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ABSTRACT 

A novel virtual screening methodology called fragment- and negative image-based (F-NiB) 
screening is introduced and tested experimentally using phosphodiesterase 10A (PDE10A) as a 
case study. Potent PDE10A-specific small-molecule inhibitors are actively sought after for their 
antipsychotic and neuroprotective effects. The F-NiB combines features from both fragment-based 
drug discovery and negative image-based (NIB) screening methodologies to facilitate rational drug 
discovery. The selected structural parts of protein-bound ligand(s) are seamlessly combined with 
the negative image of the target’s ligand-binding cavity. This cavity- and fragment-based hybrid 
model, namely its shape and electrostatics, is used directly in the rigid docking of ab initio 
generated ligand 3D conformers. In total, 14 compounds were acquired using the F-NiB 
methodology, 3D quantitative structure-activity relationship modeling and pharmacophore 
modeling. Three of the small-molecules inhibited PDE10A at ~27 µM to ~67 µM range in a 
radiometric assay. In a larger context, the study shows that the F-NiB provides a flexible way to 
incorporate small-molecule fragments into the drug discovery. 
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INTRODUCTION 

In theory, virtual screening assays, which sieve through thousands to billions of compounds within 
hours or days, produce sufficient level of enrichment to limit the costly experimental testing to the 
very best drug candidates. In reality, these in silico assays frequently come short of this goal and 
produce lackluster results. Regardless, the computations can still bring forth solid innovations such 
as drug scaffolds to be developed further using systematic organic synthesis programmes 
(Frydenvang et al., 2009; Lash et al., 2008; Niinivehmas, Manivannan, Rauhamäki, Huuskonen, 
& Pentikäinen, 2016; Postila, Swanson, & Pentikäinen, 2010).  

The virtual screening approaches are divided roughly in two categories: the ligand-based and 
structure-based methodologies. The ligand-based methods such as pharmacophore (PHA) and 
three-dimensional quantitative structure-activity relationship (3D-QSAR) modelling, which rely 
on the advance knowledge of active compounds, are computationally inexpensive. However, 
despite being commonly used in the drug discovery and lead optimization, the PHA and 3D-QSAR 
model generation does not necessarily utilize the bioactive ligand conformers but those that 
generate the most explanatory model(s) (Cramer, Patterson, & Bunce, 1988; Kinase, Zhang, Li, 
Zhang, & Ai, 2010; Lowe, Ferrebee, Rodriguez, Conn, & Meiler, 2010; Niinivehmas et al., 2016; 
Patel, Noolvi, & Sharma, 2014; Shubina, Niinivehmas, & Pentikäinen, 2015; Tian et al., 2011; 
Yadav et al., 2010). In contrast, the structure-based methods such as flexible molecular docking, 
which attempt to predict the ligand’s bioactive binding pose and estimate its binding energy, rely 
solely on the target protein’s 3D structure and require a lot of computational resources 
(Niinivehmas et al., 2016; Nurminen et al., 2010; Shubina et al., 2015). 

In this regard, the negative image-based (NIB) screening (Figs. 1 and S1) (Ahinko, Kurkinen, 
Niinivehmas, Pentikäinen, & Postila, 2019; Lätti, Niinivehmas, & Pentikäinen, 2016; 
Niinivehmas, Salokas, Lätti, Raunio, & Pentikäinen, 2015; Niinivehmas, Virtanen, Lehtonen, 
Postila, & Pentikäinen, 2011; Virtanen & Pentikäinen, 2010) is set to get the best from both worlds 
as it can be used to screen compounds with only the protein 3D structure and the screening process 
itself lends its speed from the traditional ligand-based screening methodology. 

[Figure_1] 

In the NIB screening, the shape of the ligand-binding cavity is utilized directly in the cavity-based 
rigid docking (Figs. 1 and S1). The technique is reminiscent of the traditional ligand-based 
approach in which the similarity comparison is performed against a known template ligand, whose 
active binding pose has been solved experimentally using for example X-ray crystallography. The 
NIB method relies on building a drug-like pseudo-ligand or negative image of the protein’s ligand-
binding cavity, where the electrostatics, solvation and alternative protonation can be incorporated 
as well (Figs. 1 and S1). The NIB models are composed of neutral filler atoms and negatively and 
positively charged cavity points reflecting the hydrogen bonding (H-bonding) features of the 
cavity lining residues (Fig. 1). The models need to be generated using specifically tailored cavity 
detection software PANTHER (Niinivehmas et al., 2015), but the ab initio generated ligand 3D 
conformers and the similarity comparison or rigid docking is performed with established ligand-
based screening tools (Vainio & Johnson, 2007; Vainio, Puranen, & Johnson, 2009). 



Because the shape complementarity between the protein’s ligand-binding cavity and the ligand is 
a key factor in assuring strong binding, the NIB can outperform traditional virtual screening 
approaches such as flexible molecular docking on a case by case basis (Niinivehmas et al., 2015, 
2011; Virtanen & Pentikäinen, 2010). In addition to the benchmark testing, the NIB methodology 
has been used successfully in tool compound discovery projects for metabolizing enzymes 
(Juvonen, Ahinko, Huuskonen, Raunio, & Pentikäinen, 2018). The NIB benefits especially from 
the Molecular Mechanics Generalized Born Surface Area (MM/GBSA) post-processing, which, 
in general, has been shown to be an efficient way to recognize correct binding poses of small-
molecule ligands (Ahinko, Niinivehmas, Jokinen, & Pentikäinen, 2019; Niinivehmas et al., 2011). 
The NIB has also been paired with the PHA filtering, where specific PHA points are generated 
based on well-known ligand-receptor hot spots or interaction sites (Rauhamäki et al., 2018). 
Moreover, the negative images can be used to rescore explicit docking poses to improve the 
flexible docking enrichment – a set-up that works excellently with a multitude of targets based on 
the benchmark testing (Kurkinen et al., 2018). What is common to these prior efforts is that the 
similarity comparison has relied solely on the cavity-based models composed of the charged cavity 
points and neutral filler atoms (Fig. 1). 

