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Abstract

Objective: Meal ingestion is followed by a redistribution of blood flow (BF) within the 

splanchnic region contributing to nutrient absorption, insulin secretion and glucose 

disposal, but factors regulating this phenomenon in humans are poorly known. The aim 

of the present study was to evaluate the organ-specific changes in BF during a mixed-

meal and incretin infusions.

Design: A non-randomized intervention study of 10 healthy adults to study splanchnic BF 

regulation was performed.

Methods: Effects of glucose-dependent insulinotrophic polypeptide (GIP) and glucagon-

like peptide 1 (GLP-1) infusions and mixed-meal were tested in 10 healthy, glucose 

tolerant subjects using PET-MRI multimodal imaging technology. Intestinal and 

pancreatic BF and blood volume (BV) were measured with 15O-water and 15O-carbon 

monoxide, respectively.

Results: Ingestion of a mixed-meal led to an increase in pancreatic and jejunal BF, 

whereas duodenal BF was unchanged. Infusion of GIP and GLP-1 reduced BF in the 

pancreas. However, GIP infusion doubled blood flow in the jejunum with no effect  

of GLP-1.

Conclusion: Together, our data suggest that meal ingestion leads to increases in 

pancreatic BF accompanied by a GIP-mediated increase in jejunal but not duodenal 

blood flow.

Introduction

The splanchnic region is a crucial regulator of metabolic 
homeostasis; and disturbances in the function of gut and 
pancreas predispose to impaired glucose regulation in the 
postprandial state (1, 2, 3). After a meal, blood flow (BF) 
is redistributed in the splanchnic region to accommodate 
the absorption of nutrients in the gut, glucose delivery 
and insulin drainage to and from the pancreatic islets, 

and hepatic metabolism (4, 5, 6). In healthy humans, an 
increase of about 50–100% has been reported in the celiac 
(CA) and superior mesenteric artery (SMA) flow following 
meal ingestion (7), but it is not known how this increase 
in perfusion is distributed between the splanchnic organs.

After a meal plasma levels of several potential 
vasoactive substances increase (8). In rodents, 
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experimental hyperglycemia increases and hypoglycemia 
decreases pancreatic islet perfusion (9). Moreover, incretins 
have been shown to regulate BF in the splanchnic and 
systemic circulation. When Kogire and co-workers (10) 
injected GIP to healthy dogs, they observed increased BF 
in SMA but not in CA, suggesting that GIP contributes 
to the redistribution of BF after a meal. Similar results 
have been reported for GLP-1 (11). However, the effects 
of incretin hormones on splanchnic BF distribution have 
not previously been studied in humans, most likely due to 
a lack of appropriate methods.

The measurement of BF distribution in the splanchic 
area has now been overcome by a multimodal imaging 
approach with positron emission tomography (PET) 
which enables the assessment of splanchnic BF and blood 
volume (BV) in an organ-specific manner in humans 
(12). We used PET/MRI with 15O-water and 15O-carbon 
monoxide tracers to assess intestinal and pancreatic BF 
and BV, respectively. The present study was conducted 
to evaluate the physiological vascular changes occurring 
in the gut and pancreas after a mixed-meal and after 
intravenous infusions GIP and GLP-1.

Subjects and methods

Subjects

A total of 10 healthy subjects were recruited (Table 1). The 
subjects had a body-mass index (BMI) of 18–27 kg/m2, 
fasting plasma glucose was below 6.1 mM and they were 
aged between 18 and 60  years. Subjects were generally 
in good health, as determined by physical examination, 
screening laboratory measurements and medical history. 
Smoking was considered as an exclusion criterion for 
the study. Subject body weight was stable between the 
experiments and none of the subjects had experienced 
rapid weight change three months prior to the enrollment.

Study approval

The Ethics Committee of the Hospital District of 
Southwestern Finland approved the studies (ClinicalTrials.
gov Identifier NCT01880827), and all subjects gave their 
written informed consent before participation.

