65 

principle is that the network of conservation units should contain adequate representation of 66 

different habitats, so as to collectively provide living space for species adapted to different 67 

habitats. Currently, sufficiently detailed maps that would allow assessing whether this aim has 68 

been fulfilled do not exist for Amazonia. The available soil and species distributions maps are 69 

inaccurate and give an incomplete representation of the known Amazonian heterogeneity. 70 

Several soil maps are available for Amazonia (RADAMBRASIL 1978; SOTERLAC - 71 

Dijkshoorn et al. 2005; Quesada et al. 2011), but all of them are coarse-grained because there is a 72 

general paucity of ground data. While information on broad-scale variation in soil properties can 73 

be extracted from such maps, this is not sufficient to take into account the documented effects of 74 

soil variation on biotic heterogeneity at local to landscape scales (Phillips et al. 2003; Tuomisto 75 

et al. 2003a, b, c; Costa et al. 2005; Kinupp & Magnusson 2005; Jones et al. 2006; Ruokolainen 76 

et al. 2007; Zuquim et al. 2009a; Higgins et al. 2011). Consequently, there is a general lack of 77 

knowledge of the distribution of Amazonian habitat types (Emilio et al. 2010) and species 78 

(Schulman et al. 2007a), which forces conservation planning in Amazonia to be based on the use 79 

of more or less unreliable surrogates (Schulman et al. 2007b). 80 

When information on environmental gradients is needed but measurements of 81 

environmental variables cannot be made, biotic communities have been used as predictors of the 82 

environmental conditions. For example, paleo-environmental reconstructions (Birks et al. 2010) 83 

use modern species-climatic relationships to infer past climatic conditions according to the 84 

analogue fossil record (ter Braak & van Dam 1989; Birks et al. 1990). The same approach was 85 

used by Sirén et al. (2013) to generate predictive maps of soil fertility based on fern and 86 



 

5 

lycophyte species composition in a lowland rainforest area in Ecuadorian Amazonia. The authors 87 

used floristic and soil data from other parts of western Amazonia (Tuomisto et al. 2003a and 88 

unpublished data) to determine fern and lycophyte species' optima on a soil cation concentration 89 

gradient. Then they used those optima to estimate soil cation concentrations in their study area, 90 

where fern and lycophyte species lists were available but direct measurements of soil properties 91 

were not. Suominen et al. (2013) recently evaluated the application of similar estimation 92 

techniques for predicting chemical soil properties in western Amazonia using species occurrence 93 

data of the plant family Melastomataceae. 94 

Specific taxa can also be used as indicators of particular environments or habitat types 95 

(Ruokolainen et al. 1997; Ruokolainen et al. 2007; Margules et al. 2002; Tuomisto et al. 2003a; 96 

Salovaara et al. 2004). The use of indicator species (Noss 1990) is an important method in 97 

conservation biology because it is flexible (Dufrêne & Legendre 1997) and conceptually 98 

straightforward (McGeoch 1998). Well-chosen indicator taxa can contribute significantly to a 99 

conservation strategy by facilitating the recognition and mapping of habitats (Noss 1990; 100 

Howard et al. 1998). 101 

Ferns have been proposed as a suitable indicator group in Amazonia because they are 102 

easy to observe and identify. Several studies have documented edaphic affinities of selected fern 103 

species in the western Amazon region in relation to either a simple classification of soil types 104 

(Tuomisto & Poulsen 1996; Salovaara et al. 2004; Cárdenas et al. 2007), or quantitative soil 105 

gradients (Tuomisto et al. 1998, 2002; Tuomisto 2006). Some of these studies have only reported 106 

results for a few species within selected genera, and none has explicitly assessed the accuracy of 107 

soil property estimates when these are based on indicator values of the species.  108 

In this study, we investigate the use of ferns as environmental indicators in central and 109 

northern Amazonian lowlands. First, we clarify the main environmental drivers of fern 110 
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community composition and define the environmental optima and tolerances for each species 111 

along each of these gradients. Then we use species optima to predict environmental variable 112 

values and test the accuracy of these predictions. Finally, we assess whether species abundance 113 

data are needed to obtain useful predictions, or whether the more easily obtainable presence-114 

absence data are adequate. 115 

Methods 116 

Study area and sampling design 117 

A total of 326 plots were sampled (Fig. 1). Plots were located in Brazilian 118 

Amazonian lowlands in the states of Acre (7 plots), Amazonas (129 plots), Pará (101 plots), 119 

