
LUTMap: A dynamic heuristic application
mapping algorithm based on lookup tables

Thomas Canhao Xu and Ville Leppänen

Department of Information Technology, University of Turku, 20014, Turku, Finland
canxu@utu.fi

Abstract. In this paper, we propose and investigate a dynamic heuris-
tic mapping algorithm with lookup table optimizations. Distributed and
parallel computing are trends due to the performance requirement of
modern applications. Application mapping in a multiprocessor system
is therefore critical due to the dynamic and unpredictable nature of the
applications. We analyse the communication delay among different tasks
in an application. A fundamental algorithm is analysed to optimize the
average delay of the mapping region. We discuss and evaluate the effec-
tiveness of the algorithm in terms of average intra-application latency.
Results from synthetic applications revealed that average latencies from
the mapping regions of the fundamental algorithm have reduced up to
23% compared with the incremental mapping. By noticing the time over-
head of the algorithm due to extra number of search spaces, we introduce
a mechanism with lookup tables to speed up the process of searching op-
timized mapping regions. The lookup table is examined with both size
and construction time. Experiments shown that the lookup table is small
enough to fit into the cache, and the table can be constructed in millisec-
onds in most practical cases. The results from real applications show that
the average execution time of applications of the proposed algorithm has
reduced by 15.2% compared with the first fit algorithm.

1 Introduction

Distributed and parallel computing are more and more common nowadays. An
important reason behind this trend is applications: distributed and parallel appli-
cations used to be widely adopted in high-performance and scientific computing,
as well as computer servers. Currently the trend is shifted to daily computing,
desktop and even mobile applications utilize the power of distributed and paral-
lel computing extensively. Not only games and real-time audio/video processing,
but also signal processing and real-time remote sensing are heavily developed to
make use of more processor cores. Commercial desktop and server processors
already have more than 20 cores, while it is possible to integrate 10 cores in a
mobile processor [17]. The cores are well-utilized by applications: a study shows
that even browsers, email clients and video watching applications use as much
as 8 cores [11]. It can be predicted that the number of cores in a single chip will

still grow in the near future. Mesh interconnect is proposed for massive multi-
core processors to alleviate the communication overhead [4]. Processors based
on mesh network are manufactured both for research and commercial use [7].

Applications should be mapped to different nodes in the system in order to
execute. Application mapping consists of finding a mapping region for a given
application with several tasks. There are usually several constraints and require-
ments to meet, for example performance, efficiency, temperature and system
congestion. The metrics can be affected seriously with different mappings. For
instance to reduce thermal hot-spot, tasks in an application should be mapped
dispersedly, however system performance may reduce in that case. On the other
hand, a congregated mapping can potentially decrease the communication delay
among tasks, while certain part of the system can be congested.

Various mapping algorithms have been discussed and studied by previous
researches [14] [18] [22]. For more complex dynamic systems, the mapping algo-
rithm itself should be efficient since finding the optimal solution is usually an
NP-hard problem [23] [5]. Because of the computation complexity, researchers
have focused on heuristic and stochastic algorithms. Chou et al. introduced an
incremental mapping algorithm in [3]. The algorithm selects nodes closest to the
master node, and then maps the application to the region. A mapping algorithm
designed for big data applications is proposed in [21]. The algorithm is optimized
for both cache and memory accesses, as well as intra-application communication.
To meet the deadline and energy constraints of real-time applications, [9] and
[2] discussed mapping algorithms optimized for such conditions. Instead of con-
tiguous mapping, [6] investigated mixed mapping for mixed-critical concurrent
applications, i.e. non-contiguous mapping is applied to increase system through-
put while real-time applications are still mapped contiguously for meeting the
deadline requirements. A greedy heuristic approximation algorithm is proposed
for three-dimensional networks in [23]. Here the authors investigated application
mapping in a multi-layer network with limitations of inter-layer connections.