Research design

We measured changes in splanchnic BF and BV after 
a mixed-meal test, GIP infusion, and GLP-1 infusion 

(Supplementary Fig.  1, see section on supplementary 
data given at the end of this article). Prior to PET-
studies a routine 75-g 2-h OGTT was performed to all 
subjects. Subjects were imaged in the supine position 
with a combined PET/MRI scanner Philips Ingenuity 
(Philips Healthcare) with 38 × 38 cm axial field-of-view 
(13) after an overnight fast. Two peripheral catheters 
were placed in the antecubital veins: one for blood 
sampling and the other one (in the contralateral arm) 
for incretin infusions and 15O-water bolus injections. 
The lines were flushed with constant saline infusion. 
Baseline 15O-water and 15O-carbon monoxide PET-
acquisition and whole-body MRI preceded the 
experiments. During the PET-studies, plasma levels of 
glucose, insulin, C-peptide, FFA, GIP and GLP-1 were 
measured at time points 0, 15, 30, 45, 60 and 90 min. 
Blood pressure and clinical well-being were monitored 
throughout the studies.

To assess pancreatic and gut BF, a dynamic PET 
scanning of 310 s (with variable frame times) was 
performed following an intravenous bolus injection of 
15O-water. Effective radiation dose per 15O-water injection 
was 0.47 mSv. The total injected amount of radioactivity 
was 491 (462–515) MBq and radiochemical purity of the 

Table 1 Subject characteristics.

Parameter
Median (IQR)

n = 10

Anthropometrics
 M/F 2/8
 Age (years) 46 (46–52)
 Weight (kg) 63.57 (59.3–66.5)
 BMI (kg/m2) 23.1 (21.8–24.1)
 Body fat (%) 25.6 (23.8–30.0)
 Systolic BP (mmHg) 136 (124–139)
 Diastolic BP (mmHg) 88.4 (83.8–93.8)
 Smoking (n (%)) 0 (0)
 Diabetes (n (%)) 0 (0)
Biochemical data
 Fasting glucose (mM) 5.1 (4.9–5.2)
 2-h glucose (mM) 6.1 (5.3–6.9)
 HbA1c (mmol/mol) 33.0 (30.0–33.9)
 Fasting insulin (U/L) 4.5 (3.0–5.8)
Insulin sensitivity indices
 HOMAIR (fraction) 1.0 (0.7–1.3)
 2-h OGIS (mL/min/m2) 458 (429–481)
β-Cell function parameters
 Basal ISR (pM/min/m2) 66.9 (54.1–77.0)
 Glucose sensitivity (pM/min/m2/mM) 82.9 (63.1–91.8)
 Potentiation factor ratio (dimensionless) 1.6 (1.2–3.2)

2-h OGIS, oral glucose insulin sensitivity index; GIP, glucose-dependent 
insulinotrophic peptide; GLP-1, glucagon-like peptide 1; HbA1c, glycated 
hemoglobin; HOMAIR, homeostatic model assessment for insulin 
resistance; ISR, insulin secretion rate.
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radiotracer always exceeded 95%. To study the changes in 
pancreatic and gut BV, subjects inhaled room air mixed 
with 0.14% 15O-labeled carbon monoxide (CO) through a 
three-way inhalation flap-valve. The inhalation lasted for 
two minutes, the total radioactivity dose being 0.57 mSv, 
and the total administered amount of radioactivity was 
726 (688–770) MBq. After the administration, another 
two minutes was allowed for the CO to combine 
with hemoglobin before the 4-min static PET scan 
(Supplementary Fig. 2).

Pancreatic and gut BF were calculated from 15O-water 
derived data by using a one-tissue compartment model 
(Fig.  1F) (14). Intestinal TACs were corrected for a 
delay between arterial and target tissue radioactivity, 
whereas delay correction was not considered necessary 
for pancreas.

Pancreatic and gut BVs were calculated from 
15O-carbon monoxide derived data using the following 
mathematical formula:

V C CB PET BLOOD tissue

1
100 0.85= × × × ×( )r

−

wherein VB is the BV of the tissue region (in mL 100/g), 
CPET and CBLOOD are the radioactivities in the tissue and 

blood (in Bq/mL), respectively, ρtissue is the tissue density 
(1.045, 1.047 and 1.042 g/mL for pancreas, duodenum 
and jejunum, respectively) and 0.85 represents the tissue-
to-large vessel hematocrit ratio (15). BF and BV values 
were corrected to the organ volume. Pancreatic volume 
was measured in a manual fashion from abdominal 
MR images whereas conventional values of 556.6 mL 
and 57.3 mL were used for jejunum and duodenum, 
respectively (15).