Rondônia (30 plots) and Roraima (59 plots). All study sites are part of the Brazilian Biodiversity 120 

Research Program (PPBio, http://ppbio.inpa.gov.br/). Minimum distance between plots was 1 km 121 

and maximum ca. 1800 km. Plots were established in private lands or in conservation units along 122 

the highways BR-163, BR-230 (Transamazônica) and BR-319 and in the protected areas of 123 

ReBio Uatumã, ESEC Maracá, PN Viruá, BDFFP and PE Chandless. In every location, 5 to 30 124 

plots were established according to the RAPELD methodology (Magnusson et al. 2005). The 125 

plots were 250 x 2 m in size and placed so that the longer axis followed the topographic contour 126 

in order to minimize internal heterogeneity in soil properties and drainage, which often correlate 127 

with topographic position (Chauvel et al. 1987; Mertens 2004). Vegetation structure in the plots 128 

varied from tall and dense rainforests to white sand forests with a more simple canopy structure 129 

(campinaranas) and in extreme cases edaphic savannas (IBGE 2004). According to the Soil and 130 

Terrain Database for Latin America and the Caribbean (SOTERLAC - Dijkshoorn et al. 2005), 131 

six main soil classes dominated the areas where the plots were situated: Ferralsols (157 plots), 132 

Podzols (29 plots), Plinthosol (91 plots), Acrisols (37 plots), Leptosols (5 plots), and Cambisols 133 

(7 plots). Because local-scale soil variation does not appear in broad-scale maps, it is possible 134 

that some of the plots were in fact situated in a different soil type than the one dominating the 135 
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region. Average annual rainfall in the plots ranged from 1,633 to 2,655 mm and annual mean 136 

temperature from 25 to 27oC. General characteristics of the study sites can be found in Table 1, 137 

and a more detailed description of each region in appendix S1.  138 

Data collection 139 

FLORISTIC DATA - In each plot, all terrestrial fern individuals with at least one leaf 140 

longer than 10 cm were counted and identified to species. Inventories were done between 2004 141 

and 2011. Voucher specimens were collected to verify species identities. Full sets of the 142 

vouchers are deposited in Herbaria at the Instituto de Botânica, São Paulo (SP) and privately 143 

with the first author. Duplicates of fertile specimens are also deposited in the nearest regional 144 

herbarium either at Instituto Nacional de Pesquisas da Amazônia (INPA), Herbário Rondoniensis 145 

(RON) or Universidade Federal do Acre (UFACPZ).  146 

ENVIRONMENTAL DATA - Surface soil samples (topmost layer of the mineral soil 147 

sampled down to 5-10 cm depth) were taken every 50 m along the long axis of each plot. The six 148 

soil samples from the same plot were either bulked into a single composite sample before 149 

laboratory analyses or analyzed separately. In the latter case, the obtained values were averaged 150 

to obtain a single value for each edaphic variable for each plot. Before laboratory analyses, the 151 

soil samples were air-dried, cleaned of roots and other detritus and sieved through a 2 mm mesh. 152 

Analyses included soil texture (percentage of clay, silt and sand, by the pipette method) and 153 

exchangeable bases (Ca, Mg by KCl 1 M and K by Mehlich 1 standard methods for 154 

exchangeable cations). All soil samples were analyzed in the Thematic Laboratory of Soils and 155 

Plants at INPA. Floristic data, soil data and geographical coordinates of the plots are publicly 156 

available at http://ppbio.inpa.gov.br/knb/style/skins/ppbio/. The plots were georeferenced in the 157 

field using a hand-held GPS (Garmin 12XL or Garmin 60X). 158 

Climatic data were derived from monthly temperature and rainfall values available 159 

in Bioclim (Hijmans et al. 2005). The variables used were annual temperature range, annual 160 
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precipitation, precipitation seasonality and precipitation of the wettest quarter (Bioclim variables 161 

7, 12, 15 and 16, respectively). The data were downloaded from WorldClim database 162 

(http://www.worldclim.org/bioclim) in 2.5 arc-minutes resolution (about 4.7 km). The remaining  163 

15 climatic variables available in Bioclim were not included either because they were strongly 164 

correlated with an already selected variable and hence provided little additional information, or 165 

because they varied so little within our study region that it seemed unlikely that it would result in 166 

floristic response. Amazonia has few climatic stations, so the real resolution of the data is 167 

probably much poorer than the nominal pixel size, and there are known problems of data 168 

uncertainty (Hijmans et al. 2005). Nevertheless, this is currently the best available source of 169 

temperature and rainfall data for the area. The climatic values for each plot were extracted using 170 

the free software DIVA-GIS (Hijmans et al. 2012).  171 

Data analysis 172 

Fern species that occurred in less than five plots were excluded from all analyses, 173 

as species optima based on so few data points were considered too unreliable. Twenty-one of the 174 

plots had no fern species with the minimum frequency determined. These plots were excluded 175 

from the analyses, which therefore were run on 305 plots. The sum of exchangeable bases 176 