Heuristic algorithms can produce decent mapping results with relatively low
time cost, provided that the heuristics are chosen appropriately. On the other
hand, multiple results can be evaluated and compared in the algorithm, and
quality of the mapping region improves as a result [24]. However the time cost
increases linearly as the number of extra searches increases. This can be a prob-
lem especially for time critical systems. Lookup table has been widely used in
computer science to reduce processing time [10]. Applications include arithmetic
operations, image processing, cache/memory and even hardware design [8]. A
lookup table is a pre-initialized array that replaces the runtime computation
with table lookup operations. The additional cost is usually the size and con-
struction time of the table. In this paper, we propose and investigate a novel
application mapping algorithm based on lookup table. The algorithm chooses
mapping region based on the information stored in the lookup table, and the
table is constructed and updated in the background dynamically. We select both
synthetic and real applications with different configurations to compare the pro-
posed algorithm with other algorithms.

2 Application Mapping and Communication Delay

1

2

3

4

5

Mapping

1 2

3 4

5

R
e
g
io
n

S
e
le
c
tio

n

Fig. 1: Mapping a 5-task application to
a 3×3 mesh network, grey nodes are al-
ready occupied.

The performance of applications is
highly affected by communication
overhead of different tasks in the ap-
plication. Figure 1 shows the process
of mapping. An application with 5
tasks is being mapped to a 3×3 sys-
tem in which only 7 nodes are avail-
able. Firstly a mapping region is cho-
sen for the given application, e.g. in
the figure a 5-node region with cross
pattern is selected, and then the tasks
are mapped to the region. Obviously
the selection of mapping region is cru-
cial in the process. To reduce the
possibility of congestion, the region
should be as congregate and contigu-
ous as possible. We investigate the
metric of Manhattan Distance (MD),
which represents the number of hop counts between two nodes. Apparently the
average pairwise MD of the nodes in the mapping region determines how con-
gregate the region is. In Figure 1, the 5-node region is formed based on a 2×2
square, while assume another 5-node region with a straight continuous line (not
shown in the Figure). Both regions are contiguous, however in terms of average
pairwise MD, the first region is better. Several problems must be addressed
in dynamic systems with multiple concurrent applications: first the system is
fragmented by different applications, second it might be unworthy to find the
optimal result.

3 The LUTMap Algorithm

In this section, we first define a model for the destination platform. We then
propose an algorithm to create the lookup tables dynamically to mitigate the
computation overhead of calculating the mapping regions.

3.1 Platform Model

Definition 1 A multiprocessor system consists of a mesh network P (X,Y) of
width X, length Y with X×Y nodes. Each node ni is denoted by a coordinate
(x, y), where 0≤x≤X − 1 and 0≤y≤Y − 1, and i=y×X+x. The Manhattan
Distance between ni and nj is MD(ni, nj).

Definition 2 A Task Graph (TG) is a directed acyclic graph, TG = (N,E),
where N is the set of nodes and E is the set of directed edges associated with
the graph. The amount of traffic (weight of the edge) between nodes ni and nj is
represented as wi,j. ∀(ni, nj) ∈ E.

Definition 3 An application Ak(TGk) consists of a list of task nodes Nk, and
a list of communication volume between different nodes Ek. To execute the ap-
plication, it must be mapped to |Nk| nodes.

Definition 4 Rl(Ak) is a mapping region in P (X,Y), which consists of a set of
|Nk| nodes for Ak(TGk). Notice that several mapping regions can be evaluated
for Ak(TGk).

Definition 5 Average Intra-application Latency (AILRl(Ak)) is the average la-
tency between internal nodes for an application Ak with a mapping region Rl(Ak).
The AILRl(Ak) is calculated as:

AILRl(Ak) =

∑
(ni,nj)∈Rl(Ak)

wni,nj ×MD(ni, nj)

|Nk|
(1)

Definition 6 Congregate Degree (CDni
) is the maximum number of available

nodes for ni in the x + y+ (right-up) direction, in a square shape. The CDni

updates as systems state changes.

3.2 Region Selection and Mapping

Fig. 2: Example of 4 applica-
tions A (16 tasks), B (16 tasks),
C (4 tasks) and D (4 tasks) run-
ning on an 8×8 mesh.