Mixed-meal testing

After baseline scans, a mixed-meal solution was 
administered orally during a 10-min period in a 
supine position. The mixed-meal (Nutridrink, Nutricia 
Advanced Medical Nutrition, Amsterdam, Netherlands) 
contained 250 kcal energy, and consisted of 40, 6 and 9 g 
of carbohydrates, fat and protein, respectively. During 
the 90-min time period 15O-water and 15O-carbon 
monoxide PET-scans were repeated twice (Supplementary 
Fig.  2A): at 20 and 50 min postingestion for 15O-water 
and at 40 and 70 min postingestion for 15O-carbon 
monoxide, respectively.

Figure 1
Non-invasive estimation of splanchnic blood flow 
(BF) at baseline and during the experiments using 
positron emission tomography (PET). (A, B, C 
and D) An example of co-registered abdominal 
MRI and 15O-water PET image at the levels of 
second and fifth lumbar vertebrae, respectively. 
Pancreas and gut were identified from MRI image 
and the regions-of-interest (ROI) were 
reproduced into PET image. (E) Tissue-specific 
time-activity curves (TAC) were extracted from 
3-dimensional ROIs in a manual fashion. 
Pancreatic ROI, orange polygon; gut ROI, yellow 
cylinder. (F) Pancreatic and intestinal BFs were 
calculated using one-tissue compartment analysis 
with an image-derived input function from 
abdominal aorta.
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Incretin infusion experiments

Incretins were dissolved in sterilized water with 2% 
human serum albumin in the hospital pharmacy and were 
administered into the peripheral vein via a cannula with 
syringe pumps after baseline PET-scans. For GIP infusion, 
after baseline scans a constant 75-min GIP1–42 (Bachem 
Holding AG, Bubendorf, Switzerland) infusion was started 
at a rate of 4.0 pmol/kg/min and the rate was halved at the 
15-min time point (16). The variation in infusion rate was 
performed with the intention to reproduce physiological 
concentrations of GIP normally present in the splanchnic 
circulation after the meal ingestion. For GLP-1 infusion, 
after baseline scans a constant 75-min GLP-1 (Bachem 
Holding AG) infusion was started at the rate of 0.75 pmol/
kg/min and the rate was maintained throughout the 
experiment (17). 15O-water and 15O-carbon monoxide 
PET-scans were performed as described above.

Image processing, PET and MRI analysis

All data were corrected for dead time, decay and measured 
photon attenuation and reconstructed in a 256 × 256 
matrix. Regional time-activity curves (TAC) were obtained 
from the 3-dimensional regions-of-interest (ROIs) drawn 
manually in the pancreatic parenchyma, duodenum 
and jejunum (Fig. 1A, B, C, D and E) using the Carimas 
2.9 software (Turku PET Centre, downloadable at http://
turkupetcentre.fi). An image-derived input function 
was obtained from the abdominal aorta, as described 
previously (18). For reliable analysis, MRI scans were used 
as an anatomical reference (19).

Quantitation of insulin sensitivity and secretion

Homeostatic model assessment for insulin resistance 
(HOMAIR) was calculated as Gluc × Ins: 22.5 from fasting 
samples. Moreover, insulin sensitivity was expressed as 
2-h oral glucose insulin sensitivity index (OGIS) reflecting 
glucose clearance during hyperinsulinemic conditions 
(20). Basal and total (absolute) insulin secretion rate (ISR) 
during meal-testing was derived from deconvolution of 
C-peptide kinetics (21), and β-cell function modeling 
(glucose sensitivity, rate sensitivity and β-cell potentiation) 
was applied to the data.

Biochemical analyses

During standard oral glucose tolerance test (OGTT) 
and experiments, blood was collected to lithium 

heparin and EDTA tubes and was stored at −80°C 
until further analyses. Additional blood samples were 
collected in chilled EDTA tubes pretreated with 25 mg 
of DPP-IV inhibitor (Diprotin-A, Sigma-Aldrich); and 
2000 KIE of trypsin inhibitor (Trasylol, Bayer AG) were 
added to chilled EDTA tubes before blood sampling. 
Determination of plasma glucose, insulin, C-peptide, 
FFA, HbA1c and cholesterol levels are described 
elsewhere (12). Total plasma GIP and active GLP-1 was 
measured using an enzyme-linked immunosorbent assay 
(ELISA) from Merck Millipore. GIP and GLP-1 assays 
were performed according to the instructions provided 
by the manufacturers.