(concentration of Ca+Mg+K, all in cmol+kg-1) was logarithmically transformed (base 10) before 177 

numerical analyses. This was done because it is reasonable to assume that plants react to relative 178 

rather than absolute differences in the availability of soil nutrients, i.e. small differences in soil 179 

cation concentration are ecologically important if the overall cation concentration is low but 180 

inconsequential if the overall cation concentration is high. 181 

REGRESSION TREES AND INDICATOR SPECIES - To evaluate the hierarchical 182 

importance of edaphic and climatic conditions in structuring fern communities, we carried out a 183 

distance-based multivariate regression tree analysis (db-MRT; De'ath 2002). MRT is based on 184 

repeatedly splitting the plots into two groups that are separated by a single value along one of the 185 
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environmental gradients. At each split, the gradient and the threshold value are selected so as to 186 

minimize the between-plot compositional dissimilarities within each group. As a measure of 187 

compositional dissimilarity, we used the extended Bray-Curtis dissimilarity index (De'ath 1999) 188 

based on species proportional abundances (number of individuals as a proportion of all 189 

individuals in the plot). The extended rather than classical Bray-Curtis index was used because 190 

our data covered long environmental gradients, so a large proportion of the plots shared no 191 

species. This leads to poor model fit if not corrected for (De'ath 1999; Tuomisto et al. 2012; 192 

Zuquim et al. 2012). To find the best db-MRT classification, we used cross-validation and 193 

selected the db-MRT with the smallest error, given by the sum of squares (De'ath 2002). We then 194 

assessed whether any species were significantly associated with the groups of plots obtained 195 

from the db-MRT by calculating the indicator value of each species for each group. A high 196 

indicator value is obtained for species that combine high specificity (most individuals of the 197 

species are within the group) and high fidelity (most sites of the group contain the species). The 198 

IndVal index was used for this purpose (Dufrêne & Legendre 1997; Legendre & Legendre 199 

1998).  200 

ENVIRONMENTAL PREDICTIONS BASED ON K-NN AND WA - Next we asked how 201 

accurately it is possible to estimate the values of environmental variables for a plot on the basis 202 

of its floristic composition. Each variable was estimated for each plot using the species-203 

environment relationships as deduced from the remaining plots. We applied two methods that are 204 

commonly used in paleoecology: the k-Nearest Neighbours (k-NN) and Weighted Averaging 205 

calibration (WA) with inverse deshrinking.  206 

K-NN is a non-parametric method that estimates the value of an environmental 207 

variable in a focal plot on the basis of the average value of the variable in the k nearest 208 

neighbouring plots. We used similarity in species composition as the measure of nearness, and 209 

calculated it with either the Bray-Curtis index (for proportional abundance data) or the Sørensen 210 
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index (for presence-absence data). Each of the 305 plots was used as the focal plot in turn. The 211 

results will depend on the value of k: when k = 1, the predicted value of the variable depends on 212 

its value in a single plot, which may lead to noisy results, but when k increases, the predicted 213 

value will tend towards its overall mean in the dataset. Different values of k may work best for 214 

different kinds of data, so we run the analyses with k=1 to k=20 in order to find the value of k 215 

that gives the most accurate predictions for this dataset. 216 

WA estimates the value of an environmental variable in a focal plot as the weighted 217 

average of the indicator values (optima) of the species occurring in the plot. We calculated the 218 

optimum of a species along an environmental gradient as the weighted average of the 219 

environmental variable values in those plots where the species had been observed, with species 220 

abundance in a plot being used as the weight (eq. 4 in ter Braak & van Dam 1989). We ran these 221 

analyses both using the number of individuals as the abundance measure, and using presence-222 

absence data (i.e. abundance was set to unity if the species was present and to zero if it was 223 

absent). The optimum value carries no information on how broad the species' distribution is, so 224 

in a second set of analyses we weighted each species' optimum value by the inverse of its 225 

tolerance. Tolerance is a measure of the variability in species occurrences around the optimum, 226 

and is obtained as the root mean squared error (RMSE) calculated between the species optimum 227 

and the observed environmental variable value for each individual (eq. 7 in ter Braak & van Dam 228 