In the fragment-based drug discovery (FBDD), the virtual screening is used to find low-molecular 
mass compounds or functional fragments that bind into the target protein rather than attempting to 
discover full-size drug candidates directly (Scott, Coyne, Hudson, & Abell, 2012). Frequently, the 
fatal challenge of the FBDD is the stage in which the fragments are supposed to be fused together 
to produce a potent drug – a process that typically involves organic synthesis (Hao et al., 2012; 
Xiong et al., 2017, 2016). Here, the idea of the fragment- and negative image-based (F-NiB) 
screening (Figs. 1 and S1) is to simply incorporate the ligand fragments directly into the cavity-
based negative image (Figs. 1 and S1) to improve the model fitness in the rigid docking. Thus, the 
F-NiB relies on generating hybrid models that, at least in theory, fuse seamlessly together the best 
parts from both the protein-bound fragment(s) and the cavity-based model. 

The viability of the F-NiB approach for drug discovery is demonstrated in practice by screening 
inhibitors for phosphodiesterase 10A (PDE10A; Fig. 2A). The hydrolysis of intracellular second 
messenger cyclic nucleotide monophosphate is catalyzed by the PDE10A (Fig. 2A-B) especially 
at the striatum (Fujishige, Kotera, & Omori, 1999). The enzyme was chosen as the test case for 
the F-NiB methodology, because, if discovered, potent PDE10A-specific inhibitors (Fig. 2C-F) 
could be used in the treatment of schizophrenia and neurodegenerative disorders such as 
Parkinson’s and Huntington’s diseases (Garcia, Redondo, Martinez, & Gil, 2014). Moreover, the 
second messengers maintain neuronal functioning such as cellular metabolism and 
neurotransmitter synthesis and, thus, preventing their breakdown by the PDEs improves indirectly 
the synaptic neurotransmission (Duinen et al., 2015; Nestler & Duman, 1999). In addition, a vast 
amount of protein 3D structure and ligand activity data is available for PDE10A. This made it 
possible to apply various virtual screening methods such as the 3D-QSAR and flexible molecular 
docking in combination with the F-NiB in the search of the novel PDE10A inhibitors. 

[Figure_2] 

 



MATERIALS AND METHODS 
 
Computational methods 
 
Ligand preparation. Small-molecule ligands with experimentally measured activities were 
obtained from the ChEMBL (Bento et al., 2014) (n=804, mw: 215-600 g/mol, retrieved 22nd of 
July 2016) in the SMILES (Simplified Molecular-Input Line-Entry System) format. The 3D 
structures were generated for the ligands by using LIGPREP in MAESTRO 10.5.013 (Schrödinger 
Inc, Portland, OR, USA). In LIGPREP, the OPLS3 (Harder et al., 2016) force field was used, 
ionization was done at pH 7.4 with EPIK (Shelley et al., 2007), tautomers were created and ligands 
were desalted, specific chiralities were retained, at most 32 tautomers and chiralities per ligand 
were generated, keeping one low energy ring conformation per ligand. Multiple conformations 
were generated for the 3D converted ligands with CONFGEN (Watts et al., 2010) in MAESTRO, 
using the intermediate search strategy. The SPECS molecular database (www.specs.net) was used 
as a source of molecules in virtual screening with all the models described below. The SPECS 
molecules (Specs 10mg drug-like Apr 2014 collection, max 8 rotbonds, mw: 250-600 g/mol) were 
provided as multiple conformers, produced in similar way as the ligands retrieved from the 
ChEMBL (Malamas, Ni, & Erdei, 2011). 
 
Pharmacophore modeling. In the pharmacophore (PHA) modelling: a training set including 
preferably both active and inactive molecules is acquired; low-energy ligand 3D conformers are 
generated; the molecules are superimposed to produce the best fits for the functional groups; the 
overlaid/matching information is abstracted to simple PHA points/spheres such as H-bond donor 
or H-bond acceptor elements (PHA hypotheses); and, finally, a scoring function is used to rank the 
hypotheses according to their ability to represent the common pharmacophoric features of the 
active molecules (Leach, Gillet, Lewis, & Taylor, 2010). Here, a PHA model (Fig. S3A) was 
generated with PHASE (Dixon et al., 2006) in MAESTRO using default settings and a set of 74 
PDE10A active ChEMBL ligands (Malamas et al., 2011). ChEMBL ligands, which were used in 
the PHA model building, are shown in Fig. S3B bound at the enzyme’s ligand-binding site (docked 
using PLANTS; see details below). Ligands that had experimental pIC50 > 8.0 were defined active. 
Hypotheses that utilized minimum of five pharmacophoric sites that matched at least 35 of the 42 
active compounds were considered. The model AAHHR.155 that contained two H-bond acceptor 
sites, two hydrophobic sites and one aromatic ring site was selected because of having the best 
PHASE survival score (3.904). 
 