It is obvious that system performance will be
affected by different mappings of applications.
As an indicator, the AIL shows the average
node-node access delay for a mapping deci-
sion. This metric can be explained with Fig-
ure 2. For example, Application C is mapped
to nodes n2, n3, n4 and n43, while Applica-
tion D is mapped to nodes n6, n7, n14 and
n15. To calculate AIL, the average MD be-
tween a node and all other nodes in a map-
ping region is considered. Here we assume
∀i, j : (ni, nj) ∈ E, wi,j = 1 for simplicity.
Take n2 in C for instance, MD(n2, n3) = 1,
MD(n2, n4) = 2 and MD(n2, n43) = 6, hence
the average MD for n2 to other nodes in C is
2.25 (9

4). Correspondingly the metric can be
calculated for n3, n4 and n43 as well. At last
by multiplying the weight of edges, the aver-
age value of them is the AILC . Obviously both regions C and D are a possible
mapping for a 4-task application, however in terms of AIL, D is preferable com-
pared to C. Lower AIL means lower internal delay of an application, which
translates to higher performance and lower power consumption.

To determine the optimal (lowest) AIL for an application, all possible permu-
tations can be enumerated and compared, however the computation complexity

can be too high for many systems. Demaine et al. proposed an algorithm that
can calculate the optimal value of all pairwise MD of a mesh grid in O(n7.5)
[5]. However the algorithm only works in a static empty system. In case of a
dynamic system with multiple concurrent applications, the true optimal solu-
tion is an NP -Hard problem [5] [12] [25]. As a compromise of efficiency and
computation complexity, several methods are proposed to achieve sub-optimal
results with much lower computation cost, such as simulated annealing, linear
programming, heuristic and stochastic algorithms. Here we first explore an al-
gorithm based on the proof of [5], that an optimal mapping region is convex
and the shape should be near circular. Take Figure 2 for instance, two appli-
cations A and B are both with 16 tasks, however AILRA

is higher than AILRB

(AILRA
= 3.125, AILRB

= 2.5). Notice that B is not an optimal result in terms
of AIL, [5] has given the optimal result with AIL = 2.484. It is noteworthy
that a circular shape is usually closer to optimal than a square, nonetheless
the computation complexity of generating circular shapes is higher than that of
squares. We consider an algorithm based on square shape, the Congregate Degree
is calculated for all the nodes. Figure 2 shows the CDs of all free nodes.

3.3 Fundamental Algorithm

For a given application Ak, the number of tasks can be equal, larger or smaller
than the CD of a node. As a consequence the region, i.e. the free nodes repre-
sented by the CD of a node, should be adjusted, or left untouched in case the two
numbers are equal. The fundamental algorithm searches for a limited number
of mapping regions. Rmax is defined to control the maximum number of regions
in the list of candidate regions (search space). Increasing Rmax takes more time
for region evaluation and can possibly generate better results. If CDni

> |Nk|
and the number of tasks can be represented by a square, the smallest square
region that is closest to |Nk| is added to the candidate list. Notice that CDni

represents the highest number of free nodes in a square shape, where smaller
squares are evaluated as well in the algorithm. The region is expanded in case
the square is smaller than |Nk|. The expansion strategy follows the minimum
AIL rule, that for all the free nodes, only those closest to the current region
are added. Take an 11-task application for instance (Figure 2), n21 and n29 are
favourable due to the CDs, two nodes are expanded for both square regions. At
last, the candidate regions in the list are compared with AIL. The algorithm
always starts with nodes with largest CD. The extra searches will start from
free nodes with smaller CDs than the previous one.

The proposed algorithm is firstly evaluated by using synthetic traces. We
compare the fundamental algorithm with a different number of search space
(SS∗), the First Fit algorithm (FF), the incremental mapping algorithm in [3]
(INC), a greedy mapping algorithm that always chooses nodes nearest to the
centre of the mesh network (PROX/PRO), the Nearest Neighbour algorithm
(NN) and random mapping algorithm (RAND/RAN). We use Task Graph
Generator [19] to generate 10,000 applications of 1 to 16 tasks with equal pos-
sibility. The applications enter and leave the system with first-in-first-out se-

quence. Provided that the number of free nodes is smaller than the number
of tasks of the incoming application, the earliest application will be removed
after execution. We investigate systems with different node utilizations. Lower
utilized networks have higher number of free nodes and consequently should gen-
erate better results. Researchers reported that for modern large-scale systems,
the processor utilization can maintain over 80% [13]. The results are presented
in Table 1.