1989). Because the WA computation involves the taking of averages twice, the range of the 229 

estimated values tends to shrink, i.e. to become smaller than the range of the original 230 

observations. We used inverse linear deshrinking to restore the original range of the variable (ter 231 

Braak & Juggins 1993). WA is based on the idea of unimodal species response curves along the 232 

environmental gradients, which we considered appropriate because our dataset is highly 233 

heterogeneous (Zuquim et al. 2012).  234 
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Prediction accuracy was quantified with cross-validation for each environmental 235 

variable separately using root mean squared error (RMSE) and the coefficient of determination 236 

(R2) between the measured and predicted values. Cross-validation was done using the leave-one-237 

out method for WA and by bootstrapping for k-NN. In our sampling design, the plots were 238 

placed in 37 locations spread across eight regions (Fig. 1). Each location had 5 - 30 plots with 239 

distances from 1 to 5 km between each other and in a regular arrangement within a few square 240 

kilometers, so spatial autocorrelation might cause the predictive power of the calibration 241 

methods to appear unrealistically high. For this reason, more stringent cross-validations were 242 

also done by leaving out all plots that were in the same location as the focal plot when 243 

calculating the predicted values.  244 

Both k-NN and WA analyses were carried out separately using abundance and 245 

presence-absence data. This was done because collecting abundance data is much more time-246 

consuming than collecting presence-absence data, so it is of interest to test if this is justified by 247 

more accurate predictions.  248 

All statistical analyses were carried out using the RStudio (v. 0.97.173; RStudio, 249 

Inc., Boston, USA) interface to R (R Foundation for Statistical Computing, Vienna, AT). 250 

Multivariate Regression Trees were made using the R package mvpart (v. 1.6-0) and Indicator 251 

Species analysis with indicspecies (v. 1.6.5; de Caceres & Legendre 2009). K-NN, WA and 252 

associated calculations of species optima and tolerances were done using the R package Rioja 253 

(07-3).  254 
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RESULTS  255 

GENERAL – After excluding species occurring in less than 5 plots, the 326 plots contained a total 256 

of 29 202 individuals of ferns representing 54 species. Twenty-one plots contained no ferns at 257 

all, or were left empty after the exclusion of the rare species. Twenty of the excluded plots were 258 

in Roraima in the northern part of the study area, and one was in Pará. The most species-rich 259 

genera were Adiantum (17 species), Trichomanes (7 species), Lindsaea (5 species), and 260 

Triplophyllum (5 species). The most abundant species were Trichomanes pinnatum Hedw. (8512 261 

individuals), Adiantum argutum Splitg. (8560 individuals), and A. pulveruentum L. (1593 262 

individuals). The most frequent species were T. pinnatum (205 plots), Lindsaea lancea (L.) 263 

Bedd. (132 plots) and A. cajennense Willd. (115 plots). 264 

FERN COMMUNITY STRUCTURE AND INDICATOR SPECIES - The first division in the 265 

multivariate regression tree (Fig. 2) was determined by the community response to the sum of 266 

bases in the soil. One branch contained 79 plots with soil cation concentrations exceeding 0.68 267 

cmol+kg-1, and the other contained 226 plots with lower-cation soils. The second division was 268 

defined by soil clay content in the richer-soils branch and by annual rainfall in the poorer-soils 269 

branch. Textural components of soils determined two more hierarchical divisions within the plot 270 

groups characterized by low-cation soils and low annual rainfall (Fig. 2). The other climatic 271 

variables did not define any divisions in the regression tree. In preliminary analyses, we also 272 

included latitude and longitude, because the climatic variables show clear spatial gradients across 273 

Amazonia. However, neither latitude nor longitude substituted any of the climatic variables in 274 

the regression tree, and since they are not direct environmental variables, they were left out of 275 

the final analyses. 276 

Most of the statistically significant indicator species were associated with the 277 

branch containing the high-cation sites (Fig. 2). Nine out of seventeen species of Adiantum were 278 
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significant indicators of this branch and only two Adiantum species were significantly associated 279 

with the poorer-soils branch, although the genus as a whole was represented over the entire 280 

gradient. Both Pteris species were also associated with the richer-soils branch. Almost all of the 281 