Field-based QSAR. Ligand alignment performed by, for example, PHA model can be used to 
establish quantitative structure-activity relationship (QSAR) on the aligned molecules (Leach et 
al., 2010). The field-based QSAR (FQSAR) reminds the PHA modelling in that it generates 
specific 3D fields (not necessarily spheres) designating the areas housing groups responsible of H-
bonding or hydrophobic interactions based on the superimposition and abstraction. However, the 
FQSAR also incorporates QSAR data directly into the fields and, thus, allows the building of more 
representative and predictive models to provide more information of the contributions of different 
molecular features to the activity. An FQSAR model was created based on the active ligand 
alignment by AAHHR.155. The FQSAR model was generated by using Gaussian steric, 
electrostatic, hydrophobic, H-bond donor and acceptor 3D fields (Klebe & Abraham, 1999; Klebe, 
Abraham, & Mietzner, 1994). Linear correlation between independent (molecular properties 



represented by the 3D fields) and dependent variables (ligand activities) was constructed by using 
the Partial Least Squares (PLS) regression methodology. The model was internally validated by 
the leave-one-out method. 20 % of the active PDE10A ligands were assigned to the test set by 
random assignment and 80 % of the molecules were kept in the training set. The external validation 
of the QSAR model was performed by predicting the activities of the test set molecules. A series 
of models with an increasing number of PLS factors was examined and a model with the most 
statistical robustness was selected. The generated FQSAR model was used to predict activities of 
the SPECS molecules ranked best by the PHA model. 
 
Building fragment- and cavity negative image-based hybrid models. The hybrid models used in 
the F-NiB screening are built in a straightforward manner (Figs. 1 and S1): (1) a negative image 
of the binding pocket is generated using PANTHER; (2) one or more ligand fragments making the 
key interactions at the ligand-binding pocket are selected; (3) the coordinates are merged and the 
overlapping cavity sections are removed. Rest of the screening process involving protein 
preparation (e.g. solvation, protonation), ligand 3D conformer generation and the similarity 
screening do not differ from the established NIB methodology (Figs. 1 and S1) (Niinivehmas et 
al., 2015; Vainio et al., 2009).  

In total, four hybrid models (I-IV; Figs. 3 and S4) were generated utilizing the ligand-binding 
pockets of two human PDE10A X-ray crystal structures (PDB: 4HEU; 3SN7) (Malamas et al., 
2011; Rzasa et al., 2012). Before building the cavity-based negative images or NIB (negative 
image-based) models with PANTHER (Niinivehmas et al., 2015), protons were added to the 
protein structures using REDUCE 3.24.130724 (Word, Lovell, Richardson, & Richardson, 1999). 
The selected fragments of bound compounds, explained in more detail below, were incorporated 
in the models in the BODIL Molecular Modeling Environment (Lehtonen et al., 2004). Instead of 
trying to build one sweeping model that ticks all the boxes, Models I-IV (Figs. 3 and S4) were 
intended to act as realistic templates for finding moderately sized inhibitors that occupy a few 
specific high-potency regions of the spacious PDE10A pocket (Fig. 2G). 

[Figure_3] 

Model I: For the first model (Fig. 3D-E), PDB-entry 4HEU (Rzasa et al., 2012) was used as the 
input template structure in building the cavity’s negative image. For PANTHER (Niinivehmas et 
al., 2015), box radius was set to 12 Å and the model dimensions were kept close to the protein 
bound biaryl ether inhibitor (residue name: 15J) with ligand distance limit of 1.0 Å. The first 
fragment, a hydroxyl group extracted from the inhibitor (Fig. 2C-F), was incorporated directly into 
the model in BODIL (Fig. 3D). The hydroxyl group’s atoms were given charges matching serine 
residue in the charge library of PANTHER. The radius of the carbon atoms of the target protein 
was set to 2.25 Å in the PANTHER radius library to retain the size of the model in a moderate 
level. 

Model II: The second model (Fig. S4) was also built based on PDB-entry 4HEU with the same 
settings as was done with Model I and, thus, the hydroxyl of 15J was again directly incorporated 
into the hybrid model. However, in the middle section of the model was incorporated an additional 
fragment, three-ring system, extracted from compound 12 (Fig. S2), which was discovered from 
the SPECS database using the PHA model (Fig. S3A). Although compound 12 was eventually 



found inactive in the experimental testing, in its optimized binding pose the compound is forming 
three bonds with an optimal geometry: the amino group of Gln716 side chain donated  H-bonds 
both to the keto group and the nitrogen in the four-ring system; and the hydroxyl group of Tyr683 
side chain (or Tyr683OH) donated an H-bond to the same keto group (Fig. S5). Those cavity points 
or filler atoms generated by PANTHER in the area occupied by the ring system were replaced by 
the ring system atoms in BODIL (Lehtonen et al., 2004). In the model, these ring atoms were given 
the same charges as designated in the SPECS molecular database. The polar groups in the fragment 
were placed in the same way as those obtained for the cavity model using PANTHER, but the 
introduction of the ring-system provided a more planar shape to the model at this site. 