Statistics

The data are expressed as mean (interquartile range, 
IQR). Analyses of changes over time and between 
experiments (GIP infusion vs GLP-1 infusion) were 
performed using repeated measurements ANOVA; and 
Tukey–Kramer method was used to adjust the P values 
of paired comparisons. To investigate the association of 
independent factors and splanchnic flow during mixed-
meal test, a linear regression analysis was performed. 
The differences in time-corrected AUCs between 
experiments were calculated using paired t test (within 
study arms) and Mann–Whitney U test (between study 
arms); and Bonferroni’s method was used to adjust 
the P values of paired comparisons. The normality of 
residuals was checked for justification of the analyses. 
Pearson’s or Spearman’s correlation coefficients were 
calculated depending on the normality of the data. A 
value of P < 0.05 was considered statistically significant. 
Statistical analyses were performed using the SAS 
System for Windows, version 9.4 (SAS Institute, Cary, 
NC, USA).

Results

The metabolic effects of a mixed-meal test

Fifteen minutes after ingestion of the mixed-meal plasma 
glucose, serum insulin (Fig. 2A and B) and C-peptide were 
increased. Simultaneously, plasma GIP levels increased 
and reached a plateau at 30 min postingestion (Fig. 2C). 
In contrast, plasma GLP-1 (Fig. 2C) remained unchanged. 
In concert with increased insulin appearance, serum  
FFA levels decreased from 0.75 (0.53–0.96) to 0.36  
(0.17–0.55) mM (P = 0.007) within 90-min.
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The splanchnic vascular effects of a mixed-meal test

At baseline, the median (IQR) pancreatic, duodenal and 
jejunal BF were 1.57 (1.46–1.78), 0.79 (0.70–0.92) and 
0.54 (0.43–0.66) mL/mL/min, respectively. Mixed-meal 
ingestion increased pancreatic and jejunal BF by 1.17- and 
1.68-fold (P = 0.016 and 0.023 for time factor, respectively) 
at 20 min, whereas no change in duodenal BF was observed 
(P = 0.307 for time factor) (Fig.  2D, E and F). Pancreatic 
BF returned to baseline at 50 min despite plasma glucose 
concentrations still being elevated. In contrast, jejunal BF 
remained elevated during the whole test. Individual BF 
values in the pancreas but not in the intestine after the 
meal (both 20 or 50 min) correlated with baseline values 
(rP range 0.92–0.97, P < 0.001). At baseline BV values were 
14.2 (12.0–15.3), 16.9 (10.3–19.7) and 13.4 (9.53–17.4) mL 
100 g in pancreas, duodenum and jejunum, respectively, 
and remained unchanged throughout the mixed-
meal test.

Interrelationships between metabolic and 
BF variables

During the mixed-meal test, incremental area under the 
curve (iAUC) of glucose during the 90-min mixed-meal 
test was positively correlated with iAUC of GIP (Fig. 3A) 

confirming the glucose dependency of GIP-secretion. 
However, the same relationship was not observed between 
increase in glucose and GLP-1 (rP = 0.129, P = 0.722), even 
though GLP-1 (iAUC) but not GIP response was positively 
correlated with glucose sensitivity (rP = 0.717, P = 0.030) 
and with absolute insulin secretion rate (Fig. 3B). Neither 
total nor iAUC of pancreatic BF response during the 
mixed-meal test correlated with empirical- or model-
derived parameters of β-cell function, or with insulin 
and C-peptide response. However, incremental glucose 
(Fig.  3C) and GIP (r = 0.730, P = 0.040) responses were 
positively correlated with pancreatic BF response, whereas 
neither glucose nor incretins were associated with 
intestinal BF responses.

The effect of infusion of GIP and GLP-1

Supraphysiological levels of plasma GIP and GLP-1 
were reached within 15 min after the start of the 
corresponding infusions (Fig.  4A and B), respectively, 
and this was accompanied by a sharp and transient 
increase in serum insulin (Fig.  4C) and C-peptide 
concentrations (data not shown). Decrease in plasma 
glucose was evident only during the GLP-1 infusion, 
but not during the GIP infusion (Fig. 4D). Compared to 
baseline values, pancreatic BF decreased similarly during 

Figure 2
Metabolic and splanchnic vascular changes after 
mixed-meal ingestion. After ingestion of a 
mixed-meal, an increase in plasma levels of glucose 
(A) and insulin (B) was observed. Mixed-meal 
ingestion provoked a rapid and sustained increase 
in plasma GIP levels (C; black balls), whereas no 
change in plasma GLP-1 levels was observed (C; 
white balls). A significant increase in pancreatic (D) 
and jejunal (F) BF was seen 20-min postingestion 
whereas duodenal BF (E) was unaffected by 
mixed-meal ingestion. Both pancreatic (D) and 
jejunal (F) BF were normalized at 50-min 
postingestion. Data are median (IQR), n = 10, 
*P < 0.05 vs baseline in repeated measurements 
ANOVA with Tukey–Kramer correction.