18 richer-soils indicator species were also significantly associated with the rich soils-high clay 282 

content branch in the second level division. 283 

Five out of seven Trichomanes species were indicators of some secondary or 284 

tertiary division within the poorer-soils branch, and the very frequent Trichomanes pinnatum 285 

indicated poor soils generally. Three out of five Lindsaea species were indicators of the poorer-286 

soils branch and none was significantly associated with the richer soils. The majority of poor soil 287 

indicator species were associated with sites with relatively high total annual rainfall (≥2163 mm). 288 

Only a few species were indicators of habitats with both poor soils and low rainfall. 289 

There was a gradual turnover of species optimum values along the soil cation 290 

concentration gradient, although most species optima were concentrated towards the low-cation 291 

end (Fig. 3). In agreement with the results of the indicator value analysis, all species of the 292 

genera Lindsaea and Trichomanes had low cation optima, whereas those of Thelypteris and 293 

Pteris had high optima. Adiantum phyllitidis and Cyclopeltis semicordata were the two species 294 

with the highest optima. Most Adiantum species optima were positioned in the intermediate part 295 

of the gradient, but the genus had representatives along the whole gradient. 296 

PREDICTING ENVIRONMENTAL VARIABLES FROM FERN INVENTORIES - The edaphic 297 

variable that could be best predicted by fern species composition was the sum of bases. All 298 

methods of calibration produced R2 values that were between 0.64 and 0.75 when the focal plot 299 

was excluded in cross-validation. When all plots from the same locality as the focal plot were 300 

excluded in leave-group-out cross-validation, R2 values decreased to between 0.46 and 0.64 301 

(Table 2). There was variation among the regions in the slope of the regression line between 302 
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predicted and observed soil cation concentration, with the predictions for the Acre region 303 

becoming especially inaccurate when leave-group-out cross-validation was used (Fig. 4). The R2 304 

values of the predictions for soil clay, sand and silt contents were never higher than 0.48 (Table 305 

2). This is in accordance with the regression tree results, which suggested that ferns respond 306 

more strongly to soil cation concentrations than to soil textural properties.  307 

The best results (smallest RMSEs) for predictions using k-NN were achieved with 308 

between four and seven neighbouring plots (k=4 to k=7). The differences in prediction accuracy 309 

between k values in this range were generally small, so for simplicity we report the results for 310 

k=4 in all cases. There were slight variations in prediction accuracy among methods, but none of 311 

them was consistently better than the others for all the edaphic variables. Weighted Averaging 312 

achieved lower RMSEs and higher R2 values than k-NN when abundance data were used (Table 313 

2), but with presence-absence data, k-NN gave similar or higher R2 values. 314 

Weighting species by the inverse of their tolerance improved the predictions in 315 

some cases but not universally. When leave-group-out cross-validation was used, the differences 316 

in accuracy between weighted and non-weighted estimations (R2 and RMSE) were small. In 317 

general, the availability of abundance data did not improve model performance. In fact, k-NN 318 

always performed better with presence-absence data than with abundance data, and even WA did 319 

so in most cases (Table 2).  320 

Discussion 321 

Earlier studies that have been carried out mostly in western Amazonia have 322 

proposed that ferns and lycophytes are good indicators of environmental conditions, especially 323 

soil cation concentration and particle size distribution (Ruokolainen et al. 1997; Ruokolainen et 324 
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al. 2007; Tuomisto et al. 2003a, c; Higgins et al. 2011). Here we tested this proposal in central 325 

Amazonia by making explicit predictions of soil properties and climatic variables on the basis of 326 

information about fern species composition.  327 

Our results supported the conclusions of earlier studies. The sum of bases emerged 328 

as the most important variable in the regression tree, and was also the variable for which the 329 

most accurate predictions could be obtained on the basis of fern community composition. Soil 330 

textural and climatic variation played secondary roles in the regression tree, and soil texture was 331 

predicted less accurately than soil base cation concentration. Soil texture is not a physiologically 332 

important edaphic factor, but it correlates with other relevant environmental characteristics, such 333 

as nutrient retention and water holding capacity. Climate is also relevant in structuring fern 334 

communities at broad scales (Zuquim et al. 2012; Jones et al. 2013), but in the present study its 335 

role was minor. This is in agreement with the findings of Tuomisto and Poulsen (1996), who 336 

found that even in a dataset where annual rainfall varied more than in ours, the main floristic 337 

gradient still seemed to correspond to soil properties more than to rainfall.  338 