Table 1: Results of different mapping algorithms with different Node Utilizations
(NU), the unit of time (µs) represents the average time for each mapping deci-
sion. Normalized AIL (NAIL) is shown for clarity. System configuration: Core
i7 920 2.67 GHz, 8GB RAM
NU/0.5 SS1 SS2 SS4 SS8 SS16 SS32 FF INC PRO NN RAN

AIL 77.70 75.02 72.60 71.19 70.44 70.14 111.41 75.24 121.31 92.05 186.82
NAIL 110.79 106.96 103.51 101.51 100.44 100.00 158.85 107.28 172.96 131.24 266.37
Time 71.6 97.5 156.5 273.9 519.9 1011.5 44.9 68.1 46.7 52.0 47.1

NU/0.6 SS1 SS2 SS4 SS8 SS16 SS32 FF INC PRO NN RAN
AIL 81.00 77.31 73.48 71.68 70.66 70.31 115.68 77.92 133.28 92.62 186.38

NAIL 115.21 109.95 104.51 101.94 100.50 100.00 164.52 110.83 189.55 131.73 265.08
Time 66.0 89.8 140.2 246.6 460.6 886.9 42.6 62.5 44.3 48.7 44.7

NU/0.7 SS1 SS2 SS4 SS8 SS16 SS32 FF INC PRO NN RAN
AIL 84.61 79.46 74.89 72.42 71.19 70.66 121.18 82.10 143.31 92.44 185.02

NAIL 119.74 112.45 105.98 102.49 100.75 100.00 171.48 116.19 202.80 130.82 261.83
Time 59.9 81.1 125.0 215.0 398.7 759.5 41.0 57.2 41.3 45.8 42.8

NU/0.8 SS1 SS2 SS4 SS8 SS16 SS32 FF INC PRO NN RAN
AIL 90.82 84.48 77.79 74.49 73.00 72.16 125.05 86.55 154.75 93.41 185.37

NAIL 125.85 117.07 107.80 103.23 101.16 100.00 173.29 119.94 214.45 129.45 256.89
Time 54.2 72.0 108.4 182.5 333.0 628.6 39.3 52.2 39.0 42.9 40.6

NU/0.9 SS1 SS2 SS4 SS8 SS16 SS32 FF INC PRO NN RAN
AIL 101.20 92.09 83.60 79.24 77.40 75.90 128.04 93.54 164.69 101.68 184.58

NAIL 133.33 121.33 110.14 104.41 101.97 100.00 168.70 123.25 216.99 133.97 243.19
Time 49.3 64.2 94.6 155.9 278.3 523.4 37.6 47.0 37.5 40.6 39.7

NU/1.0 SS1 SS2 SS4 SS8 SS16 SS32 FF INC PRO NN RAN
AIL 124.83 116.69 107.32 101.73 99.44 98.96 130.20 106.57 176.84 121.40 183.79

NAIL 126.14 117.92 108.45 102.80 100.49 100.00 131.57 107.69 178.70 122.68 185.73
Time 44.4 56.4 79.8 126.7 221.0 408.1 36.4 42.1 36.0 38.3 40.8

In terms of AIL, the fundamental algorithm achieved improved results with
increased number of search space. Higher node utilization leads to higher AIL
for all algorithms. RAND provides a baseline for unoptimized mapping, while
traditional widely-used algorithms such as FF , NN and PROX did provide
better results compared with RAND. Unarguably the INC algorithm is superior
in all cases than the traditional algorithms. However depending on the system
utilization, the results of SS32 are 7.28% to 23.25% better compared with INC.
We notice that different number of search space did have an impact to the
quality of the result. For example, the average AIL for all utilizations improved
around 19% by increasing the number of search spaces from 1 to 8. However
the improvement is smaller from SS8 to SS32: the AILs of SS8 and SS16
under 90% utilization are 4.41% and 1.97% worse than that for SS32. The gap
is smaller when the utilization is low, and widens gradually as system utilization
increases. The time consumed by extra search spaces increases linearly, and in
general all algorithms take longer time with lower utilization due to additional
free nodes.