Model III: Two changes were implemented for the third hybrid model (Fig. 3G-H) in comparison 
to the Model II (Fig. S4). First, the three-ring system fragment of compound 12 (Fig. S2) was 
replaced with a 8-fluoro-6methoxy-3,4-dimethyl-imdazo[1,5-a]quinoxaline fragment extracted 
from a bound inhibitor ligand present in the PDB-entry 3SN7 (residue name: 540). The new 
fragment was given charges that are the opposite to the surrounding polar residues or the main 
chain nitrogen and oxygen of Gln716 and Tyr514, respectively (Fig. 2B-C). Second, the hydroxyl 
atoms acquired from the biaryl ether inhibitor 15J (Fig. 2C) for the Models I and II (Figs. 3D-E 
and S4) were not included in the Model III. 

Model IV: The fourth model (Fig. 3A-B) was generated using the PDB-entry 3SN7 (Malamas et 
al., 2011). The NIB model dimensions were restricted by applying the ligand distance limit of 1.0 
Å in PANTHER for the protein bound inhibitor 540. The inhibitor in question does not place any 
parts into the PDE10A “selectivity pocket” region (Verhoest et al., 2009) (cyan in Fig. 2G) and, 
accordingly the resulting model does not extend to this section of the pocket either. The same 
three-ring structure as in the Model II was incorporated to produce the hybrid model. 

Screening with fragment- and negative image-based models. The small-molecules were 
geometry optimized and aligned on top of the F-NiB Models I-IV using ShaEP (Vainio et al., 
2009). The similarity search algorithm compares the shape and electrostatics of the template F-
NiB models against the ligand conformers, superimposes them, and ranks the results based on both 
the shape and electrostatics of the match. The hybrid models Model I and IV were directly screened 
against the inhibitor molecules obtained from the ChEMBL (Bento et al., 2014) to validate their 
use in the screening with the molecules of the SPECS database. The Models I and IV were further 
processed using the FQSAR (see below). 

Field-based QSAR rescoring of F-NiB screening results. Activities of the top 5,000 SPECS-
molecules originating from the F-NiB screenings using Models I and IV were predicted by utilizing 
FQSAR. In other words, a set of 53 active PDE10A inhibitors (Rzasa et al., 2014, 2012) was 
geometry optimized and aligned against the Model I with ShaEP (Vainio et al., 2009) and a set of 
78 active PDE10A inhibitors (Malamas et al., 2011) was similarly superposed against Model IV. 
The same settings for the model generation and validation were used as with the PHA-based 
FQSAR. 
 
Flexible molecular docking. A set of 78 active ChEMBL ligands (Malamas et al., 2011) was 
docked into the PDE10A binding site (see Fig. S3B) using PLANTS (Korb, Stützle, & Exner, 
2009) with the ChemPLP scoring function. The centroid for docking was taken directly from the 



inhibitor molecule 540 (PDB: 3SN7; chain A) (Malamas et al., 2011). Speed setting 1 and radius 
of 15 Å were used. The flexible docking did not produce a significant correlation with the available 
PDE10A activity data (data not shown) and the docking scores were not used as a basis for 
selecting any ligands for the activity testing. However, PLANTS did produce the binding pose of 
540 with an RMSD of 0.56 Å when compared to the pose seen in the X-ray crystal structure. Due 
to this, the best-ranked SPECS small-molecules suggested by the F-NiB Model III and PHA 
screening were docked flexibly with PLANTS for the follow-up MM/GBSA calculations (see 
below. With the Model III, PLANTS was expected to generate slightly better poses at the protein’s 
cavity than the original poses originating from the F-NiB screening. The optimized docking pose 
of compound 3 that differs from the original F-NiB screening pose is discussed in detail. 
 
Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) calculations or binding free 
energy (∆G) calculations were performed using PRIME in MAESTRO (Jacobson, Friesner, Xiang, 
& Honig, 2002) on ligands suggested by the F-NiB, F-NiB-FQSAR and PHA screening. The 
ligand-protein complexes suggested by either ShaEP (Vainio et al., 2009) (Models I, II and IV) or 
PLANTS (Model III and PHA) were used as the starting structures for the subsequent MM/GBSA 
calculations. The VSGB solvation model (Li et al., 2011) and OPLS3 force field were used, 
defining amino acids within 4.0 Å from the ligand as flexible in the MM/GBSA calculations. The 
energy minimization was performed on the flexible region with the “Minimize” - sampling 
method. The binding free energy values obtained by MM/GBSA calculations were compared to 
values calculated for the inhibitors present in the PDB-entries 4HEU (-87.518 kcal/mol) and 3SN7 
(-46.883 kcal/mol) to guide the final compound selections for the experimental testing. 
 
Brain/blood permeability prediction, pan-assay interference compounds filtering. The 
brain/blood permeability (QPlogBB) of the compounds was estimated using QIKPROP 5.1 in 
MAESTRO. The methodology has been demonstrated to work robustly previously (Jhala, Chettiar, 
& Singh, 2012). The predicted QPlogBB values range from -0.064 to 1.030, which is well within 
the reference range of -3.0 to 1.2 needed for passing the blood brain barrier. Similarly, the active 
PDE10A compounds included in the ChEMBL were also predicted to pass the barrier without 
problems (data not shown). In addition, structural filtering was performed for the selected 
compounds in CANVAS (Duan, Dixon, Lowrie, & Sherman, 2010; Sastry, Lowrie, Dixon, & 
Sherman, 2010) implementation of MAESTRO to detect possible pan-assay interference 
compounds (PAINS). The selected compounds passed the PAINS1-3 filters.  