PREDICTING EDAPHIC CONDITIONS FROM FERN INVENTORIES - We 339 

found that sum of bases in the soil can be well predicted based on fern species composition. Our 340 

analyses were carried out with log-transformed data, which means that prediction errors related 341 

with large values of the variable of interest are downweighted. In other words, whether a 342 

prediction is considered accurate or not depends more on how large the error is in relation to the 343 

actual value of the variable of interest, rather than on the absolute error value. This is an 344 

appropriate model in the present context, given that the final aim is to use the predicted soil 345 

values to infer habitat characteristics and occurrence patterns for such plant groups that have not 346 

been directly observed in the field.  347 
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Another result that has practical implications is that prediction accuracy for a 348 

particular environmental variable was rather consistent among calibration methods. This 349 

parallels the observations of Suominen et al. (2013), who tested the k-NN and WA methods in 350 

western Amazonian transects using the family Melastomataceae as a model group. In a 351 

theoretical sense, both methods have their strengths and weaknesses (Birks et al. 2010), but in 352 

practical applications both seem to perform equally well. As could be expected, prediction 353 

accuracy appeared generally higher when only the focal plot was left out of the training set than 354 

when all the plots from the same site were left out (R2 between 0.64–0.75 vs. 0.46–0.64). Fig. 4 355 

shows that the decrease in prediction accuracy was most notable for the plots situated in Acre 356 

state, for which the predictions fell dramatically below the observed values in the leave-group-357 

out cross-validation. This reflects the fact that the plots in Acre had the highest observed cation 358 

concentrations in the entire data set, so when all of them were excluded from the training set, no 359 

accurate analogue remained for the Acre plots. As with other modelling methods, attempts to 360 

extrapolate predictions of WA calibration and k-NN estimation beyond the observed range of the 361 

input variables can lead to seriously inaccurate results. 362 

A third interesting result is that the prediction accuracies for the edaphic variables 363 

were very similar whether species presence-absence data or abundance data were used. Even 364 

though we expected abundance data to provide better estimates of species optima, and that this 365 

would lead to more accurate predictions, this was not the case. One possible reason is that the 366 

species abundances are so symmetrically distributed along the relevant environmental gradients 367 

that the optimum is in practice at the midpoint of the species range, and can hence be identified 368 

equally well with presence-absence and abundance data. Another possibility is that species 369 

abundances depend on many different factors that are not necessarily linked to the factor being 370 

evaluated. For example, fertility may limit the range of species, which is captured by presence 371 

absence data, but may not be the main driver of local abudandances, which may be controled by 372 

biotic interactions or more local factors such as light. These unmeasured factors may cause a 373 
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species to be relatively abundant far away from its optimum for a given variable, or not so 374 

abundant close to its optimum, which then biases the estimate for that variable.  375 

Earlier studies have obtained mixed results on whether using abundance data 376 

increases or decreases the correlations between species turnover and edaphic differences 377 

(Tuomisto et al. 2003a; Ruokolainen et al. 2007). Our results support the suggestion that at least 378 

when the observed soil gradients are relatively long, presence-absence data are adequate for 379 

many purposes (Tuomisto et al. 2002, 2003a; Higgins & Ruokolainen 2004; Higgins et al. 2011). 380 

This is good news, because collecting only presence-absence data speeds up the fieldwork 381 

considerably. Moreover, these results suggests that it is feasible to tap edaphic information from 382 

non-quantitative species lists and floras (e.g., Tuomisto & Poulsen 1996; Edwards 1998; Costa et 383 

al. 1999; Freitas & Prado 2005; Costa et al. 2006; Costa & Pietrobom 2007; Maciel et al. 2007; 384 

Prado & Moran 2009; Zuquim et al. 2009b), and perhaps even from herbarium records through 385 

online databases such as GBIF. For example, linking species lists with the species' environmental 386 

optima and tolerances enables inferences about site environmental conditions. This opens up new 387 

and unexplored possibilities for assessing representativeness of conservation area networks 388 

based on the use of readly available biotic data as indicators of habitat types.  389 

SPECIES OPTIMA, TOLERANCES AND INDICATOR VALUES - In our data 390 

set, the species optimum values were distributed along the entire gradient of soil cation 391 

concentration (Fig. 3), but most of them were in the low end. This contrasts with the results of 392 

earlier studies, which have found more fern species in high-cation soils than in low-cation soils 393 

(Tuomisto & Poulsen 1996; Tuomisto et al. 2002, 2003b). The difference is likely due to biases 394 

in sampling. Our data set contained many more plots with low cation concentration than high 395 

cation concentration, and most of the plots that in our data represent the high end of the gradient 396 

were relatively cation-poor compared to the cation-rich soils in the western Amazonian data. 397 