3.4 Lookup Table

Incoming

Application

Calculate

Region

Application

Mapping

Execute

Incoming

Application

Check LUT

for Region

Application

Mapping

Execute

Fig. 3: The process of conven-
tional mapping (left) and map-
ping based on lookup table
(right).

For a given application, the mapping region
should be determined before it can be mapped
to the system. Calculating the mapping region
usually costs much more time than mapping
the application, especially for the proposed al-
gorithm. As aforementioned, the fundamental
algorithm sacrifices computation time for bet-
ter results. The extra time can be a problem
for time-critical systems. Therefore we further
propose an improved algorithm with lookup
table. The table is constructed in the back-
ground, and stored in the memory for fast
lookup (Figure 3). Here we define the table
consisting of all the mapping regions which 1
≤ |N | ≤ nAvailable. Obviously higher number
of available nodes means larger table. For each
entry in the table, the fundamental algorithm is carried out with certain num-
ber of search spaces. Therefore the table contains the information of optimized
mapping regions for all possible sizes.

As aforementioned, there are several key issues for implementing lookup ta-
bles. On the one hand, the size of the table should be small enough in order
to be efficiently stored in the memory or preferably the cache. Otherwise the
time overhead of retrieving the table from the disk could be unworthy. On the
other hand, the time spent for constructing the table should be relatively low
compared with actual application execution, i.e. if it takes too long time, direct
computation might be a better solution. We evaluated both issues by using the
same application traces as before, the results are illustrated in Figures 4, 5 and 6.

�

��

��

��

��

��

�
�
��
��

�
�
��
��

�
�
��
��

�
�
��
�	

�
�
��
�

�
�
��
��

�

����

����

����

����

����

��	
��

����

Fig. 4: Average number of entries (left
Y-axis) of the lookup table with differ-
ent Node Utilizations (NU/∗), and the
average size of the lookup table shown
as bytes (right Y-axis, assuming 32-bit
integer).

As is shown in Figure 4, the size
of the table is relatively small for
the given environment. The table be-
comes larger as system utilization de-
creases since there are more available
nodes for calculation and storage. For
example with 90% utilization, the av-
erage entries of the table are around
20, and the size of the table is about
1KB. Each entry of the table stores
the node information of an optimized
mapping region for a certain size, i.e.
the table has 10 entries for 10 avail-
able nodes, storing information of op-
timized mapping regions containing 1
to 10 nodes. Notice that even at 50%
utilization, the storage overhead of the table is approximately 4KB, small enough

to fit into the cache. The size of the table is linearly related with the number of
available nodes.

�

��

��

��

��

���

���

���

���

���

��� ��� ��� ��� ���� ����

	
����

	
����

	
����

	
����

	
����

	
����

Fig. 5: Average construction time (ms,
Y-axis) for lookup tables, in terms of dif-
ferent number of Search Spaces (SS∗)
and Node Utilizations (NU/∗).

In terms of table construction
time, Figure 5 shows that the time de-
pends on both the number of search
space and system utilization. For
high-utilized systems, the construc-
tion time is relatively low due to re-
duced number of available nodes, e.g.
all the table construction times for
over 80% utilized systems are below
20ms provided that the number of
search space is lower than 16. The
time increases significantly as system
utilization decreases and the number
of search space grows due to extra cal-
culation. However as aforementioned
the system utilization of large-scale
systems is typically over 80%. Moreover the AIL gap of different number of
search spaces is not that high for low utilized systems compared with high uti-
lized systems: for instance in Table 1, the gap of AIL for SS8 and SS32 is 1.51%
with 50% utilization, while the gap increases to 4.41% with 90% utilization. This
implies that a smaller number of search spaces might be more suitable for low
utilized system, while a larger number of search spaces is required for highly
utilized system.