Figure 3
Relationships between metabolic variables and 
pancreatic BF during a mixed-meal test. (A) 
Plasma GIP and glucose correlated supporting the 
bifunctionality (i.e. absorption and GIP-secretion) 
of the foregut (n = 10). (B) GLP-1 response was 
correlated with total insulin secretion rate (ISR) 
during the meal (n = 9). (C) Increment in 
pancreatic flow correlated with glucose response 
(n = 8). iAUC, incremental area under curve; ISR, 
insulin secretion rate.
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GIP and GLP-1 infusion (P < 0.001 for time factor and 
P = 0.745 for time × intervention interaction, Fig.  4E). 
On the other hand, neither infusions had an effect on 
duodenal BF (P = 0.756 for time factor, and P = 0.906 for 
time × intervention interaction; Fig.  4F). Jejunal BF was 
increased by 2.4-fold during the GIP infusion (P < 0.001 
for time factor, Fig. 4G) but it was unchanged during the 
GLP-1 infusion (P = 0.691 for time factor, P < 0.001 for 
time × intervention interaction). GIP and GLP-1 had no 
effect on pancreatic and intestinal BV. Decreases in plasma 
glucose after the GLP-1 infusions were not correlated with 
corresponding BF response in pancreas or intestine.

Discussion

The results of the present study demonstrate the 
adaptations in splanchnic BF during meal ingestion. 
Thus, a mixed-meal increased pancreatic and jejunal, but 
not duodenal BF. Infusion of GIP increased intestinal BF 
and reduced pancreatic blood flow. In contrast, infusion 
of GLP-1 diminished only pancreatic BF.

Here we utilized validated (12), cutting-edge molecular 
imaging methodology in ten healthy subjects and reported 
that jejunal and pancreatic BF in vivo are increased by 

approximately 70% and 20%, respectively, after a meal 
ingestion. In 1980s Chou and Kvietys coworkers (22, 23) 
described the hierarchy of nutrients inducing intestinal 
hyperemia and showed that lipid and fat in combination 
with bile are the most potent flow inducers followed by 
glucose and proteins. In healthy individuals, the rate of 
gastric emptying is tightly regulated by small intestinal 
feedback, wherein acute hyperglycemia and elevated 
levels of GLP-1 are mutually involved (24, 25). There are 
several differences in the magnitude of regulation of flow 
between gut and pancreas. First, pancreatic flow response 
seems to be dependent only on the levels of circulating 
vasoactive substances such as glucose and GIP, and on 
neural factors (26), while the postprandial response of 
the gut seems largely regulated by a direct interaction 
between luminal contents and the gut mucosa. Second, 
the stimulated gut BF accommodates absorption 
and metabolic processes, such as waste removal (27). 
In contrast to the jejunum, duodenal BF remained 
unchanged during the mixed-meal test, suggesting that 
the mucosal acid concentration might be the dominant 
flow regulator in the duodenum (28).

The incretin hormones GIP and GLP-1 are released 
from the enteroendocrine cells of the fore- and hindgut, 
respectively, upon chyme and bile salt contact with the 

Figure 4
The effects of GIP (black dots) and GLP-1 (white dots) infusions on splanchnic BF. Supraphysiological concentrations of GIP (A) and GLP-1 (B) were 
reached within 15 min of start of the consequent infusion without affecting the levels of the uninfused incretin, respectively. Both incretins increased 
insulin levels transiently (C) whereas the decrease in plasma glucose was significant only during GLP-1 infusion (D). Infusion of GIP and GLP-1 led to a 
similar decrease in pancreatic BF rate (E). While infusions of GIP and GLP-1 unaltered duodenal BF (F), an increase in jejunal BF followed GIP but not 
GLP-1 infusion (G). Data are median (IQR), n = 10, *P < 0.05 vs baseline in repeated measurements ANOVA with Tukey–Kramer correction for individual 
interventions, **P < 0.05 vs baseline in repeated measurements ANOVA with Tukey–Kramer correction for pooled data.
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mucosa, resulting in a potentiation of glucose-stimulated 
insulin secretion (GSIS) and control of appetite and 
food intake (29, 30). Both the GIP (31) and GLP-1 (32) 
receptors (GIPR and GLP-1R) have been identified in the 
endothelial and smooth muscle cells of the arterioles 
and GLP-1 has been ascribed cardioprotective role by 
endothelium-dependent vasodilation (32, 33). While 
previous studies in cultured cells (10, 34) and in vivo 
in canines have suggested that incretins may regulate 
splanchnic BF kinetics in the absorptive state, the 
involvement of the incretins in humans is somewhat 
unclear as the levels of active incretin hormones in the 
peripheral circulation are lower than the minimum doses 
required to produce vasodilatation (27). However, local 
tissue concentrations of these hormones, especially in the 
prehepatic vasculature (35), are high enough to exert their 
vasoactive properties. The doses of GLP-1 and GIP used in 
our study resulted in modestly pharmacological plasma 
levels and were well tolerated.