This probably explains why most of the genera that in earlier studies have been thought to 398 
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indicate cation-rich soils (e.g. Diplazium, Tectaria and Thelypteris) were absent or rare in our 399 

data.  400 

For those genera that were well represented in both geographical areas, our results 401 

agreed with the earlier ones from western Amazonia. The genus Adiantum was found throughout 402 

the soil nutrient gradient, but most Adiantum species occurred in intermediate to richer soils, in 403 

agreement with the results of Tuomisto et al. (1998). They observed that A. tomentosum and A. 404 

pulverulentum occur at opposite ends of the soil cation gradient and never co-occur, and this was 405 

the case also in our data.  406 

Species differed in how accurate they seem to be as indicators of environmental 407 

variables. For example, Trichomanes pinnatum had a high indicator value for cation-poor soils in 408 

general, and some other species of the same genus appeared as significant indicators for the finer 409 

clusters within that group of sites. Although our sampling is relatively extensive, it still covers 410 

only a small part of the environmental variation within Amazonia. Therefore, the optima and 411 

tolerances of species shown in Fig. 3 are still preliminary, and should not be taken at face value. 412 

A veiled gradient will push optimum values towards the mean of the gradient for those species 413 

whose ranges extend beyond the part of the gradient sampled, so the values we obtained for the 414 

species at the cation-rich end of the gradient can be expected to be especially inaccurate. 415 

However, the high congruence between our results and those from western Amazonia suggest 416 

that the positions of the species optima in relation to each other, and the degrees of overlap in 417 

tolerance ranges, are probably rather reliable.  418 

In spite of this limitation in the extreme of the soil gradient, it is noteworthy how 419 

well our results on species optima agree with the suggestions made in earlier studies, although 420 

the earlier datasets were much smaller, less quantitative and represented a different geographical 421 

region (e.g., Tuomisto & Poulsen 1996; Tuomisto et al. 1998, 2002; Tuomisto et al. 2003b; 422 
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Cárdenas et al. 2007). Such congruence indicates that the inferences on the edaphic preferences 423 

of ferns have a good transferability across geographical regions.  424 

The methods we used are based on general ecological principles and can therefore 425 

be applied to any biogeographical area. The prerequisite is that the training dataset is suitable for 426 

the task at hand: it needs to cover the relevant environmental gradients sufficiently well and to 427 

contain an adequate number of species from the area of interest. Our present data can be used as 428 

the training set for other studies in central Amazonia, but studies focusing on western or eastern 429 

Amazonia should complement the training set locally. Failure to do so would compromise the 430 

accuracy of the predictions, as illustrated with the relatively low prediction accuracy for the Acre 431 

sites in the leave-group-out cross-validation. At least one study in Ecuadorian Amazonia (Sirén 432 

et al. 2013) has produced a map of estimated soil cation concentrations without having had 433 

access to direct soil data from the area of interest. Instead, they made fern inventories and used 434 

data from existing inventories from other parts of NW Amazonia as the training set to estimate 435 

soil cation concentrations through calibration. Then they used satellite imagery to generate 436 

extrapolated soil fertility maps. These kinds of maps can be used to identify areas with different 437 

site conditions, and thereafter to assess whether all the recognised habitat variation is adequately 438 

represented in conservation area networks. 439 

Additional data with a more complete geographical coverage will make it possible 440 

to select a limited number of good indicator species that combine high environmental specificity 441 

with sufficient frequency in suitable conditions (Diekmann 2003). Indicator plants reflect 442 

environmental conditions as integrated over extended time periods, whereas soil samples give 443 

snapshot information of the measured variables. Therefore, the species composition of an 444 

indicator plant group can be expected to provide information that is relevant for plants in 445 

general. The same approach could also be tested in other relatively well inventoried plant groups 446 

such as palms (Vormisto et al. 2000; Costa et al. 2009; Svenning 1999), trees (Pitman et al. 447 



 

20 

2001; Castilho et al. 2006; Stropp et al. 2009) and gingers (Figueiredo et al. 2013). Our results 448 

demonstrate that the species and environmental datasets already available in the Amazon region 449 

are a good starting-point towards better tools and maps for conservation planning.  450 
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Table 1. Mean, standard deviation (±) and range (in parentheses) of species richness and 641 

environmental variables per plot for 326 plots in Brazilian Amazon. Climatic data was obtained 642 

from WorldClim database in 2.5 arc-minutes resolution (ca. of 4.7 km). 643 

 
Values 

Species richness 4.9±3.6 (0-20) 

Species abundance (individuals) 90±153 (0-1131) 