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e
 (

m
s
)

Application #

Fig. 6: Detailed time spent for each
lookup table construction for 10,000 ap-
plications.

Figure 6 illustrated the time cost
of each table construction with 90%
utilization and search depth of 32. No-
tice that the first five data are not
shown in the figure (101 to 517ms
due to the system is empty in the
beginning, requiring more computa-
tion). Overall most tables are con-
structed within few milliseconds, e.g.
45% of the lookup tables are calcu-
lated under 10ms, where 75% are fin-
ished below 20ms. The application ex-
ecution time is usually much longer
than the magnitude of millisecond, es-
pecially for large-scale multi-task ap-
plications. Therefore the time over-
head for calculating the lookup table should be acceptable for most cases. Overall
the experiments indicate that the lookup table used here is small enough for the
cache and the calculation overhead is practical.

Figure 7 illustrated the detailed AIL results for different algorithms map-
ping 10,000 applications under 90% system utilization. Obviously the proposed
algorithm produced relatively good and stable results. We notice NN generated
comparable results with SS1, while the curve of INC is comparable with SS2.
However higher number of search spaces provide significantly better results in
nearly all cases. The differences among SS8, SS16 and SS32 are noticeable es-
pecially for applications number over 7000, indicating that a larger number of
search space is still preferable in many cases.

 0

 50

 100

 150

 200

 250

 300

 350

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
IL

Application #

FF
INC

PROX
NN

RAND
SS1
SS2
SS4
SS8

SS16
SS32

Fig. 7: Comparison of different mapping algorithms with 90% system utilization.
The curves show exact sorted AIL values for 10,000 applications.

4 Application Evaluation

In this section, we evaluate the performance of different mapping algorithms
with real applications.

4.1 System Configuration

The experimental environment for applications is based on a full system simula-
tor GEMS/Simics [15] [16]. A multiprocessor system with 64 (8×8 mesh) nodes
is simulated, where each node is equipped with a Sun UltraSPARC VIII+ core
running at 2GHz. Several workloads are selected from [20] and [1], including
matrix decomposition (Cholesky and LU), video coding (H264) and FFT . All
the mapping algorithms are evaluated in the same system state, in which the
aforementioned 10,000 applications were executed with the corresponding algo-
rithm with 90% system utilization. We measure performance metrics in terms
of application execution time and time spent for the mapping algorithm. Here
the proposed algorithm (LUTMap in figures) is set to 32 search spaces, and we
only compare results from FF , INC, PROX and RAND for simplicity. The
normalized results are illustrated in Figures 8a and 8b.

4.2 Result Analysis

The experimental results from Figure 8a show that, in terms of average appli-
cation execution time, the proposed algorithm LUTMap is the best compared
with other algorithms. We notice that compared with INC and FF , on av-
erage the four applications run 10.2% and 15.6% faster respectively. The two
other mapping algorithms perform much worse, the PROX is 18.2% slower for
these applications compared with LUTMap, while not surprisingly RAND is
the worst algorithm here. This can be explained from the search depth of the
proposed algorithm. While the compactness and continuity of the mapping re-
gion are considered in INC, it suffered from limited number of search spaces.
The essential idea of INC is to include the nearest nodes that minimizes aver-
age latency of the region without a global view. It is noteworthy that in Table 1
the NAIL for SS32 has improved 23.3% over INC with 90% utilization, while
the improvement is much less for the four applications. We also note that the
improvement of execution time depends on the communication graph of appli-
cations, albeit not significant here.

�

���

���

���

���

�

���

�
�
�
��
�
�
�

	
	

�
�

�

�
�

�
�
�
��
�
�

��

	
�

���

�
�

������

(a)

�

���

�

���
�
�
�
��
�
�
�

	
	

�
�

�

�
�

�
�
�
��
�
�

��

���

	
��

��

������

(b)

Fig. 8: Normalized application execution time (a) and calculation time of map-
ping regions (b) for different mapping algorithms.