Interestingly, GIP infusion had a dual effect on BF, 
with a prominent increase in jejunal BF, paralleled by a 
decrease in pancreatic BF. Both of the incretin infusions 
transiently stimulated insulin secretion, consistent with 
previous findings (36). The results presented here suggest 
that in humans GIP may prepare the hindgut for the 
increases in metabolic demand, accompanied by a parallel 
increase in insulin secretion. The increase in jejunal BF 
elicited by GIP was in agreement with animal studies 
documenting augmentation of SMA flow after GIP bolus 
administration (10), confirming identical regulation in 
man. Previous studies in conscious animals failed to show 
any vasodilatation in the gut wall arterioles in response 
to postprandial incretin levels (27), indicating that the 
observed GIP-induced gut hyperemia is likely caused by 
the elevation in SMA BF.

The splanchnic vascular effects of GLP-1 were modest 
when compared with those of GIP, and were evident only 
as a decrease in pancreatic BF. In contrast after the mixed-
meal test, GLP-1 was positively associated with jejunal but 
not with pancreatic or duodenal BF response. This is likely 
the result of the luminal stimulation of the gut leading 
to simultaneous upregulation of flow and hormonal 
secretion, rather than a causal relationship between 
incretins and gut BF. Of note, active GLP-1 levels remained 
in the baseline after mixed-meal ingestion (Fig. 2C), likely 
due to low amount of carbohydrates being insufficient for 
eliciting a response in GLP-1 secretion. The observation 
that GLP-1 does not regulate intestinal BF in the absorptive 
state is in line with a previous study in healthy Wistar 

rats (37). The same authors showed that GLP-1 attenuated 
pancreatic BF only after glucose administration but not 
during fasting conditions (37). In the study done by 
Trahair and coworkers the co-administration of GLP-1 
infusion in humans further enhanced increase in SMA BF 
elicited by intraduodenal (ID) glucose infusion, whereas 
plain GLP-1 infusion without ID glucose infusion led to 
decrement in SMA BF (38). This is in line with our present 
study where GLP-1 leads to decrement in pancreatic BF, 
a tributary organ of SMA. However, why the jejunal BF 
remained unchanged despite the decrease in SMA BF 
cannot be answered on the basis of the present study 
but it may be linked to autoregulation in the mucosal 
vascular bed.

In interpreting these results some potential 
limitations should be recognized. We did not measure 
cardiac output, gastric emptying, sympathetic activity 
and atrial natriuretic peptide (ANP), which may be of 
relevance (39). It was not possible to differentiate islet 
BF from the exocrine pancreas BF due to the current PET 
resolution which equates 25-times the size of an average 
human islet (13). Consequently, the total pancreatic BF 
during the mixed-meal test may not reflect the exact 
vascular milieu in the islets. This may have curtained the 
link between islet BF, β-cell function, and insulin secretion 
during mixed-meal testing (5, 40). While the exocrine 
pancreatic BF is dependent on the afferent BF from the 
CA and its branches, islets have been shown to have more 
sophisticated vascular autoregulation (9, 11). Finally, two 
study subjects had IGT, which might have influenced the 
splanchnic flow. However, their splanchnic responses 
showed no statistical difference compared to non-insulin 
resistant study subjects.

In conclusion, the results of the present study 
demonstrate marked BF redistribution in the splanchnic 
vascular bed in response to a mixed-meal, due to an 
interaction of direct chyme contact, and elevations 
in plasma levels of glucose and incretin hormones, 
mainly GIP. Putative vascular effects of GLP-1 and GIP 
are likely to be more potent during postprandial and 
hyperglycemic conditions.
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