Sum of Bases (cmol+kg-1) 1.34±4.16 (0.08-38.11) 

Clay (%) 29±22 (0.5-90) 

Silt (%) 25±18 (0.5-76) 

Sand (%) 47±25 (1.7-90) 

Temperature annual range (oC) 12.4±2 (10.2-19.4) 

Annual precipitation (mm) 2177±270 (1633-2655) 

Precipitation seasonality (coeffient 
of variation) 

57±13 (33-80) 

Precipitation of the wettest quarter 925±57 (815-1082) 

  

  644 
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Table 2. Prediction accuracy given by the Root Mean Squared Error (RMSE) and coefficient of determination (R2) of the regressions between predicted 645 

and observed edaphic properties in 305 plots in Brazilian Amazonia. The accuracy of the predictions for the k-Nearest-Neighbours (k-NN) method 646 

reported here is based on k=4 neighbours. The deshrinking method applied in Weighted Averaging (WA) was inverse deshrinking. Down-weighting in 647 

WA was done by inversely-weighting species optima by their tolerances along the environmental gradient when generating the predicted values. In k-648 

NN, down-weighting was done by inversely-weighting the selected neighbouring plots by their floristic similarity to the focal. Cross-validation 649 

methods were bootstrap (k-NN) and Leave-one-out (WA) except when mentioned. "Crossval=lgo" refers to Leave-group-out cross-validation method 650 

and "Pres.-Abs." refers to presence-absence input species data. 651 

	  	   species	   	  	   Log	  (Sum	  of	  Bases)	  
Clay	   Silte	   Sand	  

	  
input	  data	   downweighting	   	  	   crossval=lgo	  

	  	   	  	   	  	   RMSE	   R2	   RMSE	   R2	   RMSE	   R2	   RMSE	   R2	   RMSE	   R2	  

K-‐
nn

	   Abundance	  
no	   0.31	   0.68	   0.31	   0.59	   20.13	   0.35	   16.28	   0.39	   24.53	   0.21	  

similarity	   0.33	   0.64	   0.32	   0.59	   20.10	   0.35	   16.82	   0.35	   25.15	   0.14	  

Pres.-‐Abs.	  
no	   0.28	   0.74	   0.30	   0.62	   18.76	   0.46	   14.80	   0.48	   23.98	   0.24	  

similarity	   0.28	   0.75	   0.31	   0.64	   19.54	   0.41	   15.65	   0.43	   24.24	   0.19	  

W
A	  

Abundance	  
no	   0.29	   0.65	   0.33	   0.55	   18.67	   0.30	   14.53	   0.37	   22.15	   0.18	  

tolerance	   0.27	   0.70	   0.36	   0.46	   18.10	   0.34	   14.00	   0.41	   21.79	   0.20	  

Pres.-‐Abs.	  
no	   0.29	   0.65	   0.32	   0.55	   17.58	   0.38	   13.90	   0.42	   21.75	   0.21	  

tolerance	   0.27	   0.68	   0.33	   0.54	   17.92	   0.35	   14.45	   0.38	   21.93	   0.20	  

 652 

 653 
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 654 

 655 

 656 

Figure 1. Location of 326 plots established in Brazilian Amazonia (black triangules) divided in 657 

eight regions. Black lines are country boundaries and the dashed line is the main channel of the 658 

Amazonas River. Gray scale represents altitude according to SRTM. More detailed description 659 

of the circuled regions in S1. 660 
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Figure 2. Results of the distance-based Multivariate Regression Tree (db-MRT) of fern inventories in 305 plots in Brazilian Amazonia. A list of 662 

significant (α≤0.05) indicator species followed by their indicator values is presented for each branch. The percentage of improvement in model 663 

performance given by each division is in parentheses. 664 
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 665 

 666 

Figure 3. Estimated optima and tolerances of fern species along the sum of bases gradient across 667 

305 plots in Brazilian Amazonia based on abundance data. Values on the x-axis are presented on 668 

a logarithmic scale.  669 
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 671 

Figure 4. Predicted vs. observed sum of bases in 305 plots in Brazilian Amazonia. The solid black lines correponds to the regression line for all the 672 

predicted vs. observed values. Dashed lines correponds to the regression lines based on the same predictions but shown for each regional subset of the 673 
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plots to illustrate the variation among regions. The 1:1 line used in accuracy assessment to calculate the root mean squared errors (RMSEs) is shown in 674 

gray. The deshrinking method applied in Weighted Averaging (WA) was inverse deshrinking. Both axes are on a logarithmic scale.  675 