In terms of computation time of the mapping regions, Figure 8b reveals that
the proposed algorithm achieved nearly identical results as FF and PROX.
This is primarily due to the fact that selecting an optimized mapping region in
LUTMap requires only a table lookup operation and the table is small enough
to fit into the memory. Therefore the operation can be completed instantly as is
in FF and PROX. While in RAND an extra operation is needed for computing
a random number, and selecting neighbouring nodes costs additional time for
generating the mapping region in INC (on average 35% slower than FF).

5 Conclusion

We proposed a dynamic application mapping algorithm in this paper. Parallel
and distributed processing are trends for modern applications. Systems integrate
more and more processor cores to increase the capability of processing multiple
applications. However the mapping of applications in such a system is critical for

performance and efficiency. We explored the intra-application delay of these sys-
tems. A fundamental algorithm is proposed to optimize the delay with improved
mapping region selection. The algorithm is proved to be effective in terms of
average intra-application delay, however the time cost of calculating additional
regions can be a problem. We then investigated a scheme based on lookup ta-
bles. The tables are computed dynamically based on the status of the system.
Our results show that both the overhead of size and computation time of the
lookup table were acceptable for most cases. Experiments were conducted based
on real applications with a cycle-accurate simulator. It is shown that checking
the lookup table is as fast as other simple mapping algorithms, while the exe-
cution time of four applications was improved by 15.6% compared with the first
fit algorithm.

References

1. Bienia, C., Kumar, S., Singh, J.P., Li, K.: The parsec benchmark suite: Char-
acterization and architectural implications. In: Proceedings of the 17th Interna-
tional Conference on Parallel Architectures and Compilation Techniques. pp. 72–
81. PACT ’08, ACM, New York, NY, USA (2008)

2. Chen, Y.J., Yang, C.L., Chang, Y.S.: An architectural co-synthesis algorithm for
energy-aware network-on-chip design. Journal of Systems Architecture 55(5?6), 299
– 309 (2009)

3. Chou, C.L., Ogras, U., Marculescu, R.: Energy- and performance-aware incremen-
tal mapping for networks on chip with multiple voltage levels. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on 27(10), 1866–
1879 (Oct 2008)

4. Dally, W., Towles, B.: Principles and Practices of Interconnection Networks. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA (2003)

5. Demaine, E.D., Fekete, S.P., Rote, G., Schweer, N., Schymura, D., Zelke, M.: Inte-
ger point sets minimizing average pairwise distance: What is the optimal shape of
a town? Computational Geometry 44(2), 82 – 94 (2011), special issue of selected
papers from the 21st Annual Canadian Conference on Computational Geometry

6. Fattah, M., Rahmani, A.M., Xu, T., Kanduri, A., Liljeberg, P., Plosila, J., Ten-
hunen, H.: Mixed-criticality run-time task mapping for noc-based many-core sys-
tems. In: Parallel, Distributed and Network-Based Processing (PDP), 2014 22nd
Euromicro International Conference on. pp. 458–465 (Feb 2014)

7. Fleig, T., Mattes, O., Karl, W.: Evaluation of adaptive memory management
techniques on the tilera tile-gx platform. In: Architecture of Computing Systems
(ARCS), 2014 27th International Conference on. pp. 1–8 (Feb 2014)

8. Ghosh, A., Paul, S., Bhunia, S.: Energy-efficient application mapping in fpga
through computation in embedded memory blocks. In: VLSI Design (VLSID),
2012 25th International Conference on. pp. 424–429 (Jan 2012)

9. Hu, J., Marculescu, R.: Energy-aware communication and task scheduling for
network-on-chip architectures under real-time constraints. In: Proceedings of the
Conference on Design, Automation and Test in Europe - Volume 1. pp. 10234–.
DATE ’04, IEEE Computer Society, Washington, DC, USA (2004)

10. Hyde, R.: The Art of Assembly Language. No Starch Press, San Francisco, CA,
USA, 2nd edn. (2010)

11. LaCouvee, D.: Fact or fiction: Android apps only use one cpu core (Decem-
ber 2015), http://www.androidauthority.com/fact-or-fiction-android-apps-only-
use-one-cpu-core-610352/