Structural novelty. Structural similarity between the selected compounds and ChEMBL-
molecules was evaluated by 2D fingerprint similarity comparison in CANVAS (Duan et al., 2010; 
Sastry et al., 2010). Hashed 32-bit linear 2D-fingerprints with Daylight atom typing and maximum 
path length 7 (14 for ring closures) were generated. Similarity analysis was performed by 
calculating Tanimoto coefficients to describe fingerprint overlap between those compounds 
selected via virtual screening and the known active (ChEMBL) molecules for the PDE10A. The 
aim of the similarity analysis was to avoid selecting molecules with high structural similarity when 
compared to the known PDE10A inhibitors. As completely similar and different 2D fingerprints 
give Tanimoto coefficients 1 and 0, respectively, molecules with low values (0-0.2) were 
considered structurally novel PDE10A inhibitor candidates. 



Figure preparation. Fig. 2 and C, D, F, G and I in Fig. 3 were prepared using VMD1.9.2 
(Humphrey, Dalke, & Schulten, 1996). Fig. 1, E and H in Fig. 3 were done with BODIL (Lehtonen 
et al., 2004), MOLSCRIPT 2.1.2 (Kraulis, 1991) and RASTER 3D 3.0.2 (Merritt & Murphy, 
1994). 

 

Experimental materials and methods 

The purity of the active ligands is 95 % or more, based on proton nuclear magnetic resonance (H-
NMR; 2 and 3) and liquid chromatography-mass spectrometry (LC-MS; 1-3) as provided by the 
SPECS molecular database (see Text S1). The radiometric activity assay was performed 
commercially by SB Drug Discovery (Glasgow, UK) using recombinant human PDE10A enzyme 
expressed in a baculoviral system. The similarity of the expressed system has been validated by 
comparing it against PDE10A enzyme taken directly from human tissue using known inhibitor 
standards where available. The radiometric assay method is a modification of the two-step method 
of by Thompson & Appleman (Thompson & Appleman, 1971), which has been adapted for 96-
well plate format. Dose response curves for compounds 1-13 and the control papaverine against 
human PDE10A1 are shown in Fig. S6. 

 

RESULTS 

Virtual screening assays. The fragment- and negative image-based (F-NiB) screening (Figs. 1 and 
S1) was performed using four different hybrid NIB models combining fragment and cavity 
information (Figs. 3 and S4; N=13; Table 1). Both pharmacophore (PHA) modelling (Fig. S3; 
N=1; Table 1) and flexible molecular docking (data not shown) were applied to discover novel 
PDE10A inhibitor compounds from the SPECS database. In addition, a field-based QSAR or 
FQSAR-based rescoring scheme was applied on the small-molecules of the SPECS database 
ranked best by the screens with the PHA or the F-NiB with the Models I or IV.  

[Table 1] 

The molecular alignment is inarguably the most crucial part of the FQSAR model building. Both 
the PHA and the F-NiB models worked well in aligning the active ligands to produce predictive 
FQSAR-models. The PHA-based FQSAR model used 3 PLS factors and had R2 (training set) = 
0.87, Q2 (test set) = 0.81 and R2 Scramble = 0.41. The FQSAR model based on the Model I used 
a single PLS factor as utilizing a higher number of PLS factors resulted in over-fit models (R2 
Scramble > 0.5). However, the PLS = 1 model having R2 = 0.89, Q2 = 0.89 and R2 Scramble = 
0.38 indicated adequate predictive power for usage in the virtual screening. The FQSAR model 
based on rigid docking using the Model IV utilized 3 PLS factors and had R2 = 0.74 and Q2 = 0.72 
with R2 Scramble = 0.46. Full FQSAR model statistics, field contributions to the ligand activity 
and field contour maps are displayed in Tables S1 and S2 and Figure S7, respectively. 

The FQSAR methodology was used to predict pIC50-values of the best-ranked SPECS molecules: 
75 molecules from the PHA screen were predicted to have pIC50 > 10.0, 47 molecules from the F-



NiB with the Model I screening had predicted pIC50 > 7.5 and 100 molecules put forth by the F-
NiB Model IV screening had predicted pIC50 > 8.7. The protein-ligand complexes of these 
molecules were refined and their binding energies calculated using the MM/GBSA routine 
(Jacobson et al., 2002) in MAESTRO. In addition, 100 top-scored molecules from the F-NiB 
screens with the Models II and III were processed with the MM/GBSA routine (Fig. S5; Table 1). 
The optimized ligand-protein complexes were subjected to the final visual evaluation before the 
final compound selection. 

Compound selection. Regardless of the used screening/scoring method (Table 1), the chances of 
each compound to bind and inhibit PDE10A activity were estimated on case-by-case basis by 
inspecting and visualizing each of the bound ligands in complex with the protein. In visual 
examination of the binding poses, molecules forming favorable interactions especially at the “Gln 
interaction” and “hydrophobic clamp” sites were sought (Table S3). Ultimately, only those 
compounds with sufficient level of structural novelty or perceived “uniqueness” in comparison to 
the prior PDE10A inhibitors (listed in the ChEMBL database; www.ebi.ac.uk/chembl/) were 
chosen (Fig. S2). The structural novelty was evaluated by analyzing the structural similarity 
between the selected molecules and the ChEMBL-molecules by 2D fingerprint comparison. 
Tanimoto coefficients of all selected molecules were <0.163, indicating structural novelty when 
compared to previously known PDE10A inhibitors (Table 1). 