12. Lei, T., Kumar, S.: A two-step genetic algorithm for mapping task graphs to a
network on chip architecture. In: Digital System Design, 2003. Proceedings. Eu-
romicro Symposium on. pp. 180–187 (Sept 2003)

13. Leung, V.J., Sabin, G., Sadayappan, P.: Parallel job scheduling policies to improve
fairness: A case study. In: 39th International Conference on Parallel Processing,
ICPP Workshops 2010, San Diego, California, USA, 13-16 September 2010. pp.
346–353 (2010)

14. Leutenegger, S.T., Vernon, M.K.: The performance of multiprogrammed multipro-
cessor scheduling algorithms. SIGMETRICS Perform. Eval. Rev. 18(1), 226–236
(Apr 1990)

15. Magnusson, P., Christensson, M., Eskilson, J., Forsgren, D., Hallberg, G., Hog-
berg, J., Larsson, F., Moestedt, A., Werner, B.: Simics: A full system simulation
platform. Computer 35(2), 50–58 (2002)

16. Martin, M.M., Sorin, D.J., Beckmann, B.M., Marty, M.R., Xu, M., Alameldeen,
A.R., Moore, K.E., Hill, M.D., Wood, D.A.: Multifacet’s general execution-driven
multiprocessor simulator (gems) toolset. Computer Architecture News (September
2005)

17. Mediatek: Helio x20 (December 2015), http://mediatek-helio.com/x20/
18. de Souza Carvalho, E., Calazans, N., Moraes, F.: Dynamic task mapping for mp-

socs. Design Test of Computers, IEEE 27(5), 26–35 (Sept 2010)
19. TGG: Task graph generator (July 2014), http://taskgraphgen.sourceforge.net/
20. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The splash-2 programs:

Characterization and methodological considerations. In: Proceedings of the 22nd
International Symposium on Computer Architecture. pp. 24–36 (June 1995)

21. Xu, T., Toivonen, J., Pahikkala, T., Leppanen, V.: Bdmap: A heuristic application
mapping algorithm for the big data era. In: Ubiquitous Intelligence and Comput-
ing, 2014 IEEE 11th Intl Conf on and IEEE 11th Intl Conf on and Autonomic and
Trusted Computing, and IEEE 14th Intl Conf on Scalable Computing and Commu-
nications and Its Associated Workshops (UTC-ATC-ScalCom). pp. 821–828 (Dec
2014)

22. Xu, T.C., Leppänen, V.: Algorithms and Architectures for Parallel Processing:
15th International Conference, ICA3PP 2015, Zhangjiajie, China, November 18-
20, 2015, Proceedings, Part I, chap. DBFS: Dual Best-First Search Mapping Algo-
rithm for Shared-Cache Multicore Processors, pp. 185–198. Springer International
Publishing, Cham (2015)

23. Xu, T.C., Liljeberg, P., Plosila, J., Tenhunen, H.: Exploration of heuristic schedul-
ing algorithms for 3d multicore processors. In: Proceedings of the 15th International
Workshop on Software and Compilers for Embedded Systems. pp. 22–31. SCOPES
’12, ACM, New York, NY, USA (2012)

24. Xu, T., Leppnen, V.: Cache- and communication-aware application mapping
for shared-cache multicore processors. In: Pinho, L.M.P., Karl, W., Cohen, A.,
Brinkschulte, U. (eds.) Architecture of Computing Systems ? ARCS 2015, Lecture
Notes in Computer Science, vol. 9017, pp. 55–67. Springer International Publishing
(2015)

25. Xu, T., Liljeberg, P., Tenhunen, H.: A minimal average accessing time scheduler
for multicore processors. In: Xiang, Y., Cuzzocrea, A., Hobbs, M., Zhou, W. (eds.)
Algorithms and Architectures for Parallel Processing, Lecture Notes in Computer
Science, vol. 7017, pp. 287–299. Springer Berlin Heidelberg (2011)