In practice, the manual selection process was limited to, at most, top 100 compounds put forth by 
each applied screening method and the scoring from different sources was cross-referenced (Table 
S4). In total, 14 compounds (1-14 in Fig. S2) were purchased for the radiometric PDE10A activity 
testing. Although all of the compounds were predicted beforehand to be water-soluble (see LogS 
values in Table 1), compound 14 (Fig. S2) was later found out to be insoluble (Table 1) when 
preparing the dilutions from the DMSO stocks. In addition, the selected compounds were deemed 
likely to pass the blood brain barrier (see QPlogBB values in Table 1) using QIKPROP in 
MAESTRO. 

Experimental results. Majority of the compounds (4-12 in Fig. S2) produced >100 µM PDE10A 
inhibition and only compounds 13 and 14 (Fig. S2) were completely inactive (Table 1). 
Importantly, compounds 1, 2 and 3 (Fig. S2), selected based on the F-NiB screening (Table 1), 
produced IC50 values of 27 µM, 49 µM, and 67 µM, respectively. The IC50 value of inhibitor 
papaverine (Fig. S2), which was used as a positive control in the testing, was determined to be 147 
nM (Table 1). Accordingly, 1-3 function as PDE10A inhibitors at the micromolar range (Table 1) 
and, on broader terms, they are mid-range PDE10A inhibitors. 

The predicted binding modes of the new inhibitors. The binding modes of compounds 1-3, (Fig. 
S2) acquired via the F-NiB screening with the Models IV, I and III, respectively, are shown in Fig. 
3 (Table 1). Their binding was determined also using flexible docking (Model III) and MM/GBSA 
calculations (Fig. S5); however, it is noteworthy that the binding energy predictions for the active 
compounds did not significantly differ from the inactive ones (1-3 vs. 4-13 in Table 1). In general, 
the different ring systems of the compounds (Fig. 3C, F, I) aligned between or close to the side 
chains of Phe686 and Phe719 forming the “hydrophobic clamp” region (yellow in Fig. 2G) at the 



PDE10A active site (Chappie, Helal, & Hou, 2012). The binding modes of compounds 1-3 are 
described in more detail in Text S2. 

 

DISCUSSION 

Difficulties of fragment-based drug discovery. The major difficulty in implementing the 
fragment-based drug discovery (FBDD) in large scale is not necessarily the lack of promising 
fragments or even drug scaffolds but the limited ways in which these diverse parts can be patched 
up together. If starting the compound search using a specific fragment, however simple, one 
usually quickly discovers that there are no compounds available housing the other required parts 
in the existing molecular databases. This problem can sometimes be overcome by quick and simple 
organic synthesis efforts guided by expert insight and/or automated algorithms, but, more often 
than not, the issue is that the envisioned compound is difficult, costly or even impossible to produce 
at the chemist’s workbench. The problem is even more pronounced, when there is available only 
a single, possibly tiny, fragment to begin the drug design with, because it means that the researcher 
has to come up with rest of the molecule on the spot for the organic synthesis. 

Fragment- and negative image-based screening. In the novel virtual screening methodology, 
referred as fragment- and negative image-based (F-NiB; Figs. 1 and S1) screening, the user-
selected ligand fragments are fused together with the cavity-based negative image to produce a 
hybrid F-NIB model, which, in turn, is used directly in the rigid docking of ab initio generated 
ligand 3D conformers. Ideally the chosen fragments, originating for example from X-ray 
crystallography, improve the cavity’s shape/charge characteristics and, thus, facilitate the 
discovery of potent compounds from the vast virtual screening libraries during the screening phase. 
On the one hand, the hybrid methodology bypasses some of these practical run-of-the-mill 
chemistry issues linked to the FBDD, on the other hand, the F-NiB shares some of the limitations 
common to all virtual screening techniques. 

Firstly, because the similarity search is performed using the hybrid NIB model containing both the 
fragment(s) and the cavity-based negative image, there is no need to come up with explicit 
solutions for merging the diverse fragments into a single full-sized compound. Secondly, the 
similarity searches focus on the validated small-molecule libraries containing drug-like 
compounds and, thus, neither the low-molecular mass fragments nor organic synthesis steps need 
to be considered. Thirdly, when working with just a single fragment, the F-NiB approach truly 
excels as even a tiny fragment can be expanded to facilitate full-size compound search. This is 
achieved by increasing the size of the template fragment by introducing information directly from 
the cavity itself. Fourthly, the screening is not limited by the original chemical composition of the 
ligand fragment(s); i.e. different bioisosteres are interchangeable and readily swapped during the 
similarity searches without undue bias given to the original fragment(s). 

Due to the sheer speed and the reduced fidelity towards the chosen fragment(s), the F-NiB method 
differs markedly from the prior, mostly flexible docking-based, in silico FBDD protocols (Scott et 
al., 2012). Although the docking algorithms usually produce correct binding poses for the ligands 
or fragments, the scoring functions are not always able to rank these poses high enough (Verdonk 



et al., 2011). In the F-NiB, the fragments can originate from molecular docking simulations (Model 
IV; Fig.  2A), experiments such as X-ray crystallography (Models I and III; Fig. 3D and G) or 
from both sources (Model II; Fig. S4) and they can be taken from protein-bound full-size ligands 
or low-molecular mass fragments. Thus, if implemented properly, the F-NiB approach could be 
used to discover truly novel compounds for experimental testing using minimal amount of 
computing resources. This tendency for scaffold hopping is usually a desired property, but one 
could limit the ligand set to include only those compounds containing certain desired fragment 
part(s), if need be. 

Furthermore, as is demonstrated in this study, the activity data of previously known ligands can be 
considered in the virtual screening protocol to utilize rescoring of the top F-NiB screening results 
by 3D-QSAR modeling (Fig. 2). The implementation of FQSAR in unison with the F-NiB makes 
it possible to inspect for example specific H-bonding interactions with the target protein via the 
representative fields (Fig S7). Consequently, the fields describing the activity contributions of 
different physicochemical properties of small-molecules could be used as guidance for generating 
novel F-NiB models containing fragments that exhibit these properties. However, as is shown by 
discovery of the active compound 3 (Figs. 2F and 3G; Table 1), the F-NiB approach performs well 
even if not enough active ligand data is available for generating a reliable QSAR model. Thus, in 
comparison to for example e-pharmacophore technique (Loving, Salam, & Sherman, 2009; Salam, 
Nuti, & Sherman, 2009), which relies on a vast amount of docking experiments with known active 
ligands, the F-NiB can be performed successfully with limited amount of prior ligand data. 

The downside of streamlining the fragment-based search with the F-NiB (Figs. 1 and S1) is shared 
by all structure-based virtual screening methodologies; i.e. the readily available molecular 
databases do not necessarily contain active compounds; the used protein 3D structure could be in 
a conformation that does not facilitate drug binding; and/or the scoring functions fail to recognize 
the active compounds. Despite these common concerns, the F-NiB clearly provides a tangible way 
to accomplish the task of using potent but low-molecular mass fragments in the drug discovery 
and virtual screening in an innovative manner. Thus, while the F-NiB requires further optimization 
and automation, the technique shows great promise due to its speed and cost-effective features in 
comparison to the FBDD relying on flexible docking and extensive organic synthesis programmes. 

 

CONCLUSIONS 

A novel virtual screening protocol called fragment- and negative image-based (F-NiB; Fig. 1) 
screening is introduced and tested experimentally using the phosphodiesterase 10A (PDE10A) as 
a case study. In the negative image-based (NIB; Fig. 1) screening small-molecules are rigidly 
docked by focusing on the shape/electrostatics complementarity with the protein’s ligand-binding 
pocket (Niinivehmas et al., 2015, 2011; Virtanen & Pentikäinen, 2010). The F-NiB adds another 
dimension to the methodology: hybrid F-NiB models that incorporate both the fragments of bound 
ligands and the protein’s cavity information are generated and used in the similarity comparison 
(Fig. 1). In theory, the hybrid models encompass key features from both the bound ligand(s) and 
the cavity itself. If activity data is available, it can be included into the F-NiB methodology by 



utilizing 3D-QSAR as a rescoring scheme. As a proof of concept, three micromolar-range PDE10A 
inhibitors were discovered from the SPECS database using both the F-NiB and the combined F-
NiB-QSAR screening. In short, the results indicate that the target protein’s cavity 
shape/electrostatics can be used in unison with protein-bound ligand fragments to discover active 
compounds. 
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Table 1. Virtual screening and experimental activity testing results. 
 

NI = no inhibition; N/A = not available, PHA = pharmacophore 

1 pIC50 value predicted by an FQSAR model. 
2 QPlogBB (the brain/blood permeability) from QIKPROP module calculations in MAESTRO. 
3 LogS (the aqueous solubility) from the SPECS database (www.specs.net).  
4 Not soluble.  
5 LogS from ALOGPS (http://www.vcclab.org/lab/alogps/) 
6 Maximum value of Tanimoto coefficient when compared to all molecules obtained from the ChEMBL database.  
7 The hybrid F-NiB models I-IV, the cavity-based negative images with incorporated ligand fragment(s), are shown in Figs. 3 and S4. 
The PHA model is shown in Fig. S3A.  
8 F-NiB: fragment- and negative image-based (F-NiB) screening or rigid docking; F-NiB/FQSAR: F-NiB docking in combination with 
the field-based QSAR; PHA/FQSAR: pharmacophore-based ligand alignment combined with the FQSAR.

Compound Compound 
 (SPECS name) ShaEP MM/GBSA 

(Kcal/mol) 
IC50 
(µM) pIC50 

pIC50    

Pred1 
QPlogBB2 LogS3 TcMax

6 Model7 Method8 
     

1 AT-057-43485961 0.522 -62.948 26.8 4.572 9.219 0.527 -5.82 0.099 IV F-NiB/FQSAR 
2 AM-879-42012742 0.553 -72.828 48.8 4.312 9.382 0.052 -9.65 0.063 I F-NiB/FQSAR 
3 AG-690-09287047 0.585 -58.432 67.0 4.174 - 1.03 -6.77 0.102 III F-NiB 
4 AG-205-09068036 0.582 -47.282 >100 <4 - -0.014 -2.78 0.146 III F-NiB 
5 AG-690-36108027 0.594 -52.288 >100 <4 - 0.559 -6.73 0.163 III F-NiB 
6 AK-968-15360495 0.584 -46.702 >100 <4 - 0.669 -4.3 0.139 III F-NiB 
7 AN-329-41642008 0.650 -83.451 >100 <4 - 0.916 -6.24 0.099 II F-NiB 
8 AN-329-43449158 0.590 -50.464 >100 <4 - 0.139 -3.5 0.064 III F-NiB 
9 AN-465-14013021 0.594 -49.440 >100 <4 - -0.064 -8.86 0.11 III F-NiB 

10 AP-853-42879195 0.607 -53.995 >100 <4 - 0.333 -4.06 0.085 III F-NiB 
11 AP-970-41728638 0.586 -48.305 >100 <4 - 0.687 -5.67 0.08 III F-NiB 
12 AO-022-43390442 N/A  -74.222 NI NI 10.112 0.478 -6.72 0.086 PHA PHA/FQSAR 
13 AP-853-42160322 0.600 -49.780 NI NI - 0.397 -4.95 0.158 III F-NiB 
14 AO-022-43453889 0.550 -85.774 N/A4 N/A4 7.583 0.197 -6.87 0.092 I F-NiB/FQSAR 

Papaverine - (control) N/A N/A 147 nM 6.833 - - -4.45  N/A N/A - 
            



 

 
Figure 1. Utilizing ligand fragments and cavity information in the virtual screening. The 
fragment- and negative image-based (F-NiB) screening protocol follows four successive steps: (1) 
the negative image or negative image-based (NIB) model generation. The PANTHER-generated 
(Niinivehmas et al., 2015) NIB model (transparent surface) is composed of neutral filler atoms 
(black sphere) and charged cavity points (blue/red spheres). The positively (blue sphere) or 
negatively (red sphere) charged cavity points mirror the H-bond donors and acceptors lining the 
ligand-binding cavity; (2) the selection of protein-bound ligand fragments from validated 3D 
structures (stick model with yellow backbone) or in silico predictions; (3) the merging of the 
fragments and cavity points and removal of the overlapping points to generate a hybrid F-NiB 
model; and (4), finally, the similarity comparison screening or rigid docking with ShaEP (Vainio 
et al., 2009) (brown arrows). The shape/charge comparison against the F-NiB model is shown 
against multiple 3D conformers of two ligands (Lig #1 and Lig #2; stick models of different 
colors). Those conformers (and ligands) matching best the shape/electrostatic properties of the 
template F-NiB model in the rigid docking are predicted active (green stick model) and, in contrast, 
the weaker matching ligands are assumed inactive (red stick model). Finally, the docking poses of 
the top-ranked compounds are visually inspected with the protein and compounds are selected for 
in vitro testing. 

 

 



 

Figure 2. Phosphodiesterase 10A and its ligands. (A) The 3D structure of the PDE10A (cyan 
cartoon; PDB: 2OUN; chain A) (Wang et al., 2007) shown with adenosine monophosphate (AMP; 
pink CPK model). (B) The AMP (ball-and-stick model with pink backbone) binding is shown with 
the key residues (stick models with white backbone) such as Gln716 and His515 forming H-bonds 
(magenta dotted lines; PDB: 4HEU; A chain) (Rzasa et al., 2012) and participating with the 
divalent ions in the hydrolysis of cyclic AMP (or cAMP) or cyclic GMP (cGMP; nucleoside 3',5'-
cyclic phosphate + H2O = nucleoside 5'-phosphate.). (C) The binding of inhibitors such as the 
biaryl ether 15J (ball-and-stick model with magenta backbone) does not involve the divalent ions. 
When comparing the validated binding of an inhibitor to the predicted poses for (D) 1, (E) 2 and 
(F) 3, the new molecules occupy roughly the same 3D space in the cavity. The binding poses of 2 
and 3 are alike with 15J, whereas 1 differs somewhat. (G) The new inhibitor binding centers on 
the four regions shown in the cross section of the cavity surface: “hydrophobic clamp” (yellow); 
“Gln interaction” (pink); “buried waters” (green); and “selectivity pocket” (cyan) (Chappie et al., 
2012). Notably, 1 (ball-and stick model with orange backbone) does not extend to the “selectivity 
pocket” region. Chlorine, oxygen, and nitrogen atoms in the compounds are shown with green, red 
and blue color, respectively.  



 

Figure 3. Fragment- and negative image-based hybrid models and their representative hits. 
Models (A) IV, (D) I, and (G) III (blue surface), composed of ligand fragments (sticks) and cavity 
points or filler atoms (balls) generated with PANTHER (Niinivehmas et al., 2015), occupy key 
regions of the PDE10A cavity (grey surface; see Fig. 2G). Compounds (B) 1, (E) 2 and (H) 3 (ball-
and-stick models with orange backbone) produced high shape/charge similarity scores (Table 1), 
when the hybrid models (transparent surface with charge potential) were compared against the 
SPECS compounds using ShaEP (Vainio et al., 2009). The binding modes of compounds (C) 1, 
(F) 2, and (I) 3 are shown with the key residues (stick models with white backbone) focusing on 
the hydrogen (magenta dotted lines) and halogen (green dotted lines) bonding. Note that the direct 
H-bond between Tyr514 and 2 could also be substituted by a water bridge (not shown). Those 
residues that were notably adjusted by the MM/GBSA routine are shown with both the original 
(transparent sticks; PDB: 3SN7 in A, C and 4HEU in D, F, G and I) (Malamas et al., 2011; Rzasa 
et al., 2012) and optimized poses; otherwise only original side chain conformations are shown 
(panel I). 


